Bai 18 HDGBTTL cac bai toan ve khoang cach phan 1 hocmai vn

Bai 18 HDGBTTL cac bai toan ve khoang cach phan 1 hocmai vn

Bai 18 HDGBTTL cac bai toan ve khoang cach phan 1 hocmai vn
... 1, +       x   x    víi x    ,1    x 1  2 T 1 Xét f(x) v i x > Ta có f '  x   =   2  x  1  x  1 2 f’(x) =   x  1   2 , x  1 3     f’(x) < x  1, 1 ...   2  s  1 1  t   4s  t   1   s  t   4  s  1 1 t   MN   s  t  Nh ng 4s  t  4s  t  16 ,    s  1 1  t   s    t  s  t     1 16  64 MN  ... c a ph ng trình:  1 x  x 2  x  x2  x     2x 1 1 x    1 11 1  , , V y hai m đ th th a đ là:   ;   2 2     BƠi 11 Cho hàm s y 2x x 1 Tìm đ th (C) hai...
  • 8
  • 3
  • 0

Bai 18 BTTL cac bai toan ve khoang cach phan 1 hocmai vn

Bai 18 BTTL cac bai toan ve khoang cach phan 1 hocmai vn
... quan x 1 (C) 2x 1 Tìm điểm A; B thuộc nhánh đồ thị hàm số cho AB Bài 10 Cho hàm số y  Bài 11 Cho hàm số y  x2 Tìm điểm đồ thị (C) cách hai điểm A(2 , 0) B(0 , 2) 2x 1 2x x 1 Tìm đồ ... hàm số  C  : y  Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 19 00 58-58 -12 Hocmai. vn - Trang | - ... tiệm cận nhỏ Bài Cho hàm số  C  : y  2x  x 1 Tìm hai điểm M, N thuộc hai nhánh khác (C) cho đoạn MN nhỏ Bài Cho hàm số  C  : y  x2  x  x 1 Tìm hai điểm M, N thuộc nhánh khác (C) cho...
  • 2
  • 8
  • 0

Bai 13 HDGBTTL cac van de ve khoang cach phan 1 hocmai vn unlocked 1

Bai 13 HDGBTTL cac van de ve khoang cach phan 1 hocmai vn unlocked 1
...  1; 0;4    * (d) có vectơ phương a(2 ;1; 1) , mp( P) có vectơ pháp tuyến n 1; 2; 1       a, n    3;3;3 Gọi u vectơ phương   u  1; 1 ;1 x   u   Vì M    M  1 ...  1;  2 qua A (1; 3; 1) có véctơ phương a = (2; 1; –2)    AM = (t – 2; t – 3; 6t – 8)   AM;a  = (14 – 8t; 14 t – 20; – t) Ta có : d (M, 2) = d (M, (P))  261t  792t  612 ... không gian  18 53  Vậy M (0; 1; –3) hay M  ; ;   35 35 35  Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 19 00 58-58 -12 Hocmai. vn - Trang...
  • 6
  • 14
  • 0

Bai 19 HDGBTTL cac bai toan ve khoang cach phan 2 hocmai vn

Bai 19 HDGBTTL cac bai toan ve khoang cach phan 2 hocmai vn
...  2  b   c  b  1   c  2  c 2  b 1 Vậy B(1;1), C(3;3) Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 190 0 58-58- 12 Hocmai. vn ... A (2 , 0) B(0 , 2) 2x 1 Lời giải: Dễ thấy phương trình đường trung trực đoạn AB là: y = x Những điểm thuộc đồ thị cách A B có hoàng độ nghiệm phương trình:  1 x  x 2  x  x2  x     2x ...   d    x0 1  1 2 Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 190 0 58-58- 12 - Trang | - Khóa học LTĐH môn Toán - Thầy Lê Bá Trần Phương Chuyên đề 02 Hàm số toán liên quan...
  • 5
  • 5
  • 0

Bai 16 HDGBTTL cac van de ve khoang cach phan 4 hocmai vn

Bai 16 HDGBTTL cac van de ve khoang cach phan 4 hocmai vn
... thẳng d1; d2 Giải: + d1 qua M1(1;-3 ;4) có véc tơ phương u1 (2;1; −2) + d2 qua M2(-2;1;-1) có véc tơ phương u2 ( 4; −2; 4) Ta có: −2 = = ⇒ u phương u2 (1) 4 −2 Mặt khác thay tọa độ M1 vào phương ... O B(0;1;0) A(2,0,0) Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai. vn – Ngơi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 Hocmai. vn - Trang | - ... cho đường thẳng:  x = + 2t  d1 :  y = −3 + t  z = − 2t  d2 : x + y −1 z + = = 4 −2 Chứng minh rằng: Hocmai. vn – Ngơi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 - Trang | - Khóa...
  • 4
  • 8
  • 0

Bai 15 HDGBTTL cac van de ve khoang cach phan 3 hocmai vn

Bai 15 HDGBTTL cac van de ve khoang cach phan 3 hocmai vn
... giải: Giả sử: M (1 t ; t ;3 t ); A(1;0 ;3) d d ( M , ( d )) | AM , ud | ud | t| t Vậy có điểm M cần tìm là: (4 ;3; 6); ( 2; 3; 0) Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung ... Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 Hocmai. vn - Trang | - ...
  • 2
  • 17
  • 0

Bai 14 HDGBTTL cac van de ve khoang cach phan 2 hocmai vn

Bai 14 HDGBTTL cac van de ve khoang cach phan 2 hocmai vn
... (d ) / /( P) B C A ( P) C D 14 d (O, ( P)) TH1: B TH2: B ( A2 B2 C C D C 0) 2A , chọn A 11, B 11 B 14 B2 C 2 A , chọn A 1, B ( A; B; C ) A 2B | D| A2 nP C C B 2A 2A 11 3, D ( P) : x y z 15, D ... a;0) 2 ( SAM ) : x a y a d ( D, ( SAM )) z a a | 1| a 1 2 a 3a a 4 3a 19 Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58- 12 Hocmai. vn ... phẳng BDC’ có phương trình: hx hy az ah ah ah ah | Khoảng cách từ M đến (BDC’) a nên: h2 h2 a | Vậy h a h 2a 2a Bài Cho hình chóp S.ABCD, đáy hình vuông ABCD cạnh a Mặt bên (SAD) tam giác nằm mặt...
  • 3
  • 6
  • 0

Bai 13 BTTL cac van de ve khoang cach phan 1 hocmai vn

Bai 13 BTTL cac van de ve khoang cach phan 1 hocmai vn
... cho mặt phẳng (P) : x – 2y + 2z – = hai đường thẳng x 1 y z  x 1 y  z 1 1 : ; 2 : Xác định tọa độ điểm M thuộc đường thẳng 1     1 2 cho khoảng cách từ M đến đường thẳng 2 khoảng ... M đến mặt phẳng (P) Giáo viên: Lê Bá Trần Phương Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 19 00 58-58 -12 Hocmai. vn - Trang | - ... (R) BÀI TẬP BỔ SUNG Bài Trong không gian với hệ tọa độ Oxyz, cho điểm A (10 ; 2; 1) đường thẳng d có phương trình: x 1 y z 1 Lập phương trình mặt phẳng (P) qua A, song song với d khoảng cách từ...
  • 2
  • 5
  • 0

Bai 13 TLBG cac van de ve khoang cach phan 1 hocmai vn

Bai 13 TLBG cac van de ve khoang cach phan 1 hocmai vn
... y 2t d1 : z 2t x s d : y 2s z 3s I (1; 1;0) Viết phương trình mặt phẳng (P) song song với d1 ; d2 đồng thời khoảng cách từ I tới mặt phẳng (P) Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi ... Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 19 00 58-58 -12 Hocmai. vn - Trang | - ...
  • 2
  • 30
  • 0

Bai 16 TLBG cac van de ve khoang cach phan 4 hocmai vn

Bai 16 TLBG cac van de ve khoang cach phan 4 hocmai vn
... 'C ' tính d(AM; B’C) Giáo viên: Lê Bá Trần Phƣơng Nguồn: Hocmai. vn – Ngôi trường chung học trò Việt Tổng đài tư vấn: 1900 58-58-12 Hocmai. vn - Trang | - ...
  • 2
  • 16
  • 0

Xem thêm

Nạp tiền Tải lên
Đăng ký
Đăng nhập