ROAD CONSTRUCTION PROJECT THROUGH TWO POINTS A B

98 87 0
ROAD CONSTRUCTION PROJECT THROUGH TWO POINTS A B

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

CONTENTS: LIST OF FIGURES AND TABLES: FIGURES: TABLES: PREFACE In the career of building and protecting country, communication and transport are essential contributing important roles Along with country's continuous development in the past years, field of capital construction generally and civil engineering construction in particular have invested by government and party and having deservedly proud achievements In the next years, in order to implement the career of modernization and industrialization, communication and transport must precede a step, serve purposes of socio-economic development In the recent years, the government is investing much in transportation and communication; advanced constructing technologies are applied in Vietnam To apply in fact, civil engineers’ level must be better and better Aware of that, and want to contribute to the overall development of the country, I have chosen myself and go deep specialist research Highway and Traffic Department of Bridge and Road Faculty, National University of Civil Engineering Graduation project is the result of the accumulation of knowledge during learning and research in the university After learning and gathering knowledge in National University of Civil Engineering, now i am designing a graduation thesis: “ROAD CONSTRUCTION PROJECT THROUGH TWO POINTS A-B" This is important works with a large volume of work includes all steps from the preliminary design, engineering design, and construction design Therefore, despite my best efforts, but certainly I can not avoid mistakes I look forward to the comments of the teacher let me get more rewarding things I sincerely thank the teachers in the Department of Highways and Traffic Engineering, the teachers of the National University of Civil Engineering has taught me during study time and research at school Especially Do Duy Dinh, who has dedicated guide and help me fulfill this graduation project Thank to you sincerely! Hanoi, Dec-2017 Student: Ngo Trung Phuong NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM PART 1: PROJECT DEVELOPMENT AND PRELIMILARY DESIGN FOR ROAD CONSTRUCTION CONNECTING POINTS A-B Project : Project development for road construction connecting A-B Investor : Pepeple's Commite of Vinh Phuc Adress : No.38-40 Nguyen Trai St, Dong Da precinct, Vinh Yen city, Vinh Phuc province NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM CHAPTER 1: GENERRAL INTRODUCTION 1.1 Overview: Designated route project through two points A-B is an important project to from Phuc Yen commune to Vinh Yen city as well as a route of provincial sustem planned of Vinh Phuc This route is a connection between two important economic zones, politic and traditinal zone of the province The project will be served a good transportation system for transporting the good and easy for driving between Phuc Yen commune and Vinh Yen city to facilitate economic, tourist of developing area To facilitation for the province, ministry of transportation try hard to find out animportant route A-B and call upon the investors to study more detail about this project 1.2 The object scope of the project research and implement projects: - The route through two point A-B of provincial highway connected from Phuc Yen commune to Vinh Yen city - Route length is about 5000m - Points A belongs to Phuc Yen commune – Vinh Phuc province with the elevation of 390m compared to the sea level - Points B belongs to Vinh Yen city – Vinh Phuc province with the elevation of 350m compared to the sea level 1.3 Relatet resources documents: - The overall planning of economic development and social of Phuc Yen commune in 2015-2025 - Specialized planning, land use planing, social work place system - The results of investigation, surveying and data, document on hydrometeorology, oceanographic, geological, scio-econ status and other metrics related documents 1.4 Natural features of the zone along the route and regional trafiic conditions: ∗ General information: − Geographic location: Vinh Phuc is bounded by Thai Nguyen and Tuyen Quang to the north, by the Phu Tho to the west, Ha Tay to the south and Ha Noi to the east − Area: 1.2318km2 − Topographic features: Vinh Phuc is situated in the top of “Pink river” Delta and is the meeting point between plain and mountain Therefore, it is divided into regions: plain in the south of the province, midland in the north and mountains in Tam Dao district − Administractive units: the province is divided into a city (Phuc Yen) and districts: Binh Xuyen, Lap Thach, Tam Duong, Tam Dao, Vinh Tuong, Yen Lac − Population: 1,008,300 people ∗ Resouroes: NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM − Natural resources: Vinh Phuc has a large forest area especially Tam Dao forest with various and diversified resources: 260 types of timbers and plants including precious wood such as Fokienra and precious mineral found in the province such as tin, gold and others with large reserves used for construction material production such as sand, stone, limestone, construction rock, granite stone (50 million m2), they are mainly found in torism spot and Tam Dao National park − Tourism resources: it is lucky gor Vinh Phuc to arn beautiful sceneries as Tam Dao, Tay Thien, Thien Vien, Dai Lai, Dam Vac,… Tam Dao tourism spot is considered one of the best place of interest in the Northern Viet Nam And Thac Bac Xa Huong cake, Lang Ha dam and primeval forests,… will be unforgotten memory of any visitors − Human resources: the province’s labour force is abundant, accounting for 61.6% of the total population There are many universities, professional, vocation schools at central level located near the province The province has 20,000 pupils and 10,000 school graduates each year Therefore, the local labour force can meet the demand for economic development in term of quantity and quality ∗ Infrastructure: − Transportation system: the system is convenient with roadway and railway Beside, the province is situated near Noi Bai International Airport There are national highways No.2, 2B, 2C, 23 running through the province There are several large rivers (Ca Lo, Pho Day and Pink river) running through the province, which earates favourable conditions for constructing Chu Phan, Vinh Thinh and Nhu Thuy Ports for transportation of materials, goods, equipment, facilities from Hai Phong, Quang Ninh seaports to the province − Water and power supply system: the system is quite complete meeting the demand of households and production There are two 110KV transformer stations, one in Vinh Yen with the capacity of 65,000KVA, the other in Phuc Yen with the capacity of 40,000KVA − Industrial zones: Vinh Phuc has industrial zones and clusters: Kim Hoa I2 (117 hectares), Binh Xuyen I2 (271 hectares), Binh Xuyen II I2 (485 hectares), Khai Quang (262 hectares), Ba Thien I2 (327 hectares), Ba Thien II I2 (308 hectares), Chan Hung (150 hectares) Vinh Phuc continious to get govermental permission to open 14 new industrial zones with the total area of 5576 hectares 1.5 Summary the economic conditions: * Economic situations: - Grow rate: Vinh Phuc has enjoyed high growth rate (even much highter than that of the country) thanks to its priorities given to investiment, exploitation of all potential and of all resources for average growth rate was 1736%, espeeially in 2006 the rate reached 19.8% ranking at the 7th nationwide Year GDP (%) 2006 19.8 2007 22.9 2008 17.77 2009 8.5 2010 19.11 * Economic structure: shifted in the positive way that is to increase the proportion of industry and services while decrease that of agriculture, forestry and auaculture: NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT Year Agriculture - Forestry - Aquaculture(%) Industry – contruction (%) Services (%) NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 2006 2007 2008 2009 2010 16.9 14.3 14.7 12.7 14.0 57.1 26.0 61.1 24.6 60.0 25.2 - 56.0 30.0 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM CHAPTER 2: CRITERIA FOR DESIGN 2.1 General: According to assessment experts, the section will be the key to economic development of the region According to the survey data on the actual demand for traffic shows that the tank is relatively stable Therefore, in the calculation of grade scale and technical standards of road should well, this is the first problem to solve the traffic problem 2.2 Design bases: - Function of road: This is part of the Provincial Highway, connecting two socioeconomic, political center of Vinh Phuc Province - Terrian: Mountainous terrian - Traffic data: According to traffic forecast and traffic data, traffic volume on the route through two points A - B in the 15th year is 3200 vehicles per day, inculde: Car (Volga) : 25% Light truck (Gaz-51) : 25% (Front axle 18kN, rear axle 56kN, double wheels) Medium truck(Zil150) : 25%(Front axle 25.8kN, rear axle 69.6kN, double wheels) Heavy truck (Maz200) : 15% (Front axle 48.2kN, rear axle 100kN, double wheels) Heavy truck (Maz504) : 10% (Front axle 45.4kN, rear axle 95kN, double wheels) Traffic growth rate : q = 6% Formular for calculating traffic volume each year: Nt = N0.(1+q)t - 1st year traffic volume (N0) N15 = N0 (1+q)15 ⇔ N0 = 3200 (1 + 0.06)15 = 1335 veh/day 2.3 Determine highway classification and technical: 2.3.1 Classification determination: Table 1.2.3.1.1.a.i.1 Passenger car unit Type Propotion Convert coefficient Car 25 % Light truck 25 % 2.0 Medium truck 25 % 2.0 NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM Type Propotion Convert coefficient Heavy truck (1 rear axle) 15 % 2.5 Heavy truck (2 rear axles) 10 % 4.0 15th year convert volume: Npcu/day = (25%×1 + 25%×2.0 + 25%×2.0 + 15%×2.5 + 10%×4.0) ×3200 = 6480 (pcu/day) Follow table and table [1] Propose: + Grade : Grade III – mountainous terrain + Design speed : Vtk= 60Km/h 2.3.2 Determine cross-section elements: 2.3.2.1 Carriage way: a) Number of lane: On Grade III road, the minimum number of lane is 2(lanes) Calculation base on volume-to-capacity ratio Z : N cdg Z= n lx × N lth Where: Z - volume-to-capacity ratio For mountainous road, Vtk = 60km/h => choose Z = 0.77 Ncdg - rush-hour design traffic capacity converted to PCU ữ For general: Ncdg = (0.10 0.12)ìNtbn , hence: Ncdg = 0.11×6480 ≈ 713 (xcqđ/h) nlx - is the number of lanes required, nlx= (lane) Nlth - actual capacity of through traffic flow, which is determined, if there is no study and calculation, as follows: When there is no separator between the vehicles in the opposite directions and motor vehicles use the same lane with non-motorized ones, choose Nth = 1000 PCU/h/lane Therefore: Z= 713 × 1000 = 0.356 < 0.77 Propose: choose number of lane: nlx = (lanes) NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 10 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM PART 3: CONSTRUCTION MANAFEMENT PLAN ROAD-CONSTRUCTION PROJECTS THROUGH TWO POINTS A-B Name of project and investor: - Name: Provincial road construction project through points A-B - Investor: People's Commite of Vinh Phuc +Address: No 38-40 Nguyen Trai St, Dong Da precinct, Vinh Yen city, Vinh Phuc province +Phone: 0211.3616618 Fax: 0211.3616018 +Email: ipa@vinhphuc.gov.vn - Capital: National budget - Consultant: Consultancy Company Limited of University of Civil Engineering +Address: No 55 Giai Phong St, Hai Ba Trung, Ha Noi +Phone: (+84-4)-3869.6570 Fax: (+84-4)-3869.9720 NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 84 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM CHAPTER 1: WORKING PREPERATION 1.1 Construction materials and laboratory equipment in the field One of the advantages of constructing the route is that it is close to the route through which enterprises exploit and produce materials for the construction of road pavement as well as available land mines to cover the road As for the ASPHALT mixing plant, there is no pre-production mixing plant in the area so the location of the mixing station is reasonable A ASPHALT mixing station should be used and placed at the center of the route for easy access The transportation is made by HUYNDAI 1.2 Construction work preparation 1.2.1 Pile rehabilitation and construction scope Field rehabilitation of the piles mainly locates the design route Measurement, inspection and extra piles in individual sections Check the natural elevation at the old elevated gauge and add additional temporary gauges Draw detailed construction scope for the responsible agency to approve and to make reasonable compensation Estimated: using workers, machine NIVO30, a theodolite THEO20 1.2.2 Construction work camp In the construction unit is expected to have 50 employees, the number of staff is 10 people According to capital construction norms, each worker is 4m2, 6m2 house Therefore, the total number of m2 of the camp housing is: 10x6 + 50x4 = 260 (m2) Construction capacity is 5m2 / ca  260m2 / = 52 (shift) With the expected time of 10 days, the number of employees required for the job is 52/13 = (labor) Choose workers The materials used for camp are bamboo, bamboo, local wood, roofing and wall (buy) The total cost for construction of the camp is 3% of the cost of construction work Estimated: using workers to build camps in 13 days 1.2.3 Construction of warehouses, yards Material for construction: to ensure smooth, with slope i ≤ 3%, with drainage around Estimated construction of 150m2 without roof, construction productivity 25m2 / ca x 150m2 / 25 = (shift) It is expected to use workers to build the material gathering yard in days During the camp, cadres led the construction of the camp and the time of construction site NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 85 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 1.2.4 Temporary road work Due to the terrain conditions, the temporary road work needs only clearing, cutting trees and using the bulldozer to flatten Taking advantage of the trails, old livelihood lines are available to transport materials 1.2.5 Clearing, cutting trees, clearing the ground Clearing the land for the construction of roads, felling trees, excavating the original, removing the old buildings are not suitable for new works, moving the power lines, cables, moving graves This work is expected to be carried out in a chain method, preceded by the construction of bridges and bridges The length of the construction is L = 5023.47 (m) The average width of the entire construction area is 20 (m) The volume that needs to be cleaned is: 20x5023.47 = 100469.4 (m2) According to the construction cost norms, 100 (m2) of labor required for labor is 0.123 workers / 100m2, bulldozer D271 is: 0.0155 cases / 100 m2 100469.4 × 0.0155 = 15.57 100 The number of bulldozers needed is: proceed in 13d⇒: 15.57/13 = 1.19 ⇒ Chose bulldozer (ca) Expected to 100470.2 × 0.123 = 123.58 100 Number of labor required: (công) Expected to proceed in 13d ⇒ 123.58/13 = 9.5⇒ Chose 10 labors Dự kiến sử dụng bulldozer 10 công nhân tiến hành 13 ngày 1.2.6 Communication media Due to the hilly terrain, the mobile phone network is not covered, so it is advisable to use local telephone communications and to install a fixed telephone at the site command office 1.2.7 Providing water and energy for the site Electrical Power: Mainly used for living, lighting, pumps Take power from a nearby transformer station Water: Clean water for daily use by workers and engineers: use wells at camp site Water for the construction work, mixing materials, Take directly from the nearby streams Use a water truck Have a pump and Have a watering device NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 86 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 1.2.8 Road positioning work - go to the railway station Road work is also known as work on the station to fix the position of the main cross-section of the road in the field to ensure the construction of the road in accordance with the design For embankment, the soil clearance at the road axle and on the road edge should be determined, the trench must be determined and the increase boundary determined Piles on the embankment at the low embankment are located at the pile position 100m and piles; In the high embankment 20-40m apart and in the curve 5-10m apart For the excavation platform, the piles on the road must be removed from the construction area, on the piles must write the depth and depth of excavation, then the edge of the excavation should be determined On uneven slopes, place slope gauges to check the slope of the sluice during construction 1.2.9 Conclude Choose the 13-day preparation team composed of: bulldozer D271A; theodolite THEO20; gradienter NIVO30; 16 công nhân 1.3 Road positioning - on the road Work on the road or to fix the main position of the road cross-section in the field to ensure the construction of the road to the design For embankment, the soil clearance at the road axle and on the road edge should be determined, the trench must be determined and the increase boundary determined Piles on the embankment at the low embankment are located at the pile position 100m and piles; In the high embankment 20-40m apart and in the curve 5-10m apart For the excavation platform, the piles on the road mold must be removed from the construction area, on these piles must write the excavation and excavation depth, then the edge of the excavation should be identified On uneven slopes, place slope gauges to check the slope of the sluice during construction NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 87 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM CHAPTER 2: CONSTRUCTION OF THE STRUCTURE ON THE ROUTE In the construction line not have special works Works on the section of the drainage line only There are 14 sewer lines and are listed in Table 3.2.1 of the appendix 2.1 Process of construction culvert - Determine the location of the sewer in the field and the position of the components to prepare the construction - Determine the height of the drain - Digging foundation, sewer wall, downstream wall - digging hole foundation, scattering stone chips - Transportation and loading of components - Build a sewer foundation and place sewers on the foundation - Make a waterproofing at the joints of the sewer, sweep the bitumen on the sewer - digging holes in the foundation, building up the wall and upstream culvert Insert sewer pipes with raw materials, carry out repairs to bring the soil to the elevation of the platform 2.2 The volume of reinforced culvert material and calculation of wastage of machinery and labor 2.2.1 Calculate the transport capacity and culvert installation For loading and unloading of sluices, - 12 tons HUYNDAI car transports sewers - Hitachi Excavator xz200-5G Cranes to the sewer and crane to install the sewer from the car - Manpower Take from the downsizing workers Speed of car on the road: + No load 30Km / h + Have 20Km / h Turnaround time minutes, loading time pike culvert takes 15 minutes L L 60 +  + 5'+ n.15'  20 30  The time of a ride is: t= n - Number of sewers transported in one trip + Culvert φ75 10/trip + Culvert φ100 8/trip + Culvert φ150 6/trip + Quare Culvert φ300 2/trip NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 88 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM Estimation of the volume of transport and installation of drainage shown in appen: Table Yield of sewage transport (Table 3.2.2 appendix) Table determines the number of carriage and truck cranes (Table 3.2.3 appendix) Table sewage installation capacity (Table 3.2.4 appendix) 2.2.2 Calculate the excavation work and the number of watch The volume of excavated soil is calculated according to the formula: V = a.H.L Where: a - Width of pit bottom, a = φ + (m); L - Sewer length H - Depth of the pit (from the ground to the bottom of the pit) Excavation of the foundation with digging machine Have bucket capacity of 0.91m3 ≤ 1.25m3 Inspection of construction works - construction section AB.3113: Productivity = 100 / 0.307 = 325.73 (m3 / shift) When excavating the foundation hole, digging for one meter at each side for the construction and installation, with the sluice at the embankment, to fill the soil around the culvert to keep the culverts and preserve the culverts while not making the foundation Combined volume and number of digging pit excavation (Table 3.2.5 appendix) 2.2.3 Foundation work and reinforcement Hole using Type II foundation (Form 533-01-01) Have a 10 cm layer of crushed stone (because the ground is clay) 2.2.3.1 Foundation of culvert Volume of sewer and manicure work (Table 3.2.6 appendix) 2.2.3.2 Detarmine the volume of upper and lower reinforce - Gia cố thượng lưu : Lát khan lớp đá dày 20cm lớp đá dăm dày 10cm - Gia cố hạ lưu : Lát khan lớp đá dày 20cm lớp đá dăm dày 10cm Khối lượng gia cố thượng lưu, hạ lưu (bảng 3.2.7 phụ lục) Tổng hợp số công gia cố thượng, hạ lưu (bảng 3.2.8 phụ lục) 2.2.4 Calculate the construction volume of two culvert heads Tổng hợp số công xây lắp đầu cống (bảng 3.2.9 phụ lục) 2.2.5 Calculate the drainage joint Tổng hợp số cơng phòng nước mối nối cống (bảng 3.2.10 phụ lục) 2.2.6 Calculate the volume of backfilling on the culvert With embankment drains, the volume of soil to be filled should be calculated around the culvert to keep and preserve the culverts without foundation Clay mass of construction work by bulldozer D271A take the soil 20m from the sewer and preliminarily compacted by the weight itself for each soil layer Have a thickness of 20¸ 30cm The embankment Alternative is as follows: NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 89 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM D 1:1 1:1 0.5 1.5 D Composite shift machine on the drainage (Table 3.2.11 appendix) 2.2.7 Calculate the number of machine shifts required to transport the material Stone, cement and sand are transported by HUYNDAI 12T with distance of km Pvc = Shipping capacity is calculated by the following formula: Where : T = The working time of a shift T = 8h P = Load of the car P = 12 T Kt = Coefficient of time use Kt = 0.8 Ktt= Coefficient of using load ktt = V1 = Velocity When Car Have Loaded V1 = 20 Km/h V2 = Velocity when vehicle does not have load V2 = 30 Km/h t : Time loading and unloading materials t = mins Pvc = P × T × K t × K tt 12 × × 0.8 × = L L 5 + +t + + V1 V2 20 30 60 P × T × K t × K tt L L + +t V1 V2 = 139.64 T/ca Have a rock: γ = 1.9 t/m3, rock chips: γ = 1.8 t/m3, golden sand: γ = 1.7 t/m3 The volume required to transport the above material is calculated by all the masses of materials required for each task Summary of material transport (Table 3.2.12 appendix) 2.3 Summarize culvert construction Summary table of sewer construction (Table 3.2.13) Expected to use teams, each team has 15 workers Table calculates the number of machine hours, manpower and working day for each drainage position (Table 3.2.14 appendix) Based on the results, calculate the decision to choose a team to work the construction of culverts: Team executed 14 culverts for construction time of 63 days Number of employees: 15 persons Number of construction machines: HUYNDAI truck 12T Excavator Hitachi xz200-5G NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 90 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM Bulldozer D271A CHAPTER 3: PAVEMENT CONSTRUCTION DESIGN 3.1 Pavemet structure and construction method Pavement is a material consuming work with equaly volume along the route Futhermore, construction area is narrow and long, so it is impossible to concentrate human and machine Therefore, to ensure construction quality and productivity, we should use “Process – construction” method According to Technical Design Profile, selected pavement structure is: Asphalt concrete AC 9.5 5cm Asphalt concrete AC 12.5 7cm Cement treated aggregate 15cm Grade Aggregate type II 35cm Working condition is advantage; Grade aggregate is provided from local producer with transfer distance is 5km Asphalt concrete is transferred from mixing station, which is 5km far from site Labour and machine resources: enough of necessary machine, workermanship 3.2 Calculating process speed Using individual processes for Grade aggregate layer and Asphalt concrete layer After finishing Grade aggregate layer, there would be a spacing time for acceptance, then bulding the Asphalt concrete layer 3.2.1 Process speed of Grade Aggregate layer construction 3.2.1.1 Base on allowed construction time As the requirement of the Employer, construction time of Grade Aggregate is planed to be 40 days Construction speed is calculated as below formular: Vmin = L (T − t − t ) (m/ngày) Where: L = Length of road, L = 5202.71 m; T = Number of day following calendar: T = 45 ngày; t1- Process development time: t1 = ngày; t2- Non-working time (sunday, holliday, rainny day…): t2 = ngày; NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 91 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT Vmin = GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 5202.71 = 148.65 (45 - - 7) Thus: (m/ngày) 3.2.1.2 Base on working condition Construction volume is not too much, could be mechanized 3.2.1.3 Base on capacity of contractor Plentiful machine potential, capital adequace, material is enough anyway Choose V = 150 (m/ngày) 3.2.2 Construction speed of surface AC layer Xác định tương tự dây chuyền thi cơng lớp móng CPĐD với thời gian khai triển ngày Và dự kiến thời gian thi công lớp mặt BTN 18 ngày Chọn V = 300 (m/ngày) 3.3 Calculate productivity of machine 3.3.1 Productivity of compactor Để lu lèn ta dùng lu nặng bánh thép BW203, lu nặng bánh lốp CP275 lu nhẹ bánh thép D469A (Sơ đồ lu trình bày vẽ thi công mặt đường) Năng suất lu tính theo cơng thức: Plu = T.K t L L + 0.01.L N.β V (km/ca) Trong đó: T= thời gian làm việc ca, T = 8h; Kt= hệ số sử dụng thời gian lu đầm nén mặt đường; Kt = 0.8 L= chiều dài thao tác lu tiến hành đầm nén, L = 0.15 (Km); V= tốc độ lu làm việc (Km/h); nyc N= tổng số hành trình mà lu phải đi: N = Nck.Nht = n Nht Nck = số chu kỳ lu làm việc nyc= số lần tác dụng đầm nén để mặt đường đạt độ chặt cần thiết; n= số lần tác dụng đầm nén sau chu kỳ (n = 2); Nht= số hành trình máy lu phải thực chu kỳ xác định từ sơ đồ lu; β= hệ số xét đến ảnh hưởng lu chạy khơng xác (β = 1.2) Bảng tính suất lu thể phụ lục Bảng 3.1.1 3.3.2 Productivity of truck in transportation Dùng xe HUYNDAI trọng tải 12T cho lớp mặt lớp móng, suất vận chuyển: NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 92 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT Pyc = P.T.Kt Ktt l l + +t V1 V2 GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM (Tấn/ca) Trong đó: P= trọng tải xe: P = 12 T= thời gian làm việc ca: T = h Kt=hệ số sử dụng thời gian: Kt = 0.80 Ktt=hệ số lợi dụng tải trọng: Ktt = 1.0 l=cự ly vận chuyển, giả thiết cự ly vận chuyển đá dăm l = km cự ly vận chuyển bê tông nhựa l =5 km t=thời gian xúc vật liệu quay xe, xếp vật liệu xe xúc, thời gian xếp phút, thời gian đổ vật liệu phút V1= vận tốc xe có tải chạy đường tạm: V1 = 20 km/h V2= vận tốc xe khơng có tải chạy đường tạm: V2 = 30 km/h Thay vào công thức ta được: Pvc1 = 12 × × 0.8 ×1 5 (6 + 4) + + 20 30 60 = 131.66 (tấn/ca) 3.3.3 Productivity of bitumen sprinkler Dùng máy tưới D164A suất 30 tấn/ca 3.3.4 Productivity of spreader Dùng máy rải SUPER 1600 suất N=1600 T/ca 3.4 Đào khuôn áo đường Khối lượng đất đào khuôn áo đường là: V = B.h.L.K1.K2.K3 (m3) Trong đó: V : Khối lượng đào khuôn áo đường (m3) B : Bề rộng mặt đường B = 8.7 (m) h : Chiều dày toàn kết cấu áo đường h = 0.58 (m) L : Chiều dài đoạn thi công L = 150 (m) K1: Hệ số mở rộng đường cong K1 = 1.05 K2: Hệ số lèn ép K2 = 1.0 K3: Hệ số rơi vãi K3 = 1.0 Vậy : V = 8.7x 0.62x 150x 1.05x 1x = 849.56 (m3) NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 93 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM Table 3.3.4.1.1.a.i.1 Working volume and time of road mould cutting Trình tự cơng việc Loại máy Đơn vị Khối lượng Năng suất Số ca máy Đào khuôn áo đường đào Máy san D144 m3 849.56 6721.37 0.126 3.5 Roadbed compaction Table 3.3.5.1.1.a.i.1 Bảng khối lượng công tác số ca máy lu đầm nén đường Trình tự công việc Loại máy Đơn vị Khối lượng Năng suất Số ca máy Lu lòng đường lu nặng bánh thép lần/điểm; tốc