# courser web intelligence and big data 8 predict lecture slides

15 10 0 Tải lên: 42,801 tài liệu

1/15 trang

### Thông tin tài liệu

Ngày đăng: 27/02/2019, 08:22

Predict   bo+om-­‐up  predic0on     ………  learning,  least-­‐squares  and  func0on  approxima0on   …………  predic0on,  op0miza0on  and  control   …………………  hierarchical  temporal  memory:  predic0on     ………………………  top-­‐down/bo+om-­‐up  blackboard  architecture   ……………………………  web-­‐intelligence;  brains;  adap0ve  BI   …………………………………  challenge  problems   learning  and  predic0on   m  data  points  each  having  (i)  features  x1  …  xn-­‐1  =  x     and  (ii)  output  variable(s)  y1    yk      e.g  prices  (numbers  for  Y);  xi  can  be  numbers  or  categories   for  now  assume  k=1,  i.e  just  one  output  variable  y   linear  predic,on:     f(x)  =  E[y|x]  also  minimizes*:       ε  =  E[error]=  E[y-­‐f(x)]2    ≈      m    Σm(yi-­‐f(xi))2     suppose  f(x)  =  [x;1]Tf  =  x’Tf     i.e  linear  in  x;  so  we  want  X  f  ≈  y   Σm(yi  -­‐  x’iTf)2    =  (X  f  -­‐    y)T  (X  f  -­‐    y)   minimized  if  deriva0ve  =  0,  i.e   XTX  f  –  XTy    “normal  equa0ons”   once  we  have  f,  our  “least-­‐squares”   es0mate  of    y|x  is  f  LS(x)  =  x’Tf   x'   1T     T x'   i       X:  m  x  n       X  TX       n    x  n   f   n   ≈     f     =   XTy   n  x  1   y   m  x  1   some  examples   x   y   10   1.2   22   1.8   42   4.6   15   1.3   X   f   y   ≈   ∑( f x − y ) ≡ 1− ∑(y − y ) T i how  good  is  the  ‘ﬁt’  ?   R2 i i =  .95   i i example  2*:     [y,  x]  =  [wine-­‐quality,  winter-­‐rainfall,  avg-­‐temp,  harvest-­‐rainfall]   f  LS(x)  =  12.145  +  0.00117  ×  winter-­‐rainfall  +  0.0614  ×  avg-­‐   temperature  −  0.00386  ×  harvest  rainfall       *Super-­‐crunchers,  Ian  Aryes  2007:  Orley  Ashenfelter   beyond  least-­‐squares   categorical  data   logis0c  regression   support-­‐vector-­‐machines   f (x) = 1− f(x)   e − fTx complex  f  :     ‘kernel’-­‐parameters  also  learned   neural  networks   linear  =  least-­‐squares   non-­‐linear   like  logis0c  etc     f(x)   f(x)   00117   0614  -­‐.00386   12.145   feed-­‐forward,  mul0-­‐layer   more  complex  f   feed-­‐back   like  a  belief  n/w;     “explaining-­‐away”  eﬀect   winter   rainfall   average   temp   harvest   hidden-­‐layer     rainfall   deep-­‐belief  network   learning  parameters   whatever  be  the  model:    need  to  minimize  |f(x)  –  y|=  ε(f)   complex  f  =>  no  formula   so,  itera0ve  method  ;  start  with  f0     related  ma+ers   “best”  solu0on   w:  maximize  φ(w)   control  ac0ons:  θi:  si+1=S(θi)   works  ﬁne  with  numbers,  i.e  x  in  Rn   minimize  |s  -­‐  Ξ|   f1  =  f0  +  δf    f    i+1        =      f    i    −    α    ∇        f  ε    (  f    i  )        gradient-­‐descent   use  ε(fi)-­‐ε(fi-­‐1)  to  approximate  deriva0ve    caveats:  local  minima,  constraints   for  categorical  data:     convert  to  binary,  i.e  {0,1}N   “fuzzyﬁca0on”:  convert  to  Rn   neighborhood-­‐search;  heuris0c  search,  gene0c  algorithms     probabilis0c  models,  i.e  deal  with  probabili0es  instead   predict  –  decide  -­‐  control   robo-­‐soccer   predict  where  the  ball  will  be;  decide  best  path;  navigate  there   predict  how  other  players  will  move   self-­‐driving  cars   predict  the  path  of  a  pedestrian;  decide  path  to  avoid;  steer  car   predict  traﬃc;  decide  all  op0mal  routes  to  des0na0on   energy-­‐grid   predict  energy  demand;  decide  &  control  distribu0on   predict  supply  by  ‘green-­‐ness’;  adjust  prices  op:mally     supply-­‐chain   predict  demand  for  products;  decide  best  produc0on  plan;  execute  it   detect  poten0al  risk  &  evaluate  impact;  re-­‐plan  produc0on;  execute  it   marke:ng   predict  demand;  decide  promo0on  strategy  by  region;  execute  it     classiﬁca0on   predic0on   which  learning/predic0on  technique?   features  (i.e  X)   target  (i.e,  Y)   correla,on   technique   numerical   numerical   linear  regression   categorical   numerical   numerical   numerical   unstable  /     severely  non-­‐ linear   neural-­‐networks  (mul0-­‐level,   hidden-­‐layers,  non-­‐linear)   numerical   categorical   stable  /  linear   logis,c  regression   numerical   categorical   unstable  /     severely  non-­‐ linear   support-­‐vector  machines   (SVM)   stable  /  linear   linear-­‐regression     neural-­‐networks   SVM   categorical   categorical   (feature   coding)   (feature-­‐coding)   Naïve  Bayes  and  other   Probabilis0c  Graphical  Models   hierarchical  temporal  memory     extracted  from  Jeﬀ  Hawkins’s  ISCA  2012  charts   sparse  distributed  representa0ons   remember  the  proper0es  of  {0,1}1000:   very  low  chance  that  pa+erns  diﬀer  in  less  than  450  places   forced  sparse  pa+ern:  e.g  2000  bits  with  only  40  1s   very  low  chance  of  a  random  sparse  pa+ern  matching  any  1s   even  if  we  drop  all  but  10  random  posi0ons;  another  sparse   pa+ern  matching  some  of  these  10  is  most  likely  another  instance   of  the  same  sparse  40  1s  pa+ern  (sub-­‐sampled  diﬀerently)   similar  ‘scene’  will   give  similar  sparse   pa+ern  even  a}er   sub-­‐sampling   Jeﬀ  Hawkins’s  ISCA  2012   sequence  learning   each  cell  tracks  the   previous  conﬁgura0on  –  again  sparsely;     via  ‘synapse  connec0ons;     these  form  and  are  forgo+en   or  reinforced  if  predicted  value  occurs   column  per  cell  –  predicts  further  ahead   Jeﬀ  Hawkins’s  ISCA  2012   hierarchy;  linkages;  applica0ons   mul0ple  ‘regions’  in  a  hierarchy   bo+om-­‐up  (feed-­‐forward)   plus  top-­‐down  (feed-­‐back)   mathema0cally      HTM  is  ≈  deep  belief  network   applica0ons:         Jeﬀ  Hawkins’s  ISCA  2012   something  missing?   “predict  how  other  players/pedestrians  will  move”   “`predict’  the  consequences  of  a  decision”:  what-­‐if?   -­‐  use  these  ‘predic0ons’  to  re-­‐evaluate  /  re-­‐look  at  inputs  and  re-­‐plan   missing  element:  symbolic  reasoning,  op0miza0on  etc   can  they  work  together:  `blackboard’  architecture     examples:   -­‐  speech   -­‐  analogy   knowledge  Sources:    feature-­‐learning    clustering    sequence-­‐miners    classiﬁers    rule-­‐engines    decision-­‐engines   hierarchical    Bayesian…   what  does  data  have  to  do  with  intelligence?   “any  fool  can  know  …    the  point  is  to  understand.”   -­‐  Albert  Einstein     and  …  the  goal  of  understanding  is  to  predict   Listen Predict recap  and  challenges   NB  classiﬁer;  informa0on   search   hashing   memory   Listen op0miza0on   next  0me?   Predict linear  predic0on,     neural  net,  HTM,  blackboard       Load clustering,     rule  mining   latent  models   reasoning,     seman0c  web   Bayesian  networks   map-­‐reduce   database  evolu0on   all  remaining  Quiz/HW/assignment  due  9th  Nov  23:59  PST   Final  Exam  on  Friday  Nov  9th    …  IST   un0l  23:59  PST  (albeit  a  short  break  to  extract  IIT/IIT  scores)   THANKS     FOR  BEING  SUCH  A  GREAT  CLASS!   please  review  on:  www.coursetalk.org   ...  does data  have  to  do  with intelligence?   “any  fool  can  know  …    the  point  is  to  understand.”   -­‐  Albert  Einstein     and  …  the  goal  of  understanding  is  to predict. ..  cars   predict  the  path  of  a  pedestrian;  decide  path  to  avoid;  steer  car   predict  traﬃc;  decide  all  op0mal  routes  to  des0na0on   energy-­‐grid   predict  energy  demand;  decide...learning and  predic0on   m data  points  each  having  (i)  features  x1  …  xn-­‐1  =  x     and  (ii)  output  variable(s)  y1    yk      e.g
- Xem thêm -

### Từ khóa liên quan

#### TOP TÀI LIỆU 7 NGÀY

1
350 20 28377
2
170 15 11820
3
5661 41 95646
4
1939 51 37986
5
3076 7 155961
Gửi yêu cầu tài liệu
Tìm tài liệu giúp bạn trong 24h

#### Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay