Một số công thức toán học lớp 10&11

18 7,504 173
  • Loading ...
1/18 trang

Thông tin tài liệu

Ngày đăng: 17/08/2013, 08:07

1. Các tính chất cơ bản của bất đẳng thức:1.1. Tính chất 1 (tính chất bắc cầu): a > b và b > c a > c1.2. Tính chất 2: a > b a + c > b + c Tức là: Nếu cộng 2 vế của bắt đẳng thức với cùng một số ta được bất đẳng thức cùng chiều và tương đương với bất đẳng thức đã cho. Hệ quả (Quy tắc chuyển vế):a > b + c a – c > b1.3 Tính chất 3: Nếu cộng các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc trừ hai vế của 2 bất đẳng thức cùng chiều.1.4 Tính chất 4: a > b a.c > b.c nếu c > 0hoặc a > b c.c < b.c nếu c < 01.5 Tính chất 5: Nếu nhân các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc chia hai vế của 2 bất đẳng thức cùng chiều.1.6 Tính chất 6:a > b > 0 an > bn (n nguyển dương)1.7 Tính chất 7: (n nguyên dương) Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc MỘT SỐ CÔNG THỨC TOÁN HỌC LỚP 10 & 11 1. Các tính chất cơ bản của bất đẳng thức: 1.1. Tính chất 1 (tính chất bắc cầu): a > b và b > c ⇔ a > c 1.2. Tính chất 2: a > b ⇔ a + c > b + c Tức là: Nếu cộng 2 vế của bắt đẳng thức với cùng một số ta được bất đẳng thức cùng chiều và tương đương với bất đẳng thức đã cho. Hệ quả (Quy tắc chuyển vế): a > b + c ⇔ a – c > b 1.3 Tính chất 3: a b a c b d c d >  ⇒ + > +  >  Nếu cộng các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc trừ hai vế của 2 bất đẳng thức cùng chiều. 1.4 Tính chất 4: a > b ⇔ a.c > b.c nếu c > 0 hoặc a > b ⇔ c.c < b.c nếu c < 0 1.5 Tính chất 5: 0 . . 0 a b a c b d c d > >  ⇒ >  > >  Nếu nhân các vế tương ứng của 2 bất đẳng thức cùng chiều ta được một bất đẳng thức cùng chiều. Chú ý: KHÔNG có quy tắc chia hai vế của 2 bất đẳng thức cùng chiều. 1.6 Tính chất 6: a > b > 0 ⇒ a n > b n (n nguyển dương) 1.7 Tính chất 7: 0 n n a b a b> > ⇒ > (n nguyên dương) 2. Bất đẳng thức Cauchy (Cô-si): Định lí: Nếu 0a ≥ và 0b ≥ thì . 2 a b a b + ≥ . Đẳng thức xảy ra khi và chỉ khi: a = b Tức là: Trung bình cộng của 2 số không âm lớn hơn hoặc bằng trung bình nhân của chúng. Hệ quả 1: Nếu 2 số dương có tổng không đổi thì tích của chùng lớn nhất khi 2 số đõ bẳng nhau. Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng chu vi, hình vuông có diện tích lớn nhất. Hệ quả 2: Nếu 2 số dương có tích không đổi thì tổng của chùng nhỏ nhất khi 2 số đó bằng nhau. Ý nghĩa hình học: Trong tất cả các hình chữ nhật có cùng diện tích hình vuông có chu vi nhỏ nhất. Email: duytrung8x@gmail.com Trang 1/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 3. Bất đẳng thức chứa giá trị trị tuyệt đối: 0 0 x x x >  =  − >  Từ định nghĩa suy ra: với mọi x R∈ ta có: a. |x| ≥ 0 b. |x| 2 = x 2 c. x ≤ |x| và -x ≤ |x| Định lí: Với mọi số thực a và b ta có: |a + b| ≤ |a| + |b| (1) |a – b| ≤ |a| + |b| (2) |a + b| = |a| + |b| khi và chỉ khi a.b ≥ 0 |a – b| = |a| + |b| khi và chỉ khi a.b ≤ 0 4. Định lí Vi-et: Nếu phương trình bậc 2: ax 2 + bx +c = 0 (*) có 2 nghiệm x 1 , x 2 (a ≠ 0) thì tổng và tích 2 nghiệm đó là: S = x 1 + x 2 = b a − P = x 1 .x 2 = c a Chú ý: + Nếu a + b + c = 0 thì phương trình (*) có nhiệm x 1 = 1 và x 2 = c a + Nếu a – b + c = 0 thì phương trình (*) có nhiệm x 1 = -1 và x 2 = c a − Hệ quả: Nếu 2 số u, v có tổng S = u + v và tích P = u.v thì chúng là nghiệm của phương trình: x 2 – S.x + P = 0 5. Chia đoạn thẳng theo tỉ lệ cho trước: a. Định nghĩa: Cho 2 điểm phân biệt A, B. Ta nói điểm M chia đoạn thẳng AB theo tỉ số k nếu MA kMB= uuur uuur b. Định lí: Nếu điểm M chia đoạn thẳng AB theo tỉ số k ≠ 1 thì với điểm O bất kì ta có: 1 OA kOB OM k − = − uuur uuur uuuur 6. Trọng tâm tam giác: a. Điểm G là trọng tâm tam giác khi và chỉ khi: 0GA GB GC+ + = uuur uuur uuur r b. Nếu G là trọng tâm tam giác, thì với mọi điểm O ta có: 3OG OA OB OC= + + uuur uuur uuur uuur Email: duytrung8x@gmail.com Trang 2/18 nếu x ≥ 0 nếu x < 0 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 7. Các Hệ Thức Lượng Trong Tam Giác: 7.1. Định lí Cosin trong tam giác: Định lí: Với mọi tam giác ABC, ta luôn có: 2 2 2 2 2 2 2 2 2 2 .cos 2 .cos 2 .cos a b c bc A b a c ac B c b a ba C = + − = + − = + − 7.2. Định lí sin trong tam giác: Định lí: Trong tam giác ABC, với R là bán kính đường tròn ngoại tiếp ta có: 2 sin sin sin a b c R A B C = = = 7.3. Công thức độ dài đường trung tuyến: 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 4 2 4 a b c b c a m a c b m b a c m + = − + = − + = − 8. Tỉ số lượng giác của một số góc cần nhớ: Góc 0 0 30 0 45 0 60 0 90 0 120 0 135 0 150 0 180 0 0 6 π 4 π 3 π 2 π 2 3 π 3 4 π 5 6 π π sin 0 1 2 2 2 3 2 1 3 2 2 2 1 2 0 cos 1 3 2 2 2 1 2 0 – 1 2 – 2 2 – 3 2 -1 tg 0 1 3 1 3 || – 3 1 – 1 3 0 cotg || 3 1 1 3 0 – 1 3 1 – 3 || 9. Công thức biến đổi tích thành tổng: Email: duytrung8x@gmail.com Trang 3/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 1 cos .cos [cos( ) cos( )] 2 1 sin .sin [cos( ) cos( )] 2 1 sin .cos [sin( ) sin( )] 2 a b a b a b a b a b a b a b a b a b = − + + = − − + = + + − 10. Công thức biến đổi tổng thành tích: cos cos 2cos .cos 2 2 cos cos 2sin .sin 2 2 sin sin 2sin .cos 2 2 sin sin 2cos .sin 2 2 a b a b a b a b a b a b a b a b a b a b a b a b + − + = + − − = − + − + = + − − = 11.Công thức nhân đôi: 2 2 2 2 2 cos2 cos sin 2cos 1 1 2sin sin 2 2sin cos 2 2 ( , , ) 1 2 2 2 a a a a a a a a tga tg a a k a k k tg a π π π π = − = − = − = = ≠ + ≠ + ∈ − Z 12. Công thức nhân ba: 3 3 sin3 3sin 4sin cos3 4cos 3cos a a a a a a = − = − 13. Công thức hạ bậc: Email: duytrung8x@gmail.com Trang 4/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 2 2 2 3 3 cos 2 1 cos 2 1 cos2 sin 2 1 cos2 1 cos 2 3sin sin 3 sin 4 3cos cos3 cos 4 a a a a a tg a a a a a a a a + = − = − = + − = + = 14. Công thức cộng: sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin a b a b a b a b a b a b a b a b a b a b a b a b + = + − = − + = − − = + Ngoài ra ta cũng có công thức sau với một số điều kiện: ( ) (*) 1 . ( ) (**) 1 . tga tgb tg a b tga tgb tga tgb tg a b tga tgb − − = + + + = − (*) có điều kiện: , , 2 2 2 a k b k a b k π π π π π π ≠ + ≠ + − ≠ + (**) có điều kiện: , , 2 2 2 a k b k a b k π π π π π π ≠ + ≠ + + ≠ + 15. Công thức tính tga, cosa, sina theo 2 a t tg= : 2 2 2 2 2 sin 1 1 cos 1 2 , 1 2 t a t t a t t tga a k t π π = + − = + = ≠ + − Email: duytrung8x@gmail.com Trang 5/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 16. Công thức liên hệ giữa 2 góc bù nhau, phụ nhau, đối nhau và hơn kém nhau 1 góc π hoặc 2 π : 16.1. Hai góc bù nhau: sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga π π π π − = − = − − = − − = − 16.2. Hai góc phụ nhau: sin( ) cos 2 cos( ) sin 2 ( ) 2 ( ) 2 a a a a tg a cotga cotg a tga π π π π − = − = − = − = 16.3. Hai góc đối nhau: sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga − = − − = − = − − = − 16.4 Hai góc hơn kém nhau 2 π : sin( ) cos 2 cos( ) sin 2 ( ) 2 ( ) 2 a a a a tg a tga cotg a cotga π π π π + = + = − + = − + = − 16.5 Hai góc hơn kém nhau π : Email: duytrung8x@gmail.com Trang 6/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc sin( ) sin cos( ) cos ( ) ( ) a a a a tg a tga cotg a cotga π π π π + = − + = − + = + = 16.6. Một số công thức đặc biệt: sin cos 2 sin( ) 4 sin cos 2 sin( ) 4 x x x x x x π π + = + − = − 17. Tổ hợp, hoán vị, chỉnh hợp: 17.1. Hoán vị: + Định nghĩa: Một hoán vị của n phần tử là một bộ gồm n phần tử đó, được sắp xếp theo một thứ tự nhất định, mỗi phần tử có mặt đúng một lần. Số tất cả các hoán vị khác nhau của n phần tử ký hiệu là P n + Công thức : P n =1.2.3 .n = n ! 17.2 Chỉnh hợp: + Định nghĩa: Một chỉnh hợp chập k của n phần tử ( 0 k n≤ ≤ ) là một bộ sắp thứ tự gồm k phần tử lấy ra từ n phần tử đã cho. số tất cả các chỉnh hợp chập k của n phần tử ký hiệu là k n A +Công thức : ( ) 1 0 1 ! ! ( 1) .( 1) ( ) ! 1 ! k n k n k k n n n n n n n n n n n A n k A n n n k A n k A A P n A A A n + − = − = − − + = − = = = = = (qui ước 0! = 1) 17.3 Tổ chợp: + Định nghĩa: Cho một tập hợp a gồm n phần tử (n nguyên dương). Một tổ hợp chập k của n phần tử ( 0 k n≤ ≤ ) là một tập con của a gồm k phần tử. Số tất cả các tổ hợp chập k của n phần tử ký hiệu là k n C + Công thức: Email: duytrung8x@gmail.com Trang 7/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc ! !( )! ( 1) .( 1) ! k n k n n C k n k n n n k C k = − − − + = + Tính chất: 0 0 1 1 1 1 1 . 2 k n k n n n n n n n n n n k k k n n n C C C C C C C C C C − + + + = = = + + + = + = 17.4. Công thức Newton: T k là số hạng thứ k +1 của khai triển nhị thức (a + b) n : k n k k k n T C a b − = 0 1 1 2 2 2 ( ) . . n n n n m n m m n n n n n n n a b C a C a b C a b C a b C b − − − + = + + + + + + 18. Phương pháp tọa độ trong mặt phẳng và không gian: 18.1 Trong mặt phẳng: Cho các vec-tơ 1 1 2 2 ( , ), ( , )a x y b x y r r và các điểm 1 1 2 2 ( , ), ( , )A x y B x y : 1 2 1 2 .a b x x y y = + r r 2 2 1 1 | |a x y= + r 2 2 2 1 2 1 ( ) ( )d AB x x y y = = − + − 1 2 1 2 2 2 2 2 1 1 2 2 cos( , ) x x y y a b x y x y + = + + + r r 1 2 1 2 0a b x x y y ⊥ ⇔ + = r r 18.2 Trong không gian: Cho các vec-tơ 1 1 1 2 2 2 ( , , ), ( , , )a x y z b x y z r r và các điểm 1 1 1 2 2 2 ( , , ), ( , , )A x y z B x y z : 1 2 1 2 1 2 .a b x x y y z z = + + r r 2 2 2 1 1 1 | |a x y z= + + r Email: duytrung8x@gmail.com Trang 8/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc 2 2 2 2 1 2 1 2 1 ( ) ( ) ( )d AB x x y y z z = = − + − + − 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 cos( , ) x x y y z z a b x y z x y z + + = + + + + r r 1 2 1 2 1 2 0a b x x y y z z ⊥ ⇔ + + = r r 19. Đường thẳng trong mặt phẳng và trong không gian: 19.1 Đường thẳng trong mặt phẳng: a. Khoảng cách: + Khoảng cách từ điểm M(x 0 , y 0 ) đến đương thẳng (d) : Ax + By + C = 0 0 0 2 2 | Ax |By C MH A B + + = + + Khoảng cách giữa hai đường thẳng song song: Ax + By + C 1 = 0 và Ax + By + C 2 = 0 1 2 2 2 | |C C A B − + b. Vị trí tương đối 2 đường thẳng: (d 1 ) : A 1 x + B 1 y + C 1 = 0 (d 2 ) : A 2 x + B 2 y + C 2 = 0 1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 2 1 2 1 2 *( ) ( ) *( ) / /( ) *( ) ( ) *( ) ( ) A B d d A B A B C d d A B C A B C d d A B C d d A A B B φ ∩ ≠ ⇔ ≠ ⇔ = ≠ ≡ ⇔ = = ⊥ ⇔ + c. Góc giữa 2 đường thẳng: (d 1 ) : A 1 x + B 1 y + C 1 = 0 (d 2 ) : A 2 x + B 2 y + C 2 = 0 1 2 ( , )d d α = 1 2 1 2 2 2 2 2 1 1 2 2 | | cos A A B B A B A B α + = + + Email: duytrung8x@gmail.com Trang 9/18 Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc d. Phương trình đường phân giác của góc tạo bởi 2 đường thẳng (d 1 )và (d 2 ): 1 1 1 2 2 2 2 2 2 2 1 1 2 2 A x B y C A x B y C A B A B + + + + = ± + + (góc nhọn lấy dấu – , góc tù lấy dấu + ) e. Phương trình chùm đường thẳng có tâm là giao của 2 đường thẳng (d 1 )và (d 2 ): 1 1 1 2 2 2 ( ) ( ) 0A x B y C A x B y C α β + + + + + = với 2 2 0 α β + > 19.2 Đường thẳng trong không gian: Góc giữa 2 đường thẳng: (d 1 ) có vector chỉ phương 1 1 1 ( , , )u a b c= r (d 2 ) có vector chỉ phương 2 2 2 ( , , )v a b c= r α là góc giữa (d 1 ) và (d 2 ) 1 2 1 2 1 2 2 2 2 2 2 2 1 1 1 2 2 2 | | cos a a b b c c a b c a b c α + + = + + + + 1 2 1 2 1 2 1 2 ( ) ( ) 0d d a a b b c c⊥ ⇔ + + = 20. Mặt phẳng: a. Khoảng cách từ điểm M(x 0 , y 0 ) đến mặt phẳng (P): Ax + By + Cz + D = 0 là: 0 0 0 2 2 2 | |Ax By Cz D MH A B C + + + = + + b. Chùm mặt phẳng đi qua giao tuyến của 2 mặt phẳng: 1 1 1 1 2 2 2 2 ( ) : 0 ( ) : 0 P A x B y C z D Q A x B y C z D + + + = + + + = là phương trình mặt phẳng có dạng: 1 1 1 1 2 2 2 2 ( ) ( ) 0A x B y C z D A x B y C z D α β + + + + + + + = 21.Cấp số cộng: + Định nghĩa: Cấp số cộngmột dãy số trong đó, kể từ số hạng thứ hai đều là tổng của số hạng đứng ngay trước nó với một số không đổi khác 0 gọi là công sai. 1 *, n n n N U U d + ∀ ∈ = + + Tính chất của cấp số cộng : 1 2 1n n n n U U U U + + + − = − Email: duytrung8x@gmail.com Trang 10/18 . Ôn tập Toán THPT http://www.thiendangtinhyeu.uni.cc MỘT SỐ CÔNG THỨC TOÁN HỌC LỚP 10 & 11 1. Các tính chất cơ bản của bất đẳng thức: 1.1. Tính. = 21.Cấp số cộng: + Định nghĩa: Cấp số cộng là một dãy số trong đó, kể từ số hạng thứ hai đều là tổng của số hạng đứng ngay trước nó với một số không đổi
- Xem thêm -

Xem thêm: Một số công thức toán học lớp 10&11 , Một số công thức toán học lớp 10&11

Gợi ý tài liệu liên quan cho bạn