độ km/h BW203 km 0.15 0.99 0.152 3.6 Construction of pavement layers 3.6.1 Construction of Grade Aggregate type II B= 8.7 m, h= 35 cm, L = 150m Vật liệu đem đến phải bảo đảm tiêu theo qui định quy trình Giả thiết lớp cấp phối đá dăm loại II vận chuyển đến vị trí thi cơng cách Km Do lớp cấp phối đá dăm dày 35cm, nên ta tổ chức thi công thành lớp (phân lớp dày 17cm; phân lớp dày 18cm) Table 3.3.6.1.1.a.i.1 Calculation of Grade aggregate volume Chiều dày sau lu lèn(cm) Thể tích sau lu lèn 150m (m3) Thể tích để thi công 150m (m3) Phân lớp thứ 17 221.85 310.59 Phân lớp thứ 18 234.9 328.86 Lớp CPĐD II Trong : Thể tích sau lu lèn tính theo cơng thức: V= B.h.L (m3) B - bề rộng lớp CPĐD loại II, B= 8.7m h - chiều dày lớp đá dăm sau lu lèn L - chiều dài đoạn thi công L= 150m Hệ số đầm nén cấp phối K= 1.4 Dung trọng đá dăm chưa lèn ép 1.8 (T/m3) Năng suất vận chuyển cấp phối ôtô 131.66 T/ca Vậy suất vận chuyển cấp phối ôtô tính theo m3/ca : NGƠ TRUNG PHƯƠNG – 58CDE - 3293458 94 131.66 = 73.14 1.8 (m3/ca) NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT Năng suất rải máy supper 1600 : GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 1600 = 888.89 (m /ca) 1.8 Table 3.3.6.1.1.a.i.2 Process of Grade Aggregate type II construction Stt Trình tự cơng việc Vận chuyển CPĐD loại II đến mặt thi công đổ vào máy rải Rải CPĐD loại II theo chiều dày 18cm (rải nửa mặt một) Lu nhẹ D469A lần điểm V=3km/h Lu tạo cường độ lu bánh lốp CP275 18 lần/điểm, V=4km/h Lu phẳng lu sắt BW203 lần/điểm, V=3km/h Vận chuyển CPĐD loại II đến mặt thi công đổ vào máy rải Rải CPĐD loại II theo chiều dày 17cm(rải nửa mặt một) Lu nhẹ D469 lần điểm V=3km/h Lu tạo cường độ lu bánh lốp CP275 18 lần/điểm, V=4km/h 10 Lu hoàn thiện lu sắt BW203 lần/điểm, V=3km/h Bảng tổng hợp khối lượng số ca máy thi cơng lớp móng CPĐD loại II thể bảng 3.1.2 phụ lục Bảng lựa chọn số lượng máy thợ máy thi công lớp móng CPĐD loại II thể bảng 3.1.3 phụ lục 3.6.2 Construction of Cement treated aggregate B=8.4 m, h= 15cm ; L = 150m Table 3.3.6.2.1.a.i.1 Bảng tính khối lượng đá dăm gia cố XM Lớp Đá dăm gia cố Chiều dày sau lu Thể tích sau lu lèn lèn(cm) (m3) 15 Thể tích để thi cơng 150m (m3) 94.5 132.3 Table 3.3.6.2.1.a.i.2 Trình tự thi cơng lớp móng đá dăm gia cố XM STT Trình tự công việc Vận chuyển đá dăm gia cố đến mặt thi công đổ vào máy rải Rải đá dăm gia cố theo chiều dày 15cm(rải nửa mặt một) Lu nhẹ D469A lần/điểm V=3km/h Lu bánh lốp CP275 18 lần/điểm,V= 4km/h Lu nặng bánh thép BW203 lần/điểm, V = 3km/h NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 95 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM Tới nhựa thấm bám 1kg/m2 Bảng tổng hợp khối lượng khối lượng số ca máy thi công lớp móng đá dăm gia cố XM thể bảng 3.1.4 (phụ lục) 3.6.3 Construction of Asphalt concrete layers Tốc độ thi cơng lớp mặt BTN 300m/ngày Trình tự thi công: Thổi bụi lên cao độ Tưới nhựa dính bám Thi cơng lớp BTN hạt trung, hạt mịn 3.6.3.1 General requirement of Asphalt concrete construction Trước rải vật liệu phải dùng máy thổi bụi bẩn bề mặt lớp móng Hai lớp BTN thi cơng theo phương pháp rải nóng nên u cầu thao tác phải tiến hành nhanh chóng, khẩn trương, nhiên phải đảm bảo tiêu kỹ thuật Trong q trình thi cơng phải đảm bảo nhiệt độ sau: + Nhiệt độ xuất xưởng: 1300C÷1600C + Nhiệt độ vận chuyển đến trường: 1200C÷1400C + Nhiệt độ rải: 1100C÷1300C + Nhiệt độ lu: 1100C÷1400C + Nhiệt độ kết thúc lu: ≥ 800C - Yêu cầu vận chuyển: Phải dùng ô tô tự đổ để vận chuyển đến địa điểm thi công Trong q trình vận chuyển phải phủ bạt kín để đỡ mát nhiệt độ phòng mưa Để chống dính phải quét dầu lên đáy thành thùng xe, tỷ lệ dầu/nước 1/3 Không nên dùng chung với xe vận chuyển vật liệu khác - Yêu cầu rải: Chỉ rải BTN máy rải chuyên dùng Trước rải tiếp dải sau phải sửa sang lại mép chỗ nối tiếp dọc ngang đồng thời quét lớp nhựa lỏng đông đặc vừa hay nhũ tương nhựa đường phân tích nhanh để đảm bảo dính bám tốt hai vệt rải cũ Khe nối dọc lớp lớp phải so le nhau, cách 20cm Khe nối ngang lớp lớp cách 1m - Yêu cầu lu: Phải bố trí cơng nhân ln theo dõi bánh lu có tượng bóc mặt phải qt dầu lên bánh lu, (tỷ lệ dầu: nước 1:3) Các lớp bê tông nhựa thi cơng theo phương pháp rải nóng vận chuyển từ trạm trộn với cự ly trung bình 5km dải máy rải SUPPER1600 Thi công lớp mặt BTN tách làm dây chuyền riêng, sau dải xong lớp BTN hạt trung thời gian nghỉ chờ mặt thi công, dải thảm hết tiến hành tưới nhựa dính bám dải nốt lớp BTN hạt mịn 3.6.3.2 Calculation of volume and time of construction Lượng bê tông nhựa hạt trung (dầy cm tra theo định mức XDCB mã hiệu AD.23220) 16.97T/100m2 Vậy khối lượng bê tông nhựa hạt trung để thi công nửa mặt đường đoạn dài 300m là: NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 96 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM 16.97 100 300 x x = 203.64 Lượng bê tông nhựa hạt mịn (dầy cm tra theo định mức XDCB mã hiệu AD.23230) 12.12 T/100m2 Vậy khối lượng bê tông nhựa hạt mịn để thi công nửa mặt đường đoạn dài 300m 12.12 100 300 x x = 145.44 Do máy rải rải chiều rộng 4m nên tiến hành thi công đoạn dài 300 m rộng m (nửa bề rộng) Dung trọng BTN chưa lèn ép 2.39 (T/m3) Năng suất vận chuyển cấp phối ôtô 131.66 T/ca Vậy suất vận chuyển cấp phối ơtơ tính theo m3/ca : Năng suất rải máy supper 1600 : 131.66 = 55.09 2.39 (m3/ca) 1600 = 669.46 (m /ca) 2.39 Table 3.3.6.3.2.a.i.1 Trình tự thi cơng lớp BTN STT Trình tự cơng việc Máy thổi bụi làm trước Vận chuyển hỗn hợp BTN hạt vừa Rải hỗn hợp BTN hạt vừa Lu nhẹ lớp BTN lần/điểm; V=3km/h Lu nặng bánh lốp 10 lần/điểm; V= 3.5 km/h Lu nặng bánh thép lần/điểm; V= 2.5km/h Quay lại dải tiếp nửa lại Thời gian nghỉ chờ lấy mặt thi công Vận chuyển hỗn hợp BTN hạt mịn Rải hỗn hợp BTN hạt mịn Lu nhẹ lần/điểm; V= 3km/h Lu nặng bánh lốp 10 lần/điểm; V= 3.5km/h Lu nặng bánh thép lần/điểm; V= 2.5km/h Quay lại dải tiếp nửa lại Bảng tổng hợp khối lương số ca máy thi công lớp BTN thể bảng 3.1.5 phụ lục NGÔ TRUNG PHƯƠNG – 58CDE - 3293458 97 NATIONAL UNIVERSITY OF CIVIL ENGINEERING HIGHWAY AND TRAFFIC ENGINEERING DEPARTMENT 3.7 Thành lập đội thi công mặt Đội thi công mặt biên chế sau: Thi cơng lớp móng cấp phối đá dăm: + 12 ô tô tự đổ HUYNDAI 16 Tấn + máy rải SUPPER 1600 + lu nhẹ D469A + lu lốp CP275 + lu nặng 218D-40 + 22 công nhân Thi công lớp mặt Bê tông nhựa + ô tô tự đổ HUYNDAI 12 Tấn + máy rải SUPPER 1600 + lu lốp CP275 + lu nặng BW203 + 22 cơng nhân NGƠ TRUNG PHƯƠNG – 58CDE - 3293458 GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM + lu rung SV500 + xe tưới nhựa + máy quét thổi bụi + lu nhẹ D469A 98 ... VU HOAI NAM PART 1: PROJECT DEVELOPMENT AND PRELIMILARY DESIGN FOR ROAD CONSTRUCTION CONNECTING POINTS A-B Project : Project development for road construction connecting A-B Investor : Pepeple's... thesis: ROAD CONSTRUCTION PROJECT THROUGH TWO POINTS A-B" This is important works with a large volume of work includes all steps from the preliminary design, engineering design, and construction. .. DEPARTMENT GRADUATION PROJECT - REPORT LECTURER: ASSOC PROF DR VU HOAI NAM CHAPTER 1: GENERRAL INTRODUCTION 1.1 Overview: Designated route project through two points A-B is an important project to from

Ngày đăng: 27/11/2018, 16:16

Từ khóa liên quan

Mục lục

  • PART 1: PROJECT DEVELOPMENT AND PRELIMILARY DESIGN FOR ROAD CONSTRUCTION CONNECTING 2 POINTS A-B

    • CHAPTER 1: GENERRAL INTRODUCTION

      • 1.1. Overview:

      • 1.2. The object scope of the project research and implement projects:

      • 1.3. Relatet resources documents:

      • 1.4. Natural features of the zone along the route and regional trafiic conditions:

      • 1.5. Summary the economic conditions:

    • CHAPTER 2: CRITERIA FOR DESIGN

      • 2.1. General:

      • 2.2. Design bases:

      • 2.3. Determine highway classification and technical:

        • 2.3.1. Classification determination:

          • Table 1.2.3.1.1.a.i.1. Passenger car unit

        • 2.3.2. Determine cross-section elements:

          • 2.3.2.1. Carriage way:

            • a) Number of lane:

            • b) Width of traffic lane:

              • Figure 1.2.3.2.1.b.i.1.1. Two trucks go in opposite directions on two lanes and meet each other

              • Figure 1.2.3.2.1.b.i.1.2. Two cars go in the opposite direction and meet each other

              • Figure 1.2.3.2.1.b.i.1.3. Trucks and cars go in opposite directions and meet each other

          • 2.3.2.2. Shoulders:

          • 2.3.2.3. Transverse slope:

            • Table 1.2.3.2.3.a.i.1. Elements of cross section

        • 2.3.3. Route's technical specifics:

          • 2.3.3.1. Maximum longitudianl grade (idmax):

            • a) According to power of vehicle:

              • Table 1.2.3.3.1.a.i.1. Determine idmax from driving force condition

            • b) According to skkiding resistance:

              • Table 1.2.3.3.1.b.i.1. Determine idmax from skidding resistance requirement

              • Table 1.2.3.3.1.b.i.2. Summary of calculating idmax

              • Table 1.2.3.3.1.b.i.3. Speed at idmax= 7%

          • 2.3.3.2. Determine of sight distance:

            • a) Stopping sight distance (S1):

              • Figure 1.2.3.3.2.a.i.1.1. Calculating S1

            • b) Passing sight distance (S4):

              • Figure 1.2.3.3.2.b.i.1.1. Calculating S2

          • 2.3.3.3. Determine the minimum radius of horizontal curve:

            • a) In super elevation:

            • b) Non-super elevation:

            • c) Xác định bán kính đường cong nằm đảm bảo tầm nhìn ban đêm:

          • 2.3.3.4. Xác định chiều dài đường cong chuyển tiếp và đoạn nối siêu cao :

            • a) Đường cong chuyển tiếp :

            • b) Đoạn nối siêu cao:

              • Table 1.2.3.3.4.b.i.1. Độ dốc siêu cao (isc) và chiều dài đoạn nối siêu cao (Lnsc)

          • 2.3.3.5. Độ mở rộng phần xe chạy trong đường cong:

            • Table 1.2.3.3.5.a.i.1. Độ mở rộng phần xe chạy tính toán

            • Table 1.2.3.3.5.a.i.2. Độ mở rộng phần xe chạy hai làn xe trong đường cong nằm

            • Table 1.2.3.3.5.a.i.3. Độ mở rộng phần xe chạy hai làn xe trong đường cong nằm

          • 2.3.3.6. Chiều dài đoạn chêm giữa hai đường cong nằm:

            • Table 1.2.3.3.6.a.i.1. Trị số chiều dài tối thiểu đoạn chêm

          • 2.3.3.7. Xác định bán kính tối thiểu đường cong đứng:

            • a) Xác định Rlồimin:

            • b) Xác định bán kính đường cong lõm Rlõmmin:

              • Table 1.2.3.3.7.b.i.1. Bảng tổng hợp các chỉ tiêu kỹ thuật

      • 2.4. Tài liệu tham khảo:

    • CHAPTER 3: DESIGN HORIZONTAL ALIGNMENT

      • 3.1. Design principle

      • 3.2. Design method

        • 3.2.1. Vị trí 2 điểm khống chế nằm dọc một bên theo hướng đường phần thủy (hoặc tụ thủy):

        • 3.2.2. Vị trí 2 điểm khống chế nằm ở 2 bên đường phân thủy (hoặc tụ thủy):

      • 3.3. Propose alternatives

      • 3.4. Setting horizontal curves

      • 3.5. Summary table of horizontal

        • Table 1.3.5.1.1.a.i.1. Summary of horizontal curves

        • Table 1.3.5.1.1.a.i.2. Compare between 2 alternatives

      • 3.6. References

    • CHAPTER 4: PLANNING AND DESIGN OF DRAINAGE SYSTEM

      • 4.1. General

      • 4.2. Drainage design

        • 4.2.1. Input data

        • 4.2.2. Determine basin

        • 4.2.3. Hydrology calculation

        • 4.2.4. Determine aperture and possition of culvert

          • 4.2.4.1. Determine culvert aperture

          • 4.2.4.2. Setting culvert

            • a) Principles

            • b) Determine control level

      • 4.3. Design result

        • Table 1.4.3.1.1.a.i.1. Culvert design result alternative 1

        • Table 1.4.3.1.1.a.i.2. Culvert design result alternative 2

      • 4.4. References

    • CHAPTER 5: DESIGN VERTICAL ALIGNMENT AND CROSS-SECTION

      • 5.1. Design vertical alignment

        • 5.1.1. Input data and Base

        • 5.1.2. Design principle

        • 5.1.3. Phương pháp thiết kế và đề xuất phương án đi đường đỏ:

          • 5.1.3.1. Các phương pháp thiết kế trắc dọc:

            • a) Phương pháp đi bao:

            • b) Phương pháp đi cắt:

            • c) Phương pháp kết hợp:

          • 5.1.3.2. Đề xuất:

        • 5.1.4. Giải pháp thiết kế:

          • 5.1.4.1. Xác định cao độ khống chế:

            • Table 1.5.1.4.1.a.i.1. Cao độ khống chế phương án 1

            • Table 1.5.1.4.1.a.i.2. Cao độ khống chế phương án 2

          • 5.1.4.2. Xác định cao độ mong muốn:

          • 5.1.4.3. Thiết kế đường đỏ:

          • 5.1.4.4. Kết quả thiết kế:

            • Table 1.5.1.4.4.a.i.1. Kết quả thiết kế dốc dọc 2 phương án tuyến

        • 5.1.5. Design vertical curves

          • Table 1.5.1.5.1.a.i.1. Design result vertical curves

      • 5.2. Design cross section

        • 5.2.1. General

        • 5.2.2. Input data and bases

        • 5.2.3. Parameters of road A-B cross-section

      • 5.3. Calculate earthwork

        • Table 1.5.3.1.1.a.i.1. Kết quả tính toán khối lượng đào, đắp của 2 phương án

      • 5.4. References:

    • CHAPTER 6: OPERATION SPEED DIAGRAM AND FUEL COMSUMPTION

      • 6.1. General

      • 6.2. Establish the theorerical operation speed

        • 6.2.1. Purpose and requirements of determining theorerical speed

        • 6.2.2. Theorerical operation speed process

          • 6.2.2.1. Determine balance speed

          • 6.2.2.2. Limit speed in horizontal curve

          • 6.2.2.3. Limit speed in vertical curve

          • 6.2.2.4. Length of acceleration and deceleration

          • 6.2.2.5. Length of breaking

      • 6.3. Average speed and travel time

        • Table 1.6.3.1.1.a.i.1. Calculated result average speed and travel time

      • 6.4. Fuel consumption

      • 6.5. References

    • CHAPTER 7: FLEXIBLE PAVEMENT DESIGN

      • 7.1. Pavement requirement

        • Table 1.7.1.1.1.a.i.1. Roughness requirement

        • Table 1.7.1.1.1.a.i.2. Requirement for flatness of the road surface according to IRI

      • 7.2. Determine calculated data

        • 7.2.1. Load

          • 7.2.1.1. Calculated data

            • Table 1.7.2.1.1.a.i.1. Characteristic of vehicles

            • Table 1.7.2.1.1.a.i.2. The load distribution on the axles of the trucks

          • 7.2.1.2. Tính toán lưu lượng xe

            • Table 1.7.2.1.2.a.i.1. Lưu lượng xe các năm

          • 7.2.1.3. Calculation accumulated standard axles 100kN:

            • Table 1.7.2.1.3.a.i.1. Bảng tính số trục xe quy đổi về trục tiêu chuẩn 100KN năm thứ 15

          • 7.2.1.4. Number of standard axles per lane

            • Table 1.7.2.1.4.a.i.1. Number of calculate axles per lane each year

          • 7.2.1.5. Accumulated standard axle

          • 7.2.1.6. Determine minimum thickness of A1 pavement

        • 7.2.2. Subgrade

          • Table 1.7.2.2.1.a.i.1. Subgrade parameter

        • 7.2.3. Material

          • Table 1.7.2.3.1.a.i.1. Mechanical characteristic of materials

      • 7.3. Design pavement structure

        • 7.3.1. Xác định môđun đàn hồi yêu cầu theo số trục xe tính toán

          • Table 1.7.3.1.1.a.i.1. Xác định môđun đàn hồi ứng với từng giai đoạn

        • 7.3.2. Gathering investment alternative (15 years)

        • 7.3.3. Phasing investment alternative (2 stages)

          • Table 1.7.3.3.1.a.i.1. Môđun đàn hồi yêu cầu qua các năm cơ bản

        • 7.3.4. Kiến nghị phương án thiết kế

      • 7.4. Yêu cầu vật liệu kết cấu áo đường

        • 7.4.1. Yêu cầu vật liệu đối với tầng mặt

        • 7.4.2. Yêu cầu vật liệu đối với tầng móng

      • 7.5. Tài liệu tham khảo

    • CHAPTER 8: ECONOMIC-TECHNICAL COMPARISION AND SELECTION

      • 8.1. Group of using quality criteria

        • Table 1.8.1.1.1.a.i.1. Comparision base on using quality criteria

      • 8.2. Group of construction criteria

        • Table 1.8.2.1.1.a.i.1. Comparision base on construction criteria

      • 8.3. Group of economic criteria

        • 8.3.1. Determine gathering cost convert to initia year

          • 8.3.1.1. Determine initia construction cost (K0)

            • a) Roadbed contruction cost Koroadbed

              • Table 1.8.3.1.1.a.i.1. Summary of roadbed construction

            • b) Determine pavement cost : Kopavement

              • Table 1.8.3.1.1.b.i.1. Pavement cost

            • c) Determine drainage system cost Koxd cống

              • Table 1.8.3.1.1.c.i.1. Sumary of culvert construction cost

              • Table 1.8.3.1.1.c.i.2. Total construction cost

            • d) Determine site-clearing cost Kodenbu

          • 8.3.1.2. Determine period maintainance cost

            • Table 1.8.3.1.2.a.i.1. Total period maintainance cost (unconverted to initial year)

            • Table 1.8.3.1.2.a.i.2. Tổng chi phí trung tu, đại tu, cải tạo quy đổi về năm gốc

          • 8.3.1.3. Determine total working capital K0(h)

            • Table 1.8.3.1.3.a.i.1. Total working capital

          • 8.3.1.4. Determine total working capital annual growth

            • Table 1.8.3.1.4.a.i.1. Total working capital cost convert to original year

          • 8.3.1.5. Total gathering cost convert to the original year

            • Table 1.8.3.1.5.a.i.1. Total converted gathering cost

        • 8.3.2. Determine converted regular cost (đồng)

          • 8.3.2.1. Determine routine maintainance cost: Ctdt (đồng)

            • Table 1.8.3.2.1.a.i.1. Total routine maintainance cost convert to original year

          • 8.3.2.2. Transpotation cost: Ctvc (đồng)

            • Table 1.8.3.2.2.a.i.1. Total statistic transport cost

            • Table 1.8.3.2.2.a.i.2. Total transport cost convert to original year

          • 8.3.2.3. National economic loss due to passenger time wasting(đồng)

            • Table 1.8.3.2.3.a.i.1. National economic loss due to passenger time wasting

          • 8.3.2.4. Total regular cost convert to original year

            • Table 1.8.3.2.4.a.i.1. Total regular cost convert to original year

        • 8.3.3. Total converted constuction and operation cost

          • Table 1.8.3.3.1.a.i.1. Total converted constuction and operation cost

    • CHAPTER 9: TOTAL CONSTRUCTION INVESTMENT AMOUNT

      • 9.1. Base of determining total construction investment amount

      • 9.2. Element of total construction cost amount

        • 9.2.1. Construction cost

        • 9.2.2. Other cost

        • 9.2.3. Preventive cost

      • 9.3. Result

        • Table 1.9.3.1.1.a.i.1. Summary calculation of total costruction investment amount

    • CHAPTER 10: ANALYSING ECONOMIC OF CHOSEN ALTERNATIVE

      • 10.1. Assume origional alternative

      • 10.2. Determine net present value NPV

        • 10.2.1. Determine total profit of investment convert to origin year compared to old road (B)

          • Table 1.10.2.1.1.a.i.1. Converted transportation and passenger time wasting cost

        • 10.2.2. Total cost of investment convert to origin year compared to old road (C)

        • 10.2.3. Result

      • 10.3. Determine benefit – cost ratio (BCR)

      • 10.4. General conclusion

    • CHAPTER 11: ENVIRONMENTAL EVALUATION OF THE ROAD

      • 11.1. Purpose

      • 11.2. Environmental effects of project construction and operation

        • 11.2.1. Air pollution

        • 11.2.2. Noise and vibration

        • 11.2.3. Water pollution risk

        • 11.2.4. Impact on human resources and environment

      • 11.3. Solutions to overcome the negative effects of the project on the environment

        • 11.3.1. Solutions of the human and socio-economic environment affects

        • 11.3.2. Solutions to hydrological affect

        • 11.3.3. Solutions to overcome the effects of construction

        • 11.3.4. Solutions to overcome the effects in the operation phase

  • PART 2: DETAIL DESIGN ROAD CONSTRUCTION PROJECT THROUGH TWO POINTS A – B

    • CHAPTER 1: GENERAL INTRODUCTION

      • 1.1. Introduce about the project

      • 1.2. Legal basis, the normative process system applies

        • 1.2.1. Legal grounds

        • 1.2.2. The system of normative process applies

          • 1.2.2.1. Design process

          • 1.2.2.2. Survey process

      • 1.3. Some features of the technical design section

        • 1.3.1. Topographic

        • 1.3.2. Hydrological

        • 1.3.3. Political economy, society

    • CHAPTER 2: TOPOGRAPH DESIGN

      • 2.1. Preparation work

      • 2.2. Road survey

        • 2.2.1. Survey geological situation

          • Table 2.2.2.1.1.a.i.1. Table of geological drilling results at drilling holes

      • 2.3. Route design on topograph

      • 2.4. Calculate the curve of a clothoide transition curve

        • 2.4.1. Calculates the basic elements of the circle

        • 2.4.2. Determination of curve parameters

        • 2.4.3. Clamp angle

        • 2.4.4. Determine the coordinates of the transition curve end point X0, Y0

        • 2.4.5. Determine the displacement p and the tangent func t

        • 2.4.6. Determine the rest of the circle K0

        • 2.4.7. Determine the coordinates of the piles in the lying curve

    • CHAPTER 3: LONGITUDINAL AND CROSS SECTION DESIGN

      • 3.1. Longitudinal section design

        • 3.1.1. Requirements for longitudinal section drawing

        • 3.1.2. Design process

          • 3.1.2.1. Direction

          • 3.1.2.2. Identification of control points

            • Table 2.3.1.2.2.a.i.1. Determine the altitude control at the culvert location

          • 3.1.2.3. Vertical curve design

            • a) Determine the altitude at the change pointC

            • b) Determine starting point (TĐ) and end point (TC) of the vertical curve

            • c) Determine the origin of the vertical curve E, id=0%

            • d) Determine the design height of the piles in the vertical curve

            • e) Simplified approach to plug parabolic curves

              • Table 2.3.1.2.3.e.i.1. Table of vertical curve elements

      • 3.2. Cross section design

        • 3.2.1. Parameter of horizontal crossings

          • Figure 2.3.2.1.1.a.i.1.1. Cross section

        • 3.2.2. Calculation of side ditch

          • 3.2.2.1. Rule of boundary design

          • 3.2.2.2. Sideditch design

      • 3.3. Calculate the volume of excavation

    • CHAPTER 4: DESIGN DETAIL CULVERT C5

      • 4.1. Hydrological survey

        • 4.1.1. Determination of the area of the catchment area (or basin) F

        • 4.1.2. Determine the average length and slope of the main stream

        • 4.1.3. Morphological investigation and flood investigation

          • 4.1.3.1. Select the calculated cross section

          • 4.1.3.2. Water level survey

      • 4.2. Calculate the flow

        • 4.2.1. Calculated data

        • 4.2.2. Tính toán lưu lượng

        • 4.2.3. Tính chiều sâu nước chảy tự nhiên

          • Table 2.4.2.3.1.a.i.1. Bảng quan hệ giữa Q và h

            • Figure 2.4.2.3.1.a.i.1.1. Biểu đồ quan hệ giữa lưu lượng và chiều cao nước

        • 4.2.4. Xác định mực nước dâng trước cống, độ dốc phân giới, tốc độ chảy trong cống và ở hạ lưu cống

          • 4.2.4.1. Xác định mực nước dâng trước cống H

          • 4.2.4.2. Tính vận tốc cửa vào

          • 4.2.4.3. Xác định mực nước phân giới hk

          • 4.2.4.4. Xác định độ dốc phân giới ik

          • 4.2.4.5. Xác định mực nước cuối cống ho

          • 4.2.4.6. Xác định vận tốc nước trong cống V0

        • 4.2.5. Gia cố thượng lưu cống

  • PART 3: CONSTRUCTION MANAFEMENT PLAN ROAD-CONSTRUCTION PROJECTS THROUGH TWO POINTS A-B

    • CHAPTER 1: WORKING PREPERATION

      • 1.1. Construction materials and laboratory equipment in the field

      • 1.2. Construction work preparation

        • 1.2.1. Pile rehabilitation and construction scope

        • 1.2.2. Construction work camp

        • 1.2.3. Construction of warehouses, yards

        • 1.2.4. Temporary road work

        • 1.2.5. Clearing, cutting trees, clearing the ground

        • 1.2.6. Communication media

        • 1.2.7. Providing water and energy for the site

        • 1.2.8. Road positioning work - go to the railway station

        • 1.2.9. Conclude

      • 1.3. Road positioning - on the road

    • CHAPTER 2: CONSTRUCTION OF THE STRUCTURE ON THE ROUTE

      • 2.1. Process of construction 1 culvert

      • 2.2. The volume of reinforced culvert material and calculation of wastage of machinery and labor

        • 2.2.1. Calculate the transport capacity and culvert installation

        • 2.2.2. Calculate the excavation work and the number of watch

        • 2.2.3. Foundation work and reinforcement

          • 2.2.3.1. Foundation of culvert

          • 2.2.3.2. Detarmine the volume of upper and lower reinforce

        • 2.2.4. Calculate the construction volume of two culvert heads

        • 2.2.5. Calculate the drainage joint

        • 2.2.6. Calculate the volume of backfilling on the culvert

        • 2.2.7. Calculate the number of machine shifts required to transport the material

      • 2.3. Summarize culvert construction

    • CHAPTER 3: PAVEMENT CONSTRUCTION DESIGN

      • 3.1. Pavemet structure and construction method

      • 3.2. Calculating process speed

        • 3.2.1. Process speed of Grade Aggregate layer construction

          • 3.2.1.1. Base on allowed construction time

          • 3.2.1.2. Base on working condition

          • 3.2.1.3. Base on capacity of contractor

        • 3.2.2. Construction speed of surface AC layer

      • 3.3. Calculate productivity of machine

        • 3.3.1. Productivity of compactor

        • 3.3.2. Productivity of truck in transportation

        • 3.3.3. Productivity of bitumen sprinkler

        • 3.3.4. Productivity of spreader

      • 3.4. Đào khuôn áo đường

        • Table 3.3.4.1.1.a.i.1. Working volume and time of road mould cutting

      • 3.5. Roadbed compaction

        • Table 3.3.5.1.1.a.i.1. Bảng khối lượng công tác và số ca máy lu đầm nén nền đường

      • 3.6. Construction of pavement layers

        • 3.6.1. Construction of Grade Aggregate type II

          • Table 3.3.6.1.1.a.i.1. Calculation of Grade aggregate volume

          • Table 3.3.6.1.1.a.i.2. Process of Grade Aggregate type II construction

        • 3.6.2. Construction of Cement treated aggregate

          • Table 3.3.6.2.1.a.i.1. Bảng tính khối lượng đá dăm gia cố XM

          • Table 3.3.6.2.1.a.i.2. Trình tự thi công lớp móng đá dăm gia cố XM

        • 3.6.3. Construction of Asphalt concrete layers

          • 3.6.3.1. General requirement of Asphalt concrete construction

          • 3.6.3.2. Calculation of volume and time of construction

            • Table 3.3.6.3.2.a.i.1. Trình tự thi công 2 lớp BTN

      • 3.7. Thành lập đội thi công mặt

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan