Solution manual engineering economic analysis 9th edition ch03

6 29 0
  • Loading ...
1/6 trang

Thông tin tài liệu

Ngày đăng: 13/09/2018, 10:27

Chapter 3: Interest and Equivalence 3-1 Time value of money means ‘money has value over time.’ Money has value, of course, because of what it can purchase However, the time value of money means that ownership of money is valuable, and it is valuable because of the interest dollars that can be earned/gained due to its ownership Understanding interest and its impact is important in many life circumstances Examples could include some of the following:      Selecting the best loans for homes, boats, jewellery, cars, etc Many aspects involved with businesses ownership (payroll, taxes, etc.) Using the best strategies for paying off personal loans, credit cards, debt Making investments for life goals (purchases, retirement, college, weddings, etc.) Etc 3-2 It is entirely possible that different decision makers will make a different choice in this situation The reason this is possible (that there is not a RIGHT answer) is that Magdalen, Miriam, and Mary all could be using a different discounting rate (interest rate or investment rate) as they consider the choice of $500 today versus $1,000 three years from today We find the interest rate at which the two cash flows are equivalent by: P=$500, F=$1000, n=3 years, i=unknown So, F = P(1+i%)^n and, i% = {(F/P) ^ (1/n)} –1 Thus, i% = {(1000/500)^(1/3)}-1 = 26% In terms of an explanation, Magdalen wants the $500 today because she knows that she can invest it at a rate above 26% and thus have more than $1000 three years from today Miriam, on the other hand could know that she does not have any investment options that would come close to earning 26% and thus would be happy to pass up on the $500 today to accept the $1000 three years from today Mary, on the other hand, could be indifferent because she has another investment option that earns exactly 26%, the same rate the $500 would grow at if not accepted now Thus, as a decision maker she would be indifferent Another aspect that may explain Magdalen’s choice might have nothing to with interest rates at all Perhaps she simply needs $500 right now to make a purchase or pay off a debt Or, perhaps she is a pessimist and isn’t convinced the $1000 will be there in three years (a bird in hand idea) 3-3 $2,000 + $2,000 (0.10 x 3) = $2,600 3-4 ($5,350 - $5,000) /(0.08 x $5,000) = $350/$400 = 0.875 years= 10.5 months 3-5 $200 Q Q = $200 (P/F, 10%, 4) = $200 (0.683) = $136.60 3-6 P = $1,400 (P/A, 10%, 5) - $80 (P/G, 10%, 5) = $1,400 (3.791) - $80 (6.862) = $4,758.44 Using single payment factors: P = $1400 (P/F, 10%, 1) + $1,320 (P/F, 10%, 2) + $1,240 (P/F, 10%, 3) + (P/F, 10%, 4) + $1,080 (P/F, 10%, 5) = $1,272.74 + $1,090.85 + $931.61 + $792.28 + $670.57 = $4,758.05 3-7 P=$750, n =3 years, i =8%, F =? F = P (1+ i)n = $750 (1.08)3 = $945 = $750 (1.260) Using interest tables: F = $750 (F/P, 8%, 3) = $945 = $750 (1.360) $1,160 3-8 F =$8,250, n = semi-annual periods, i =4%, P =? P = F (1+i)-n = $7,052.10 = $8,250 (1.04)-4 = $8,250 (0.8548) Using interest tables: P = F (P/F, 4%, 4) = $7,052.10 = $8,250 (0.8548) 3-9 Local Bank F = $3,000 (F/P, 5%, 2) = $3,000 (1.102) = $3,306 Out of Town Bank F = $3,000 (F/P, 1.25%, 8) = $3,000 (1.104) = $3,312 Additional Interest = $6 3-10 P = $1 n = unknown number of semiannual periods F = P (1 + i)n = (1.02)n = 1.02n n = log (2) / log (1.02) = 35 i = 2% Therefore, the money will double in 17.5 years 3-11 Lump Sum Payment = $350 (F/P, 1.5%, 8) = $350 (1.126) = $394.10 Alternate Payment = $350 (F/P, 10%, 1) = $350 (1.100) = $385.00 Choose the alternate payment plan F=2 3-12 Repayment at ½% = $1 billion (F/P, ½%, 30) = $1 billion (3.745) = $3.745 billion = $1 billion (1 + 0.0525)30 = $4.62 billion Repayment at ¼% Saving to foreign country = $897 million 3-13 Calculator Solution 1% per month F 12% per year = $1,000 (1 + 0.01)12 = $1,126.83 F = $1,000 (1 + 0.12)1 Savings in interest = $1,120.00 = $6.83 Compound interest table solution 1% per month F = $1,000 (1.127) = $1,127.00 12% per year F = $1,000 (1.120) = $1,120.00 Savings in interest = $7.00 3-14 Q6 Q10 i = 5% P = $60 Either: Q10 Q10 = Q6 (F/P, 5%, 4) = P (F/P, 5%, 10) (1) (2) Since P is between and Q6 is not, solve Equation (2), Q10 = $60 (1.629) = $97.74 3-15 P = $600 F = $29,152,000 n = 92 years F = P (1 + i)n $29,152,000/$600 = (1 + i)92 (1 + i) i* = ($48,587)(1/92) = $45,587 = $48,587 = 0.124 = 12.4% 3-16 (a) Interest Rates (i) Interest rate for the past year = ($100 - $90)/$90 = $10/$90 = 0.111 or 11.1% (ii) Interest rate for the next year = ($110 - $100)/$100 = 0.10 or 10% (b) $90 (F/P, i%, 2) = $110 (F/P, i%, 2) = $110/$90= 1.222 So, (1 + i)2 = 1.222 i = 1.1054 – = 0.1054 = 10.54% 3-17 n = 63 years i = 7.9% F = $175,000 P = F (1 + i)-n = $175,000 (1.079)-63 = $1,454 3-18 F = P (1 + i)n Solve for P: P = F/(1 + i)n P = F (1 + i)-n P = $150,000 (1 + 0.10)-5 = $150,000 (0.6209) = $93,135 3-19 The garbage company sends out bills only six times a year Each time they collect one month’s bills one month early 100,000 customers x $6.00 x 1% per month x times/yr = $36,000 3-20 Year Cash Flow -$2,000 -$4,000 -$3,625 -$3,250 -$2,875 ... 3-13 Calculator Solution 1% per month F 12% per year = $1,000 (1 + 0.01)12 = $1,126.83 F = $1,000 (1 + 0.12)1 Savings in interest = $1,120.00 = $6.83 Compound interest table solution 1% per month
- Xem thêm -

Xem thêm: Solution manual engineering economic analysis 9th edition ch03 , Solution manual engineering economic analysis 9th edition ch03

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay