bài tập : tính chất chia hết của một tổng

2 6,587 70
  • Loading ...
1/2 trang

Thông tin tài liệu

Ngày đăng: 28/09/2013, 12:10

CHUYÊN ĐỀ :TÍNH CHẤT CHIA HẾT CỦA MỘT TỔNG =====    ===== I. Tóm tắt lý thuyết: 1. Nhắc lại về quan hệ chia hết: Cho ; ; 0.a b N b∈ ≠ Nếu có số tự nhiên k sao cho .a b k = ta nói a chia hết cho b Kí hiệu: a bM đọc là: a chia hết cho b hoặc b chia hết a; hoặc a là bội của b hoặc b là ước của a. 2. Tính chất chia hết của một tổng: a) Tính chất 1: Nếu a m ⇒M M M ; b m a + b m + Chú ý: @ Tính chất 1 cũng đúng với một hiệu : khi a b ≥ thì a m ⇒M M M ; b m a - b m @ Tính chất 1 cũng đúng với một tổng nhiều số hạng: 1 2 1 2 ; ; ; . n n a m a m a m a a a m⇒ + + +M M M M b) Tính chất 2: Nếu a không chia hết cho m; b chia hết cho m thì a+b không chia hết cho m + Chú ý: @ Tính chất 2 đúng với một hiệu a>b @Tính chất 2 đúng với một tổng nhiều số hạng, trong đó chỉ có một số hạng không chia hết cho m, các số hạng còn lại đều chia hết cho m. II. Bài tập áp dụng : Bài 1: Không làm tính , xét xem tổng sau có chia hết cho 12 không ? Vì sao ? a) 120 + 36 b) 120a + 36b ( với a ; b ∈ N ) Bài 2: Cho A = 2.4.6.8.10.12 − 40 . Hỏi A có chia hết cho 6 ; cho 8 ; cho 20 không ? Vì sao? Bài 3: Khi chia số tự nhiên a cho 36 ta được số dư 12 . Hỏi a có chia hết cho 4 ; cho 9 không vì sao ? Bài 4: a) Điền dấu X và ô thích hợp : Câu Đ S Nếu a M 4 và b M 2 thì a + b M 4 Nếu a M 4 và b M 2 thì a + b M 2 Nếu tổng của hai số chia hết cho 9 và một trong hai số chia hết cho 3 thì số còn lại chia hết cho 3 Nếu hiệu của hai số chia hết cho 6 và số thứ nhất chia hết cho 6 thì số thứ hai chia hết cho 3 Nếu a M 5 ; b M 5 ; c không chia hết cho 5 thì abc không chia hết cho 5 Nếu a M 18 ; b M 9 ; c không chia hết cho 6 thì a + b + c không chia hết cho 3 125.7 – 50 chia hết cho 25 1001a + 28b – 22 không chia hết cho 7 Nếu cả hai số hạng của một tổng không chia hết cho 5 thì tổng không chia hết cho 5 Để tổng n + 12 M 6 thì n M 3 Bài 5: Cho a cM và b cM . Chứng minh rằng: ;ma nb c ma nb c+ −M M với m ; n ∈ N Bài 6: Chứng minh rằng tổng của ba số tự nhiên liên tiếp chia hết cho 3, tổng của 5 số tự nhiên liên tiếp không chia hết cho 5. Bài 7: Chứng minh rằng : a) Tổng của ba số chẵn liên tiếp thì chia hết cho 6, b) Tổng ba số lẻ liên tiếp không chia hết cho 6 c) Nếu a chia hết cho b và b chia hết cho c thì a chia hết cho c d) 2 3 2 1; , n P a a a a a a n N= + + + + + ∈M e) Nếu a và b chia cho 7 có cùng số dư thì hiệu a – b chia hết cho 7 Bài 8: Tìm n N ∈ để: a) 3 2 1n n+ −M b) 2 2 7 2n n n+ + +M c) 2 1 1n n+ −M d) 8 3n n+ +M e) 6 1n n+ −M g) 4 5 2 1n n− −M h) 12 8n n− −M i) 20 nM k) 28 1n −M l) 113 7n+ M m) 113 13n+ M Bài 9: Cho hai số tự nhiên abc và deg đều chia 11 dư 5. Chứng minh rằng số deg 11abc M Bài 10: Cho biết số 7.abcM Chứng minh rằng: 2 3 7a b c+ + M Bài 11: Cho deg 13abc − M . Chứng minh rằng: deg 13abc M Bài 12: Cho số 4abcM trong đó a, b là các chữ số chẵn. Chứng minh rằng: a) 4cM b) 4bacM Bài 13: Biết 7.a b+ M Chứng minh rằng: 7abaM Bài 14: Tìm các số tự nhiên n sao cho a) 11 1n n+ −M b) 7 3n n −M c) 2 2 6 4n n n+ + +M d) 2 1 1n n n+ + +M ====HẾT==== . a chia hết cho b Kí hiệu: a bM đọc l : a chia hết cho b hoặc b chia hết a; hoặc a là bội của b hoặc b là ước của a. 2. Tính chất chia hết của một tổng: . không chia hết cho m + Chú : @ Tính chất 2 đúng với một hiệu a>b @Tính chất 2 đúng với một tổng nhiều số hạng, trong đó chỉ có một số hạng không chia hết
- Xem thêm -

Xem thêm: bài tập : tính chất chia hết của một tổng, bài tập : tính chất chia hết của một tổng, bài tập : tính chất chia hết của một tổng

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay