TPbai tap nguyen ham tich phan

13 382 2
TPbai tap nguyen ham tich phan

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

III. TÍCH PHÂN HÀM HỮU TỶ: 1. ∫ +− − 5 3 2 23 12 dx xx x 2. ∫ ++ b a dx bxax ))(( 1 3. ∫ + ++ 1 0 3 1 1 dx x xx 4. dx x xx ∫ + ++ 1 0 2 3 1 1 5. ∫ + 1 0 3 2 )13( dx x x 6. ∫ ++ 1 0 22 )3()2( 1 dx xx 7. ∫ + − 2 1 2008 2008 )1( 1 dx xx x 8. ∫ − +− ++− 0 1 2 23 23 9962 dx xx xxx 9. ∫ − 3 2 22 4 )1( dx x x 10. ∫ + − 1 0 2 32 )1( dx x x n n 11. ∫ ++ − 2 1 24 2 )23( 3 dx xxx x 12. ∫ + 2 1 4 )1( 1 dx xx 13. ∫ + 2 0 2 4 1 dx x 14. ∫ + 1 0 4 1 dx x x 15. dx xx ∫ +− 2 0 2 22 1 16. ∫ + 1 0 32 )1( dx x x 17. ∫ +− 4 2 23 2 1 dx xxx 18. ∫ +− ++ 3 2 3 2 23 333 dx xx xx 19. ∫ + − 2 1 4 2 1 1 dx x x 20. ∫ + 1 0 3 1 1 dx x 21. ∫ + +++ 1 0 6 456 1 2 dx x xxx 22. ∫ + − 1 0 2 4 1 2 dx x x 23. ∫ + + 1 0 6 4 1 1 dx x x 24. 1 4 11 2 0 5 6 + ∫ + + x dx x x 25. 1 2 0 1 ∫ + + dx x x 26. ∫ − + 3 2 1 2 dx x x 27. dx x x ∫       − + − 1 0 3 1 22 28. ∫ −       +− − − 0 1 12 12 2 dxx x x 29. dxx x x ∫       −− + − 2 0 1 2 13 30. dx x xx ∫ + ++ 1 0 2 3 32 31. dxx x xx ∫ −         +− − ++ 0 1 2 12 1 1 32. dxx x xx ∫         +− + −+ 1 0 2 1 1 22 33. ∫ ++ 1 0 2 34xx dx IV. TÍCH PHÂN HÀM LƯỢNG GIÁC: 1. xdxx 4 2 0 2 cossin ∫ π 2. ∫ 2 0 32 cossin π xdxx 3. dxxx ∫ 2 0 54 cossin π 4. ∫ + 2 0 33 )cos(sin π dxx 5. ∫ + 2 0 44 )cos(sin2cos π dxxxx 6. ∫ −− 2 0 22 )coscossinsin2( π dxxxxx 7. ∫ 2 3 sin 1 π π dx x 8. ∫ −+ 2 0 441010 )sincoscos(sin π dxxxxx 9. ∫ − 2 0 cos2 π x dx 10. ∫ + 2 0 sin2 1 π dx x 11. ∫ + 2 0 2 3 cos1 sin π dx x x 12. ∫ 3 6 4 cos.sin π π xx dx 13. ∫ −+ 4 0 22 coscossin2sin π xxxx dx 14. ∫ + 2 0 cos1 cos π dx x x 15. ∫ − 2 0 cos2 cos π dx x x 16. ∫ + 2 0 sin2 sin π dx x x 17. ∫ + 2 0 3 cos1 cos π dx x x 18. ∫ ++ 2 0 1cossin 1 π dx xx 19. ∫ − 2 3 2 )cos1( cos π π x xdx 20. ∫ − ++ +− 2 2 3cos2sin 1cossin π π dx xx xx 21. ∫ 4 0 3 π xdxtg 22. dxxg ∫ 4 6 3 cot π π 23. ∫ 3 4 4 π π xdxtg 24. ∫ + 4 0 1 1 π dx tgx 25. ∫ + 4 0 ) 4 cos(cos π π xx dx 26. ∫ ++ ++ 2 0 5cos5sin4 6cos7sin π dx xx xx 27. ∫ + π 2 0 sin1 dxx 28. ∫ ++ 4 0 13cos3sin2 π xx dx 29. ∫ + 4 0 4 3 cos1 sin4 π dx x x 30. ∫ + ++ 2 0 cossin 2sin2cos1 π dx xx xx 31. ∫ + 2 0 cos1 3sin π dx x x 32. ∫ − 2 4 sin2sin π π xx dx 33. ∫ 4 0 2 3 cos sin π dx x x 34. ∫ + 2 0 32 )sin1(2sin π dxxx 35. ∫ π 0 sincos dxxx 36. ∫ − 3 4 3 3 3 sin sinsin π π dx xtgx xx 37. ∫ ++ 2 0 cossin1 π xx dx 38. ∫ + 2 0 1sin2 π x dx 39. ∫ 2 4 53 sincos π π xdxx 40. ∫ + 4 0 2 cos1 4sin π x xdx 41. ∫ + 2 0 3sin5 π x dx 2. ∫ 6 6 4 cossin π π xx dx 43. ∫ + 3 6 ) 6 sin(sin π π π xx dx 4. ∫ + 3 4 ) 4 cos(sin π π π xx dx 45. ∫ 3 4 6 2 cos sin π π x xdx 46. dxxtgxtg ) 6 ( 3 6 π π π ∫ + 47. ∫ + 3 0 3 )cos(sin sin4 π xx xdx 48. ∫ − + 0 2 2 )sin2( 2sin π x x 49. ∫ 2 0 3 sin π dxx 50. ∫ 2 0 2 cos π xdxx 51. ∫ + 2 0 12 .2sin π dxex x 52. dxe x x x ∫ + + 2 0 cos1 sin1 π 53. ∫ + 4 6 2cot 4sin3sin π π dx xgtgx xx 54. ∫ +− 2 0 2 6sin5sin 2sin π xx xdx 55. ∫ 2 1 )cos(ln dxx 56. ∫ 3 6 2 cos )ln(sin π π dx x x 57. dxxx ∫ − 2 0 2 cos)12( π 58. ∫ π 0 2 cossin xdxxx 59. ∫ 4 0 2 π xdxxtg 60. ∫ π 0 22 sin xdxe x 61. ∫ 2 0 3sin cossin 2 π xdxxe x 62. ∫ + 4 0 )1ln( π dxtgx 63. ∫ + 4 0 2 )cos2(sin π xx dx 64. ∫ −+ − 2 0 2 )cos2)(sin1( cos)sin1( π dx xx xx 65. 2 sin 2 sin 7 2 π π ∫ − x xdx 66. 2 4 4 cos (sin cos ) 0 π + ∫ x x x dx 67. 3 2 4sin 0 1 cos π ∫ + x dx x 68. ∫ − 2 2 3cos.5cos π π xdxx 69. ∫ − 2 2 2sin.7sin π π xdxx 70. ∫ 4 0 cos 2 sin π xdx x 71. ∫ 4 0 2 sin π xdx V. TÍCH PHÂN HÀM VÔ TỶ: ∫ b a dxxfxR ))(,( Trong ®ã R(x, f(x)) cã c¸c d¹ng: +) R(x, xa xa + − ) §Æt x = a cos2t, t ] 2 ;0[ π ∈ +) R(x, 22 xa − ) §Æt x = ta sin hoÆc x = ta cos +) R(x, n dcx bax + + ) §Æt t = n dcx bax + + +) R(x, f(x)) = γβα +++ xxbax 2 )( 1 Víi ( γβα ++ xx 2 )’ = k(ax+b) Khi ®ã ®Æt t = γβα ++ xx 2 , hoÆc ®Æt t = bax + 1 +) R(x, 22 xa + ) §Æt x = tgta , t ] 2 ; 2 [ ππ −∈ +) R(x, 22 ax − ) §Æt x = x a cos , t } 2 {\];0[ π π ∈ +) R ( ) 1 2 i n n n x x x; ; .; Gäi k = BCNH(n 1 ; n 2 ; .; n i ) §Æt x = t k 1. ∫ + 32 5 2 4xx dx 2. ∫ − 2 3 2 2 1xx dx 3. ∫ − +++ 2 1 2 1 2 5124)32( xxx dx 4. ∫ + 2 1 3 1xx dx 5. ∫ + 2 1 2 2008dxx 6. ∫ + 2 1 2 2008x dx 7. ∫ + 1 0 22 1 dxxx 8. ∫ − 1 0 32 )1( dxx 9. ∫ + + 3 1 22 2 1 1 dx xx x 10. ∫ − + 2 2 0 1 1 dx x x 11. ∫ + 1 0 32 )1( x dx 12. ∫ − 2 2 0 32 )1( x dx 13. ∫ + 1 0 2 1 dxx 14. ∫ − 2 2 0 2 2 1 x dxx 15. ∫ + 2 0 2cos7 cos π x xdx 16. ∫ − 2 0 2 coscossin π dxxxx 17. ∫ + 2 0 2 cos2 cos π x xdx 18. ∫ + + 2 0 cos31 sin2sin π dx x xx 19. ∫ + 7 0 3 2 3 1 x dxx 20. ∫ − 3 0 23 10 dxxx 21. ∫ + 1 0 12x xdx 22. ∫ ++ 1 0 2 3 1xx dxx 23. ∫ ++ 7 2 112x dx 24. dxxx ∫ + 1 0 815 31 25. ∫ − 2 0 56 3 cossincos1 π xdxxx 26. ∫ + 3ln 0 1 x e dx 27. ∫ − +++ 1 1 2 11 xx dx 28. ∫ + 2ln 0 2 1 x x e dxe 29. ∫ −− 1 4 5 2 8412 dxxx 30. ∫ + e dx x xx 1 lnln31 31. ∫ + + 3 0 2 35 1 dx x xx 32. dxxxx ∫ +− 4 0 23 2 33. ∫ − ++ 0 1 3 2 )1( dxxex x 34. ∫ + 3ln 2ln 2 1ln ln dx xx x 35. + 3 0 2 2 cos 32 cos 2cos dx x tgx x x 36. + 2ln 0 3 )1( x x e dxe 37. + 3 0 2cos2 cos x xdx 38. + 2 0 2 cos1 cos x xdx 39. dx x x + + 7 0 3 3 2 40. + a dxax 2 0 22 VI. MT S TCH PHN C BIT: Bài toán mở đầu: Hàm số f(x) liên tục trên [-a; a], khi đó: += aa a dxxfxfdxxf 0 )]()([)( Ví dụ: +) Cho f(x) liên tục trên [- 2 3 ; 2 3 ] thỏa mãn f(x) + f(-x) = x2cos22 , Tính: 2 3 2 3 )( dxxf +) Tính + + 1 1 2 4 1 sin dx x xx Bài toán 1: Hàm số y = f(x) liên tục và lẻ trên [-a, a], khi đó: a a dxxf )( = 0. Ví dụ: Tính: ++ 1 1 2 )1ln( dxxx ++ 2 2 2 )1ln(cos dxxxx Bài toán 2: Hàm số y = f(x) liên tục và chẵn trên [-a, a], khi đó: a a dxxf )( = 2 a dxxf 0 )( Ví dụ: Tính + 1 1 24 1xx dxx 2 cos 2 4 sin 2 + x x dx x Bài toán 3: Cho hàm số y = f(x) liên tục, chẵn trên [-a, a], khi đó: = + aa a x dxxfdx b xf 0 )( 1 )( (1 b>0, a) Ví dụ: Tính: + + 3 3 2 21 1 dx x x + 2 2 1 5cos3sinsin dx e xxx x Bài toán 4: Nếu y = f(x) liên tục trên [0; 2 ], thì = 2 0 2 0 )(cos)(sin dxxfxf Ví dụ: Tính + 2 0 20092009 2009 cossin sin dx xx x + 2 0 cossin sin dx xx x Bài toán 5: Cho f(x) xác định trên [-1; 1], khi đó: = 00 )(sin 2 )(sin dxxfdxxxf Ví dụ: Tính + 0 sin1 dx x x + 0 cos2 sin dx x xx Bài toán 6: =+ b a b a dxxfdxxbaf )()( = bb dxxfdxxbf 00 )()( Ví dụ: Tính + 0 2 cos1 sin dx x xx + 4 0 )1ln(4sin dxtgxx Bài toán 7: Nếu f(x) liên tục trên R và tuần hoàn với chu kì T thì: = + TTa a dxxfdxxf 0 )()( = TnT dxxfndxxf 00 )()( Ví dụ: Tính 2008 0 2cos1 dxx Các bài tập áp dụng: 1. + 1 1 2 21 1 dx x x 2. ++ 4 4 4 357 cos 1 dx x xxxx 3. ++ 1 1 2 )1)(1( xe dx x 4. + 2 2 2 sin4 cos dx x xx 5. + 2 1 2 1 ) 1 1 ln(2cos dx x x x 6. dxnx)xsin(sin 2 0 + 7. + 2 2 5 cos1 sin dx x x 8. 1 )1(1 cot 1 2 1 2 = + + + ga e tga e xx dx x xdx (tga>0) VII. TCH PHN HM GI TR TUYT I: 1. 3 3 2 1dxx 2. + 2 0 2 34 dxxx 3. 1 0 dxmxx 4. 2 2 sin dxx 5. dxxsin1 6. + 3 6 22 2cot dxxgxtg 7. 4 3 4 2sin dxx 8. + 2 0 cos1 dxx 9. + 5 2 )22( dxxx 10. 3 0 42 dx x 11. 3 2 3 coscoscos dxxxx 12. 2) 4 2 1 x 3x 2dx + 13. 5 3 ( x 2 x 2 )dx + 14. 2 2 2 1 2 1 x 2dx x + 15. 3 x 0 2 4dx 16. 0 1 cos2xdx + 17. 2 0 1 sin xdx + 18. dxxx 2 0 2 VIII. NG DNG CA TCH PHN: TNH DIN TCH HèNH PHNG Vớ d 1 : Tớnh din tớch hỡnh phng gii hn bi a/ th hm s y = x + x -1 , trc honh , ng thng x = -2 v ng thng x = 1 b/ th hm s y = e x +1 , trc honh , ng thng x = 0 v ng thng x = 1 c/ th hm s y = x 3 - 4x , trc honh , ng thng x = -2 v ng thng x = 4 d/ th hm s y = sinx , trc honh , trc tung v ng thng x = 2 Vớ d 2 : Tớnh din tớch hỡnh phng gii hn bi a/ th hm s y = x + x -1 , trc honh , ng thng x = -2 v ng thng x = 1 b/ th hm s y = e x +1 , trc honh , ng thng x = 0 v ng thng x = 1 c/ th hm s y = x 3 - 4x , trc honh , ng thng x = -2 v ng thng x = 4 d/ th hm s y = sinx , trc honh , trc tung v ng thng x = 2 Bài 1 : Cho (p) : y = x 2 + 1 và đờng thẳng (d): y = mx + 2. Tìm m để diện tích hình phẳng giới hạn bởi hai đờng trên có diện tích nhỏ nhẩt Bài 2: Cho y = x 4 - 4x 2 +m (c) Tìm m để hình phẳng giới hạn bởi (c) và 0x có diện tích ở phía trên 0x và phía dới 0x bằng nhau Bài 3: Xác định tham số m sao cho y = mx chia hình phẳng giới hạn bởi = = 0 1 3 y xo xx y Có hai phần diện tích bằng nhau Bài 4: (p): y 2 =2x chia hình phẳng giới bởi x 2 +y 2 = 8 thành hai phần.Tính diện tích mỗi phần Bài 5: Cho a > 0 Tính diện tích hình phẳng giới hạn bởi + = + ++ = 4 2 4 22 1 1 32 a axa y a aaxx y Tìm a để diện tích lớn nhất Bài 6: Tớnh din tớch ca cỏc hỡnh phng sau: 1) (H 1 ): 2 2 x y 4 4 x y 4 2  = −     =   2) (H 2 ) : 2 y x 4x 3 y x 3  = − +   = +   3) (H 3 ): 3x 1 y x 1 y 0 x 0 − −  =  −  =   =   4) (H 4 ): 2 2 y x x y  =   = −   5) (H 5 ): 2 y x y 2 x  =   = −   6) (H 6 ): 2 y x 5 0 x y 3 0  + − =  + − =  7) (H 7 ): ln x y 2 x y 0 x e x 1  =    =   =  =   8) (H 8 ) : 2 2 y x 2x y x 4x  = −   = − +   9) (H 9 ): 2 3 3 y x x 2 2 y x  = + −    =  10) (H 10 ): 2 y 2y x 0 x y 0  − + =  + =  11)      −= = )( 2:)( :)( Ox xyd xyC 12)      =∆ = = 1:)( 2:)( :)( x yd eyC x 14)      =+ −−= 03 4 2 2 yx xy 15)      = =−+ = 0 02 y yx xy 16        + = = 2 2 1 1 2 x y x y 17 18)      == == ex e x yxy , 1 0,ln 19.        == == 3 ; 6 cos 1 ; sin 1 22 ππ xx x y x y 20): y = 4x – x 2 ; (p) vµ tiÕp tuyÕn cña (p) ®i qua M(5/6,6) 21)      −= +−= +−= 114 42 54 2 xy xy xxy 22)      −= −+−= −+−= 153 34 56 2 2 xy xxy xxy 23)          = = = = ex y x y xy 0 1 24)    += −= 5// /1/ 2 xy xy 25)      = = xy xy 2 3 26)    = +−−= 0 2//3 2 y xxy 27)    −= += xy xy 4 2 2 28)      = ++= +−= 1 54 22 2 2 y xxy xxy 29)      +−= −= 7 /1/ 2 2 xy xy 30)      =−= = = 1;2 0 3 xx y xy 31)      == = −= π xx y xxy ;0 3 cos2sin 32)      = ++= 0 2 3 y x xy 33)    += += 2 2 2 xy xxy 34)      == −+= −= 4;0 63 22 2 2 xx xxy xxy 35)    = +−= 6 /65/ 2 y xxy 36)      = −−= = 2 12 2 2 2 y xxy xy 37)    = +−= 2 /23/ 2 y xxy 38)    += +−= 1 /65/ 2 xy xxy 39)      −= +−= 2 2 /23/ xy xxy 40)    = +−= 3 /34/ 2 y xxy 41)      = = = − 1x ey ey x Ï 42)      == − = 1;0 62 2 xx xx x y 43)    −= = π // /sin/ xy xy 44)      = −−= = 8 44 2 2 2 y xxy xy 45)      = =++ = 0 0122 2 2 y yx xy 46)    −= 0 )( 2222 a xaxy 47)    = += yx xy π sin )1( 2 48)    = −= 2 /1/ 2 x xy 49)    = −= 2 /1/ 2 x yx 32)      = = += 0 sin )1( 2 x xy yx . và 0x có diện tích ở phía trên 0x và phía dới 0x bằng nhau Bài 3: Xác định tham số m sao cho y = mx chia hình phẳng giới hạn bởi = = 0 1 3 y xo xx

Ngày đăng: 28/09/2013, 23:10

Hình ảnh liên quan

Bài 1: Cho (p): y= x2 +1 và đờng thẳng (d): y= m x+ 2. Tìm m để diện tích hình phẳng giới hạn bởi hai đờng trên có diện tích nhỏ nhẩt - TPbai tap nguyen ham tich phan

i.

1: Cho (p): y= x2 +1 và đờng thẳng (d): y= m x+ 2. Tìm m để diện tích hình phẳng giới hạn bởi hai đờng trên có diện tích nhỏ nhẩt Xem tại trang 8 của tài liệu.
8) Miền trong hình tròn (x – 4)2 +y2 =1 quay quanh trục 0x; 9)  Miền trong (E): 1 - TPbai tap nguyen ham tich phan

8.

Miền trong hình tròn (x – 4)2 +y2 =1 quay quanh trục 0x; 9) Miền trong (E): 1 Xem tại trang 13 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan