Progress in brain research, volume 221

386 265 0
Progress in brain research, volume 221

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Serial Editor Vincent Walsh Institute of Cognitive Neuroscience University College London 17 Queen Square London WC1N 3AR UK Editorial Board Mark Bear, Cambridge, USA Medicine & Translational Neuroscience Hamed Ekhtiari, Tehran, Iran Addiction Hajime Hirase, Wako, Japan Neuronal Microcircuitry Freda Miller, Toronto, Canada Developmental Neurobiology Shane O’Mara, Dublin, Ireland Systems Neuroscience Susan Rossell, Swinburne, Australia Clinical Psychology & Neuropsychiatry Nathalie Rouach, Paris, France Neuroglia Barbara Sahakian, Cambridge, UK Cognition & Neuroethics Bettina Studer, Dusseldorf, Germany Neurorehabilitation Xiao-Jing Wang, New York, USA Computational Neuroscience Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK 225 Wyman Street, Waltham, MA 02451, USA First edition 2015 Copyright # 2015 Elsevier B.V All rights reserved No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein) Notices Knowledge and best practice in this field are constantly changing As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein ISBN: 978-0-12-804608-1 ISSN: 0079-6123 For information on all Elsevier publications visit our website at http://store.elsevier.com/ Contributors Luca Agnifili Department of Medicine and Aging Science, Ophthalmology Clinic, University G d’Annunzio of Chieti-Pescara, Chieti, Italy Francesco Aiello Moorfields Eye Hospital, NHS Foundation Trust, London, UK, and Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Simone Altobelli Diagnostic Imaging Section, Tor Vergata University Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy Marcus Ang Singapore Eye Research Institute, and Singapore National Eye Centre, Singapore, Singapore Giacinto Bagetta Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, and University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy Keith Barton Glaucoma Service, Moorfields Eye Hospital; Department of Ophthalmology, National University Health System, Singapore, Singapore; National Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital, and Department of Epidemiology and Genetics, Institute of Ophthalmology, University College, London, UK Francesca Bertuzzi Ophthalmology Department, Policlinico di Monza Hospital, University of MilanoBicocca, Monza, Italy Davide Berzaghi Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy Dana Blumberg Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA Lorenza Brescia Department of Medicine and Aging Science, Ophthalmology Clinic, University G d’Annunzio of Chieti-Pescara, Chieti, Italy Giamberto Casini Ophthalmology Unit, University of Pisa, Pisa, Italy v vi Contributors Massimo Cesareo Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Balwantray C Chauhan Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada Francesca Chemello Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy Marco Ciancaglini Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L’Aquila, L’Aquila, Italy Elena Ciuffoletti Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Maria Tiziana Corasaniti Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, Italy Angela Di Gregorio Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L’Aquila, L’Aquila, Italy Silvio Di Staso Ophthalmic Clinic Department of Surgical Science, Eye Clinic, University of L’Aquila, L’Aquila, Italy Vincenzo Fasanella Department of Medicine and Aging Science, Ophthalmology Clinic, University G d’Annunzio of Chieti-Pescara, Chieti, Italy Michele Figus Ophthalmology Unit, University of Pisa, Pisa, Italy Roberto Floris Diagnostic Imaging Section, Tor Vergata University Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy Michela Fresina Department of Specialist, Diagnostics and Experimental Medicine (DIMES), Ophthalmology Service, University of Bologna, Bologna, Italy Francesco Garaci Diagnostic Imaging Section, Tor Vergata University Hospital, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy Julian Garcia-Feijoo Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Contributors Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Sofia Garcia-Saenz Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Mario Alberto Giuliano Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Gianluca Guidi Ophthalmology Unit, University of Pisa, Pisa, Italy Jost B Jonas Department of Ophthalmology, Medical Faculty Mannheim of the RuprechtKarls-University, Heidelberg, Germany, and Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China Andreas Katsanos Ophthalmology Department, University of Ioannina, Ioannina, Greece Peng T Khaw National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK Fang Ko National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK Anastasios G.P Konstas 1st University Department of Ophthalmology; 3rd University Department of Ophthalmology, Aristotle University, and Ophthalmica Institute, Thessaloniki, Greece Jeffrey M Liebmann Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S Harkness Eye Institute, Columbia University Medical Center, New York, NY, USA Raffaele Mancino Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Giorgio Marchini Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy vii viii Contributors Jose Marı´a Martinez-de-la-Casa Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Alessio Martucci Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Alessandra Mastropasqua Department of Medicine and Aging Science, Ophthalmology Clinic, University G d’Annunzio of Chieti-Pescara, Chieti, Italy Leonardo Mastropasqua Department of Medicine and Aging Science, Ophthalmology Clinic, University G d’Annunzio of Chieti-Pescara, Chieti, Italy Rodolfo Mastropasqua Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy Vincenzo Maurino Moorfields Eye Hospital, NHS Foundation Trust, London, UK Felipe A Medeiros Hamilton Glaucoma Center, Shiley Eye Center, and Department of Ophthalmology, University of California, San Diego, CA, USA Carmen Mendez-Hernandez Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Stefano Miglior Ophthalmology Department, Policlinico di Monza Hospital, University of MilanoBicocca, Monza, Italy Dimitrios G Mikropoulos 3rd University Department of Ophthalmology, Aristotle University, and Ophthalmica Institute, Thessaloniki, Greece Filippo Missiroli Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Lieve Moons Research Group of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium Contributors Laura Morales-Fernandez Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Luigi Antonio Morrone Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, and University Consortium for Adaptive Disorders and Head Pain (UCHAD), Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy Marco Nardi Ophthalmology Unit, University of Pisa, Pisa, Italy Carlo Nucci Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Songhomitra Panda-Jonas Department of Ophthalmology, Medical Faculty Mannheim of the RuprechtKarls-University, Heidelberg, Germany Maria Papadopoulos National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK Damiana Pieragostino Department of Medical, Oral and Biotechnological Sciences, and Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I.), University G d’Annunzio of Chieti-Pescara, Chieti, Italy Luciano Quaranta Centre for the Study of Glaucoma, University of Brescia, Brescia, Italy Federico Ricci Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy Robert Ritch Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mt Sinai, New York, NY, USA Rossella Russo Department of Pharmacy and Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, Arcavacata di Rende, Italy ix x Contributors Paolo Sacchetta Department of Medical, Oral and Biotechnological Sciences, and Analytical Biochemistry and Proteomics Unit, Research Centre on Aging (Ce.S.I.), University G d’Annunzio of Chieti-Pescara, Chieti, Italy Federico Saenz Frances Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Enrique Santos-Bueso Servicio de Oftalmologı´a, Hospital Clı´nico San Carlos, Departamento de Oftalmologı´a y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Instituto de Investigacio´n Sanitaria del Hospital Clı´nico San Carlos (IdISSC), and Cooperative Research Network on Age-Related Ocular Pathology, Visual and Life Quality, Instituto de Salud Carlos III, Madrid, Spain Orazio Schillaci Diagnostic Imaging Section, Department of Biomedicine and Prevention, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy Alon Skaat Goldschleger Eye Institute, Sheba Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel Chelvin C.A Sng Glaucoma Service, Moorfields Eye Hospital, London, UK; Department of Ophthalmology, National University Health System, and Singapore Eye Research Institute, Singapore, Singapore Ingeborg Stalmans Department of Neurosciences, Laboratory of Ophthalmology, KU Leuven, and Department of Ophthalmology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium Andrew J Tatham Princess Alexandra Eye Pavilion, and Department of Ophthalmology, University of Edinburgh, Edinburgh, Scotland, UK Miguel A Teus Universidad de Alcala´, Alcala´ de Henares, Madrid, Spain Nicola Toschi Diagnostic Imaging Section, Department of Biomedicine and Prevention, Tor Vergata University Hospital, University of Rome Tor Vergata, Rome, Italy Gian Marco Tosi Ophthalmology Section, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy Contributors Paris G Tranos Ophthalmica Institute, Thessaloniki, Greece Tine Van Bergen Department of Neurosciences, Laboratory of Ophthalmology, KU Leuven, Leuven, Belgium Sarah Van de Velde Department of Neurosciences, Laboratory of Ophthalmology, KU Leuven, Leuven, Belgium Evelien Vandewalle Department of Neurosciences, Laboratory of Ophthalmology, KU Leuven, and Department of Ophthalmology, University Hospitals Leuven (UZ Leuven), Leuven, Belgium Jayme R Vianna Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, NS, Canada Robert N Weinreb Hamilton Glaucoma Center, Shiley Eye Center, and Department of Ophthalmology, University of California, San Diego, CA, USA Andrea Zampieri Ophthalmology Unit Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, Italy Linda M Zangwill Hamilton Glaucoma Center, Shiley Eye Center, and Department of Ophthalmology, University of California, San Diego, CA, USA xi Preface: New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual System Part B Glaucoma is a degenerative disease of the visual system characterized by death of retinal ganglion cells and of their axons that form the optic nerve This chronic disease is clinically associated with specific defects of the visual field progressively leading to blindness Unfortunately, glaucoma still remains one of the major causes of irreversible blindness worldwide High intraocular pressure (IOP) is the principal risk factor associated with onset and progression of the disease, and therefore, current available treatments are based on the reduction of IOP through medical, laser, or surgical strategies Several clinical trials have demonstrated that neuronal damage progresses in a high percentage of patients with glaucoma, even though their IOP has been significantly reduced These data confirm that other important factors contribute to the development and progression of the disease and that new therapeutic strategies should be found to prevent the disease onset and progression In the recent years, much studies have provided new insights into fundamental clinical aspects of glaucoma, and in this volume leaders in the field have presented their innovative data Topics include emerging risk factors for glaucoma onset and progression, criteria for the early diagnosis, and the assessment of disease progression based on the use of advanced technologies A section of the volumes is dedicated to the pathophysiology, diagnosis, and treatment of specific form of glaucoma including pediatric, normal tension, angle-closure, uveitic, and corneal surgery-induced Particularly interesting are the data presented on the involvement of the central area of the visual system in glaucoma and the evidence documenting links between glaucoma and vascular and neurodegenerative disease of the central nervous system, thus supporting the hypothesis that glaucoma may be influenced or may share common pathogenic mechanisms with diseases of the CNS This hypothesis is further supported by the observation that the cerebrospinal fluid pressure may play a role in the pathogenesis of glaucoma Topics also include studies on innovative therapeutic strategies from the evaluation of 24-h efficacy of topical medication to the improvement of surgical techniques Finally, a chapter discusses the impact of glaucoma disability on the patient’s quality of life We would like to acknowledge the outstanding contribution of all the authors to the success of this volume of Progress in Brain Research dedicated to glaucoma and xxiii 372 CHAPTER 18 Glaucoma and disability McKean-Cowdin, R., Wang, Y., Wu, J., Azen, S.P., Varma, R., Los Angeles Latino Eye Study Group, 2008 Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study Ophthalmology 115 (6), 941–948 Medeiros, F.A., Gracitelli, C.P., Boer, E.R., Weinreb, R.N., Zangwill, L.M., Rosen, P.N., 2015 Longitudinal changes in quality of life and rates of progressive visual field loss in glaucoma patients Ophthalmology 122 (2), 293–301 Mills, R.P., Drance, S.M., 1986 Esterman disability rating in severe glaucoma Ophthalmology 93, 371–378 Mills, R.P., Janz, N.K., Wren, P.A., Guire, K.E., 2001 Correlation of visual field with qualityof-life measures at diagnosis in the Collaborative Initial Glaucoma Treatment Study (CIGTS) J Glaucoma 10, 192–198 Murata, H., Hirasawa, H., Aoyama, Y., Sugisaki, K., Araie, M., Mayama, C., Aihara, M., Asaoka, R., 2013 Identifying areas of the visual field important for quality of life in patients with glaucoma PLoS One (3), e58695 Nelson, P., Aspinall, P., O’Brien,, C., 1999 Patients’ perception of visual impairment in glaucoma: a pilot study Br J Ophthalmol 83, 546–552 Nguyen, A.M., Van Landingham, S.W., Massof, R.W., Rubin, G.S., Ramulu, P.Y., 2014 Reading ability and reading engagement in older adults with glaucoma Invest Ophthalmol Vis Sci 55 (8), 5284–5290 Noe, G., Ferraro, J., Lamoureux, E., Rait, J., Keeffe, J.E., 2003 Associations between glaucomatous visual field loss and participation in activities of daily living Clin Exp Ophthalmol 31, 482–486 Nucci, C., Martucci, A., Cesareo, M., Mancino, R., Russo, R., Bagetta, G., Cerulli, L., Garaci, F.G., 2013 Brain involvement in glaucoma: advanced neuroimaging for understanding and monitoring a new target for therapy Curr Opin Pharmacol 13, 128–133 Owsley, C., McGwin Jr., G., Lee, P.P., Wasserman, N., Searcey, K., 2009 Characteristics of low-vision rehabilitation services in the United States Arch Ophthalmol 127, 681 Parrish, R.K., Gedde, S.J., Scott, I.U., Feuer, W.J., Schiffman, J.C., Mangione, C.M., Montenegro-Piniella, A., 1997 Visual function and quality of life among patients with glaucoma Arch Ophthalmol 115, 1447–1455 Patino, C.M., McKean-Cowdin, R., Azen, S.P., Allison, J.C., Choudhury, F., Varma, R., Los Angeles Latino Eye Study Group, 2010 Central and peripheral visual impairment and the risk of falls and falls with injury Ophthalmology 117 (2), 199–206 Qiu, M., Wang, S.Y., Singh, K., Lin, S.C., 2014 Association between visual field defects and quality of life in the United States Ophthalmology 121 (3), 733–740 Quigley, H.A., Broman, A.T., 2006 The number of people with glaucoma worldwide in 2010 and 2020 Br J Ophthalmol 90, 262–267 Ramrattan, R.S., Wolfs, R.C., Panda-Jonas, S., Jonas, J.B., Bakker, D., Pols, H.A., Hofman, A., de Jong, P.T., 2001 Prevalence and causes of visual field loss in the elderly and associations with impairment in daily functioning: the Rotterdam Study Arch Ophthalmol 119, 1788–1794 Ramulu, P., 2009 Glaucoma and disability: which tasks are affected, and at what stage of disease? Curr Opin Ophthalmol 20 (2), 92–98 Ramulu, P.Y., West, S.K., Munoz, B., Jampel, H.D., Friedman, D.S., 2009a Glaucoma and reading speed: the Salisbury Eye Evaluation Project Arch Ophthalmol 127 (1), 82–87 Ramulu, P.Y., West, S.K., Munoz, B., Jampel, H.D., Friedman, D.S., 2009b Driving cessation and driving limitation in glaucoma: the Salisbury Eye Evaluation Project Ophthalmology 116 (10), 1846–1853 References Ramulu, P.Y., Swenor, B.K., Jefferys, J.L., Friedman, D.S., Rubin, G.S., 2013 Difficulty with out-loud and silent reading in glaucoma Invest Ophthalmol Vis Sci 54, 666–672 Richman, J., Lorenzana, L.L., Lankaranian, D., Dugar, J., Mayer, J., Wizov, S.S., Spaeth, G.L., 2010 Importance of visual acuity and contrast sensitivity in patients with glaucoma Arch Ophthalmol 128, 1576–1582 Ross, J.E., Bron, A.J., Clarke, D.D., 1984 Contrast sensitivity and visual disability in chronic simple glaucoma Br J Ophthalmol 68, 821–827 Sabel, B.A., Gudlin, J., 2014 Vision restoration training for glaucoma: a randomized clinical trial JAMA Ophthalmol 132 (4), 381–389 Scuderi, G.L., Cesareo, M., Perdicchi, A., Recupero, S.M., 2008 Standard automated perimetry and algorithms for monitoring glaucoma progression Prog Brain Res 173, 77–99 Severn, P., Fraser, S., Finch, T., May, C., 2008 Which quality of life score is best for glaucoma patients and why? BMC Ophthalmol 8, Sherwood, M.B., Garcia-Siekavizza, A., Meltzer, M.I., Hebert, A., Burns, A.F., McGorray, S., 1998 Glaucoma’s impact on quality of life and its relation to clinical indicators: a Pilot Study Ophthalmology 105, 561–566 Skalicky, S., Goldberg, I., 2008 Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the Geriatric Depression Scale-15, assessment of function related to vision, and the Glaucoma Quality of Life-15 J Glaucoma 17 (7), 546–551 Smith, N.D., Glen, F.C., M€onter, V.M., Crabb, D.P., 2014 Using eye tracking to assess reading performance in patients with glaucoma: a within-person study J Ophthalmol 2014, 1205–1228 Spaeth, G., Walt, J., Keener, J., 2006 Evaluation of quality of life for patients with glaucoma Am J Ophthalmol 141, S3–S14 Stelmack, J.A., Szlyk, J.P., Stelmack, T.R., Demers-Turco, P., Williams, R.T., Moran, D., Massof, R.W., 2006 Measuring outcomes of vision rehabilitation with the Veterans Affairs Low Vision Visual Functioning Questionnaire Invest Ophthalmol Vis Sci 47 (8), 3253–3261 Sumi, I., Shirato, S., Matsumoto, S., Araie, M., 2003 The relationship between visual disability and visual field in patients with glaucoma Ophthalmology 110, 332–339 Tham, Y.C., Li, X., Wong, T.Y., Quigley, H.A., Aung, T., Cheng, C.Y., 2014 Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis Ophthalmology 121, 2081–2090 The Advanced Glaucoma Intervention Study Investigators, 1994 Advanced glaucoma intervention study Visual field test scoring and reliability Ophthalmology 101, 1445–1455 Varma, R., Lee, P.P., Goldberg, I., Kotak, S., 2011 An assessment of the health and economic burdens of glaucoma Am J Ophthalmol 152 (4), 515–522 Verboschi, F., Domanico, D., Nebbioso, M., Corradetti, G., Zaccaria Scalinci, S., Vingolo, E.M., 2013 New trends in visual rehabilitation with MP-1 microperimeter biofeedback: optic neural dysfunction Funct Neurol 28 (4), 285–291 Viswanathan, A.C., McNaught, A.I., Poinoosawmy, D., Fontana, L., Crabb, D.P., Fitzke, F.W., Hitchings, R.A., 1999 Severity and stability of glaucoma: patient perception compared with objective measurement Arch Ophthalmol 117, 450–454 Ware Jr., J.E., Sherbourne, C.D., 1992 The MOS 36-item short-form health survey (SF-36) Med Care 30, 473–483 Warrian, K.J., Spaeth, G.L., Lankaranian, D., Lopes, J.F., Steinmann, W.C., 2009 The effect of personality on measures of quality of life related to vision in glaucoma patients Br J Ophthalmol 93 (3), 310–315 373 374 CHAPTER 18 Glaucoma and disability Warrian, K.J., Lorenzana, L.L., Lankaranian, D., Dugar, J., Wizov, S.S., Spaeth, G.L., 2010 The assessment of disability related to vision performance-based measure in diabetic retinopathy Am J Ophthalmol 149, 852–860 Weinreb, R.N., Khaw, P.T., 2004 Primary open-angle glaucoma Lancet 363 (9422), 1711–1720 West, S.K., Rubin, G.S., Broman, A.T., Mun˜oz, B., Bandeen-Roche, K., Turano, K., 2002 How does visual impairment affect performance on tasks of everyday life? The SEE Project Salisbury Eye Evaluation Arch Ophthalmol 120, 774–780 Wilensky, J.T., Hawkins, A., 2001 Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma Trans Am Ophthalmol Soc 99, 213–218 Wolffsohn, J.S., Cochrane, A.L., 2000 Design of the low vision quality-of-life questionnaire (LVQoL) and measuring the outcome of low-vision rehabilitation Am J Ophthalmol 130, 793802 Yuăcel, Y.H., Gupta, N., 2008 Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration Prog Brain Res 173, 465–478 Index Note: Page numbers followed by f indicate figures and t indicate tables A Ab externo procedure, 343–344 anterior filtering procedures, 344–346 diverting aqueous humor in suprachoroidal space, 351–352 natural pathway, restoring, 348–349 posterior filtering procedures, 346–347 Ab interno procedure, 343–344 diverting aqueous humor in suprachoroidal space, 352 filtering procedure, 347 natural pathway, restoring, 349–351 Acquired pits of the nerve head (APONS), 35 Activin receptor-like kinase inhibitor, for wound healing, 328 Acute angle closure, 197 Adenosine triphosphate-binding cassette (ABC), 12 Age-related macular degeneration (ARMD), 361 Aging, and glaucoma progression, 137, 144, 147–149 Alpha-adrenergic agonists, and normal-tension glaucoma, 221–222 Alpha-1 antitrypsin (SERPINA)-1, 11 Alpha-zone parapapillary atrophy, 89–90 Alzheimer disease (AD), 59f, 52–55 See also Dementia Amniotic membrane transplantation (AMT), 331 Amplitude of low frequency fluctuations (ALFF), in BOLD signal, 167–169 Amyloid-b, 52–55 Amyloid precursor protein (APP), 52–55 Angiopoietin-like (ANGPTL) protein, 18 Angiotensin-converting enzyme (ACE) inhibitors, 223 Angle-closure glaucoma (ACG), 191 choroidal effusion and, 206 ciliary body rotation and, 206 classification of, 196–198 epidemiology of, 192 incidence of, 192 lens-induced, 205 malignant, 205–206, 205f management of, 199–203 medical treatment for, 199–200 ocular risk factors of, 192–194 ophthalmic examination, 198–199 pathophysiology of, 194–196, 195f plateau iris and, 194, 195f, 199–201, 204–205 prevalence of, 192 primary (see Primary angle-closure glaucoma (PACG)) secondary, 192 Angle closure, in uveitic glaucoma, 247–249 cataract and, 249 iris–lens diaphragm, anterior displacement of, 248–249 pupil block, 247–248, 247f synechial angle closure, 248 zonular dehiscence and, 249 Anterior chamber angle imaging, 198–199 Anterior chamber paracentesis, 204 Anterior segment imaging, 198–199 Anterior segment optical coherence tomography (AS-OCT), 193–194, 198–200, 204, 248, 255f, 283–285 Antimicrobial Medications, for uveitic glaucoma, 254 Antiphosphatidylserine, 10 Antitumor agents, taxoid class of, 327 APOA1, 11 Apparent diffusion coefficient (ADC), 163–164 Aqueous humor (AH) biomarkers, 2–3, 6–7, 16–20 hydrodynamics, 216 trans-scleral percolation, 216 Aqueous production procedures, reducing, 352–354 Argon laser peripheral iridoplasty (ALPI), 200–201, 205, 256 Arterial spin labeling (ASL) imaging, 167–169 ATOH7, 15 Atrophy, corpus callosum, 58 Autoimmunity markers, 9–12 and normal-tension glaucoma, 217–218 Aymmetric dimethylarginine (ADMA), 13–14 B Bayes linear regression model, 142 Beijing Eye Study, 40 Best-corrected visual acuity (BCVA), 360–361 Beta-blockers, and normal-tension glaucoma, 221 375 376 Index Beta-zone parapapillary atrophy, 89–90 Bevacizumab, 328–330 Biomarker(s) definition of, 2–3 identification, proteomics technologies for, 4–5, 5f Biomicroscopy, ultrasound See Ultrasound biomicroscopy (UBM) Blood pressure (BP), and glaucoma, 91–92 Blue Mountains Eye Study, 365 Blue-on-yellow perimetry See Short-wavelength automated perimetry (SWAP) Boston keratoprosthesis, 283–284 Brain-derived neurotrophic factor (BDNF), 12–13 Brimonidine tartrate for intraocular pressure, 253–254 for normal-tension glaucoma, 221–222 Bruch’s membrane opening-minimum rim width (BMO-MRW), 115, 124 C Calcium channel blockers, normal-tension glaucoma, 223 Canaloplasty, 348 Carbonic anhydrase inhibitors, and normal-tension glaucoma, 221 Caspase-14, 17 Caspase (Cas 3) protease, 12–13 Cataract surgery, for pseudoexfoliation syndrome, 238–239 and uveitic glaucoma, 249 CAT-152, for wound healing, 327–328 CAV1 (caveolin 1), 15 CAV2 (caveolin 2), 15 CDKN2B, 15 CDKN2B-AS1, 15 Central corneal thickness (CCT), 83–84, 87, 89 Central India Eye and Medical Study, 40 Cerebral infarcts, 58 Cerebrospinal fluid (CSF) biomarkers, 21 space, retrobulbar, 34–36 Cerebrospinal fluid pressure (CSFP), 55, 92–93 and choroidal vein pressure, 43 and glaucomatous optic neuropathy, 39–41 and intraocular pressure, relationship between, 37–39 limitations of, 41–42 methods for determining, 42 and retinal vein pressure, 43 Cerebrovascular diseases, 58–59, 59f Choroidal effusion, 206 and uveitic glaucoma, 249 Choroidal thickness (CT), in angle-closure glaucoma, 193–194 Choroidal vein pressure, CSFP and, 43 Chronic angle closure, 197–198 Ciliary body detachment, and uveitic glaucoma, 249 Ciliary body rotation, 206 Collaborative Initial Glaucoma Treatment Study (CIGTS), 50, 364 Collaborative Normal-Tension Glaucoma Study (CNTGS), 84, 89 Combined structure–function index (CSFI), 123 Complement C3, 11 Complement factor H, 11 Confocal scanning laser ophthalmoscopy (CSLO), 104–105, 110, 114–115, 118–119, 164–165 Confocal scanning laser tomography, 144–147 Congenital hereditary endothelial dystrophy (CHED), 181 Connective tissue growth factor (CTGF), 328 Contrast sensitivity (CS), 363–364 Corneal hysteresis (CH), 74–75, 87–88 Corneal resistance factor, 71, 74–75 Corneal surgery, advanced, glaucoma risks in deep anterior lamellar keratoplasty, 276t, 278–279 Descemet membrane endothelial keratoplasty, 281–282 Descemet stripping-automated endothelial keratoplasty, 279–281, 280f keratoprosthesis, 283–285 laser-assisted in situ keratomileusis, 285–286 penetrating keratoplasty, 276t, 277–278 post-corneal graft glaucoma treatment, 282–283 Urrets-Zavalia syndrome, 286–287, 286f Corneal thickness and intraocular pressure, 67–76 Corpus callosum atrophy, 58 Corticoseteroids and uveitic open-angle glaucoma, 246–247, 253 Cycloablation, for uveitic glaucoma, 258–259 Cyclodestruction, 203 CyPass, 352, 353f CYP1B1, 178–179 Cystinosis, 181 Cytokines, 320–321 for wound healing, 330–331 Cytoskeletal regulators, for wound healing, 324–327, 325t D Daily living activities, 363, 365 Decorin, for wound healing, 328 Deep anterior lamellar keratoplasty (DALK), 272, 274–275, 275t Index Descemetic, 278 glaucoma risks in, 276t, 278–279 pre-Descemetic, 278 Deep lamellar endothelial keratoplasty (DLEK), 272 Dementia Alzheimer, 52–55, 59f vascular, 53 Dementia of the Alzheimer’s type (DAT), 52 Descemet membrane endothelial keratoplasty (DMEK), 272, 275–276 glaucoma risks in, 281–282 Descemet stripping-automated endothelial keratoplasty (DSAEK), 272, 275–276 glaucoma risks in, 279–281, 280f Diagnostic Innovations in Glaucoma Study (DIGS), 85–86 Diaton tonometer, 75 Diffusion tensor imaging (DTI), 163–166, 164f Digital Goldmann applanation tonometry, 73–74, 73f Disabilities, in glaucoma, 364–368 Disc hemorrhage (DH), 88–89 Drainage implant, for glaucoma, 202 Dynamic contour tonometer (DCT), 69–70 E Early Manifest Glaucoma Trial (EMGT), 83, 85–86, 88, 94, 137–138, 139f ELISA test, 10–11, 54 Endoscopic cyclophotocoagulation (ECP), 352–353 Endothelial keratoplasty (EK), 272, 275t deep lamellar, 272 Descemet membrane, 272 Descemet stripping-automated, 272 glaucoma risks in, 276t Endothelial leukocyte adhesion molecule (ELAM1), 17–18 Endothelin-1 (ET-1), 6–7, 13, 18–19, 215–216, 219 Enhanced depth imaging optical coherence tomography (EDI OCT), 91–92 g-Enolase, 10 Epithelial laser in situ keratomileusis (EPiLASIK), 285 Erythropoietin (EPO), 19 Esterman VF score, 361–362, 366 European Glaucoma Prevention Study (EGPS), 83–87, 94 Event-based analysis, of glaucoma progression, 136 Everting suture, 345f EVLOV5, 219 Exfoliative glaucoma clinical outcome and treatment of, 237–239 genetic features of, 234–236 geographic and epidemiologic features of, 236–237 pathophysiology of, 234–236 ExPress, 344 EyeTechCare, 353–354 F Fibroblast growth factor, 320–321 Fibrosis, 320, 322–324, 328–331 Fibulin-1, 11 Filtering surgery, for angle-closure glaucoma, 202 Flicker-defined form (FDF) perimetry, 108, 111 5-Fluorouracil (5-FU) for wound healing, 323, 330 Frequency-doubling technology (FDT) perimetry, 108–109, 109f, 111, 143–144 Matrix FDT, 110–111, 144 Fuchs heterochromic iridocyclitis, 250–252, 251f Functional magnetic resonance imaging (fMRI), 167–169 resting state, 167–169 Functional progression, of glaucoma, 137–144 G Ganglion cell complex (GCC), 117f Ganglion cell layer (GCL), 116, 117f Gene–diet interactions, 14 Genetic biomarkers, in primary open-angle glaucoma, 15–16 Genetic factors, associated with normal-tension glaucoma, 218–220 Ginkgo biloba (G biloba), for normal-tension glaucoma, 223 Glaucoma and Alzheimer disease, 52–55, 59f and cerebrovascular diseases, 58–59, 59f disabilities in, 364–368 drainage devices, 258 filtration surgery, 320, 323–331 and Leber’s hereditary optic neuropathy, 57–58, 59f lens-induced, 205 malignant, 205–206, 205f normal-tension (see Normal-tension glaucoma (NTG)) onset and progression, risk factors of, 82–91 and Parkinson disease, 56–57, 59f pseudoexfoliative, 6–7, 11 rehabilitation in, 368 risk calculators, 93–94 steroid-induced, mechanism of, 273–274 377 378 Index Glaucoma (Continued) surgery, 239 (see also Wound healing modulation, in glaucoma surgery) uveitic (see Uveitic glaucoma) Glaucoma 1B (GLC1B), 219 Glaucoma drainage device (GDD) surgery, 183–184 Glaucoma, early diagnosis of confocal scanning laser ophthalmoscopy, 104–105, 110, 114–115, 118–119 flicker-defined form perimetry, 108, 111 frequency-doubling technology perimetry, 108–111, 109f Heidelberg edge perimetry, 109f, 111 information from structural and functional tests, combining, 122–123 optical coherence tomography (see Optical coherence tomography (OCT)) scanning laser polarimetry, 104–105 short-wavelength automated perimetry, 108–111 standard automated perimetry, 104–114, 106f, 109f, 122–124 structural change, detecting, 111–122, 113t, 117f, 120f Swedish interactive threshold algorithm, 105–107, 106f, 109–110 Glaucoma 1F (GLC1F), 219 Glaucoma Health Perceptions Index, 364 Glaucoma hemifield test (GHT), 56 Glaucoma progression, detection of event vs trend-based analyses, 136 functional progression (see Functional progression, of glaucoma) global vs pointwise analyses of, 136–137 progression criteria, 137 progression techniques, combining, 149 rate of change, 136–137, 141–142, 144, 147–149 short-wavelength automated perimetry, 143 standard automated perimetry (see Standard automated perimetry (SAP)) structural progression (see Structural progression, of glaucoma) Glaucoma Quality of Life-15 Questionnaire, 364 Glaucoma surgery, 342f ab externo procedure (see Ab externo procedure) ab interno procedure (see Ab interno procedure) aqueous production procedures, reducing, 352–354 minimally invasive, 341–343 Glaucomatous optic neuropathy, 39–41 Glial fibrillary acid protein (GFAP), 10–11 Global trend analysis, of glaucoma progression, 136–140 Glutamate/aspartate transporter (GLAST), 217–218 Glutathione S-transferase (GST), 10 Glycosaminoglycans, 10 Goldmann applanation tonometry (GAT), 67–71, 281 digital, 73–74, 73f Goldmann lens, three-mirror, 198 Gold Shunt, 351–352 Gonioscopy, 198 Goniosynechialysis, 202 for angle closure in uveitic glaucoma, 255–256 Goniotomy, 182–183 Growth mixture model, 142 Guided progression analysis (GPA), 147, 148f of Humphrey field analyzer, 136–138, 139f H Handan Eye Study, 40 Heat shock proteins (HSP), 10–11 Heidelberg edge perimetry (HEP), 109f, 111 Heidelberg retina tomograph (HRT), 144–145, 146f Hemorrhage See Disc hemorrhage (DH) Herpetic keratouveitis, 243–245 High-intensity focused ultrasound (HIFU), 203, 353–354, 354f Human leukocyte antigen (HLA), 220 Humphrey field analyzer (HFA), 141 guided progression analysis of, 136–138, 139f 8-Hydroxy-20 apos;-deoxyguanosine (8-OHdG), 3a-Hydroxysteroid dehydrogenase (3a-HSD), 14 Hydrus Microstent, 351, 351f Hypertensive uveitis, 249–252 I ICare® HOME tonometer, 75–76 ICare® LINK, 73 ICare® ONE tonometer, 72–73, 72f ICare® PRO tonometer, 71–72, 72f ICare® tonometer, 70–71 Ig gamma-1 chain C region (IGHG1), 11 Igmu chainCregion (IGHM), 11 Ilomastat, for wound healing, 331 Imbert-Fick law, 73–74 Immunoassays, Immunoglobulins, 6–7 Inflammatory markers, 12 Inner plexiform layer (IPL), 116, 117f InnFocus, 344–346 InnFocus Microshunt, 344–346, 345f Interface fluid syndrome (IFS), 285–286 Interferon-alpha (INF-a), 330 Interleukin-1 (IL-1), 245–246 Interleukin (IL-6), 7, 12, 18 Interleukin (IL-8), 18 Index Interleukin 12 (IL-12), Interleukin 1a (IL-1a), 7, 18 Interleukins, 320–321 Intermittent angle closure, 197 Intraocular pressure (IOP), 36–37, 50–55, 57–59, 87–94, 104, 121–123, 147, 197, 319–320 and angle-closure glaucoma, 193–194, 196, 199–204 and cerebrospinal fluid pressure, relationship between, 37–39 elevated, 54, 83, 197 fluctuation, 84–85 and glaucomatous optic neuropathy, 39–41 lowering therapy, for normal-tension glaucoma, 221–223 medical treatment of, 253–254 methods of determining digital GAT, 73–74, 73f dynamic contour tonometer, 69–70 Goldmann applanation tonometry, 67–71 noncontact Corvis ST, 75–76 ocular response analyzer, 74–75 Pascal tonometer, 69–70 rebound tonometry, 70–73, 72f SENSIMED Triggerfish® contact lens sensor, 76, 77f transpalpebral tonometers, 75 new trends, 86–87 nocturnal, 86 risk factors of, 82–86 Iridotrabecular contact (ITC), 191, 196–197 Iris–lens diaphragm, anterior displacement of, 248–249 iStent I, 350–351, 350f iStent II, 350–351, 350f iStent III, 352 K Keratoprosthesis, 283–285 Koeppe lens, 198 Koeppe’s nodules, 250–251 L Lamellar keratoplasty, 274–276 Lamina cribrosa (LC), 55, 81–83, 87–88, 90–92 Laser-assisted in situ keratomileusis (LASIK), 285–286 Laser-assisted subepithelial keratectomy (LASEK), 285 Laser cyclophotocoagulation, for uveitic glaucoma, 258–259 Laser hyaloidotomy, 205–206 Laser iridotomy, 200, 201f, 204 Laser iridotomy, for angle closure in uveitic glaucoma, 255–256 Laser therapy , for normal-tension glaucoma, 222 Laser trabeculoplasty, for pseudoexfoliation syndrome, 238 Latent transforming growth factor beta (LTBP2), 178 Lateral geniculate nucleus (LGN), 50 Leber’s hereditary optic neuropathy (LHON), 57–58, 59f Lens extraction, for angle-closure glaucoma, 201–202, 204 Lens-induced glaucoma, 205 Lipocalin-1, 6–7 Liwan Eye Study, 200 Longitudinal structural measurements, 118–119 Loteprednol, for uveitic glaucoma, 253 Lovastatin, for wound healing, 328 Low-Pressure Glaucoma Treatment Study, 91–92, 221–222 Low Vision Quality Of Life Questionnaire, 368 Lysil-oxidase-like (LOXL1) gene mutations, 235 Lysozyme C, 6–7 M Macula, imaging, 115–118, 117f Macular ganglion cell complex (mGCC), 116–117 Macular ganglion cell-inner plexiform layer (mGCIPL), 116–118 Magnetic resonance imaging (MRI) conventional, 160–162, 161–162f functional, 167–169 Magnetic resonance spectroscopy (MRS), 170–171 Malignant glaucoma, 205–206, 205f Malonic dialdehyde, Mammaglobin B, Mass spectrometry (MS)-based multiple reaction monitoring assays, Matrix metalloproteinases (MMPs), 7, 320–321, 331 Metabolic disorders, 181 Metipranolol, for intraocular pressure, 253–254 Micropulse transscleral cyclophotocoagulation, for uveitic glaucoma, 258–259 MIDI-Arrow See InnFocus Microshunt Minimally invasive glaucoma surgery (MIGS), 341–343 Mitofusin1 (MNF1), 219 Mitofusin (MNF2), 219 Mitomycin-C (MMC), for wound healing, 320, 322–323, 330–331 Mitomycin C trabeculectomy, 282–283 379 380 Index Modified osteo-odontokeratoprosthesis (MOOKP), 283–284 Molecular biomarkers, in primary open-angle glaucoma, 4f aqueous humor biomarkers, 2–3, 6–7, 16–20 clinical practice, 21–22 genetic biomarkers, 15–16 Serum biomarkers (see Serum biomarkers, in primary open-angle glaucoma) tears biomarkers, 6–8 urine biomarkers, Monocyte chemoattractant protein 1, Moorfields reference plane, 145 Moorfields Safer Surgery system, 183–184f Mucopolysaccharidoses (MPS), 181 Multicenter Uveitis Steroid Treatment Trial, 246–247 Multiplex assays, Myelin basic protein, 10 MYOC (myocilin), 15, 93, 219 N Narrow or occludable AC angle, 198 National Eye Institute Visual Function Questionnaire (NEI-VFQ 25), 362–363, 365, 368–369 Neurodegenerative/apoptotic biomarkers, 12–13 Neuron-specific enolase (NSE), 10 Neuroprotection, for normal-tension glaucoma, 223 Neurotoxicity, 217–218 Nidek MP1, 366–368, 367f Nimodipine, 223 Nipradilol, 221 Nitric oxide (NO), 215–216 Nitric oxide synthase (NOS), 13–14 Noncontact Corvis ST, 75–76 Nonsteroidal anti-inflammatory drugs (NSAIDs), 322 Normal-pressure glaucoma (NPG), 34, 39–42 Normal-tension glaucoma (NTG), 50, 53, 58, 88, 91–93 pathogenesis of, 214–220, 215f treatment of, 220–223 Normative databases, 122 O Obstructive sleep apnoea–hypopnea syndrome (OSAHS), 217 Ocular blood flow (OBF) impairment, 214 Ocular Hypertension Treatment Study (OHTS), 83–84, 87–89, 94 Ocular infections, and uveitic glaucoma, 249–252, 251f Ocular response analyzer (ORA), 70, 74–75, 87–88 Ocular risk factors, 82–91 of angle-closure glaucoma, 192–194 beta-zone parapapillary atrophy, 89–90 central corneal thickness, 87 corneal hysteresis, 87–88 disc hemorrhage, 88–89 intraocular pressure, 82–87 lamina cribrosa (LC), 90–91 OPA1 (optic atrophy type gene), 219 Open-angle glaucoma (OAG), 191 cerebrospinal fluid pressure and, 40 primary (see Primary open-angle glaucoma (POAG)) uveitic, 244–247 changes in aqueous composition, 245–246 morphological changes in trabecular meshwork, 244–245 Open reading frame phage display, 10 Ophthalmic examination, for angle-closure glaucoma, 198–199 anterior segment imaging, 198–199 gonioscopy, 198 slit lamp, 198 Ophthalmic viscoelastic device (OVD), 280 Optical coherence tomography (OCT), 104–105, 105f, 109f, 110, 122–123, 147–149, 148f, 160–162, 283–284 anterior segment (see Anterior segment optical coherence tomography (AS-OCT)) enhanced depth imaging, 91–92 serial, 120f spectral-domain (SDOCT), 81–82, 88, 111–117, 113t, 117f, 119–121, 124, 147, 149 time-domain (TDOCT), 112, 147 Optic nerve head (ONH), 144–147, 149 anatomy and dynamics of, 34–36 Optic nerve topography, 81–82 OPTN (optineurin), 15, 219 Ordinary least squares linear regression model, 142 Oxidative stress biomarkers, 19–20 chronic, 220 markers, 13–14 and normal-tension glaucoma, 217–218 P p53, 16 Paclitaxel, 327 Parapapillary atrophy (PPA) alpha-zone, 89–90 beta-zone, 89–90 Parkinson disease (PD), 56–57, 59f Index Pascal tonometer, 69–70 Pegaptanib, 328–329 Penetrating keratoplasty (PKP), 272, 274–276, 275t glaucoma risks in, 276t, 277–278 Perfusion pressure, and glaucoma, 91–92 Perimetry, 363–364 flicker-defined form, 108, 111 frequency-doubling technology, 108–111, 109f Heidelberg edge, 109f, 111 short-wavelength automated, 108–111, 143 standard automated, 106f, 104, 105–108 (see also Standard automated perimetry (SAP)) Peripheral anterior synechiae (PAS), 196–198, 248 Peripheral blood lymphocytes (PBL), 14 Photorefractive keratectomy (PRK), 285 Pilocarpine, for intraocular pressure, 254 Placental growth factor (PlGF), 330 Plateau iris, 194, 195f, 199–201, 204–205 Platelet-derived growth factor (PDGF), 320–321, 330–331 Pneumotonometry, 281 Pointwise trend analysis, of glaucoma progression, 136–137, 141–142 Polarimetry, 104–105 scanning laser, 164–165 Poly(styrene-block-isobutylene-block-styrene) (SIBS), 344–346 Poly-adenyl-ribose polymerase (PARP-1), 12–13 Posner–Schlossman syndrome (PSS), 243–245, 249–252, 254, 257 Post-corneal graft glaucoma treatment, 282–283 medical treatment, 282 surgical treatment, 282–283 Posterior block glaucoma, 205f Posterior cerebral artery (PCA), 58–59 Primary angle-closure glaucoma (PACG), 191–192, 197 acute, 203–204 drainage implant for, 202 epidemiology of, 192 lens extraction for, 201–202 ocular risk factors of, 192–193 pathophysiology of, 196 Primary angle-closure suspect (PACS), 197, 200 Primary congenital glaucoma (PCG) differential diagnosis of, 181 epidemiology of, 178 genetics of, 178–179 management of, 181–184 pathogenesis of, 179 presentation of, 180, 180f, 180t surgery for, 182–184, 183f Primary open-angle glaucoma (POAG), 50, 92–93 and Alzheimer disease, 52–54 molecular biomarkers in (see Molecular biomarkers, in primary open-angle glaucoma) myocilin and, 93 Progressor, 136 Pro-IOP implantable microsensor, 86–87 Prolactin-Inducible Protein, 6–7 Prostaglandin analogs (PGAs), 7, 222 Prostaglandin H2 D-isomerase, 17 Prostaglandins for intraocular pressure, 253–254 for wound healing, 322 Protein arrays, 10 Protein biomarkers, in primary open-angle glaucoma, 8–14 autoimmunity markers, 9–12 inflammatory markers, 12 neurodegenerative/apoptotic biomarkers, 12–13 oxidative stress markers, 13–14 trabecular meshwork damage biomarkers, 14 Protein S100, 6–7 Proteomics technologies, for biomarker identification, 4–5, 5f Proview tonometer, 75 Pseudoexfoliation syndrome clinical outcome and treatment of, 237–239 genetic features of, 234–236 geographic and epidemiologic features of, 236–237 pathophysiology of, 234–236 Pseudoexfoliative glaucoma (PEXG), 6–7, 11 Pupil block, 247–248, 247f Pupillary block, 194, 195f, 196, 200–201, 201f, 203–205 Q Q-Orbitrap, Q-ToF, Quality of life (QoL), 360 vision disability and, methods for correlating, 360–364 vision-related, 360 R Rate of change, of glaucoma progression, 136–137, 141–142, 144, 147–149 Reading ability, 365–367 Rebound tonometry, 70–73 ICare® HOME tonometer, 75–76 ICare® ONE tonometer, 72–73, 72f ICare® PRO tonometer, 71–72, 72f ICare® tonometer, 70–71 381 382 Index Rehabilitation, in glaucoma, 368 Retinaldehydebinding protein, 10 Retinal ganglion cells (RGCs), 18–19, 50–51, 53–55, 81–82, 90 Retinal nerve fiber layer (RNFL), 51, 53, 56, 81–82, 88, 91, 104–105, 105f, 109f, 111–124, 117f, 120f thickness of, 137, 145–149, 148f, 165 Retinal S-antigen, 10 Retinal vein pressure, CSFP and, 43 Rho kinase (ROCK) inhibitors, for wound healing, 324–327 Rimexolone, for uveitic glaucoma, 253 Risk calculators, 93–94 S S100-A8, S100-A9, Salisbury Eye Evaluation (SEE) Study, 364–366 Scanning laser polarimetry (SLP), 104–105, 121, 164–165 Secondary angle-closure glaucoma, 192 Selective laser trabeculoplasty (SLT) for normal-tension glaucoma, 222 Sensimed Triggerfish, 86–87 SENSIMED Triggerfish® contact lens sensor, 76, 77f Serological identification of antigens by recombinant expression cloning (SEREX), 10 Serological proteome analysis (SERPA), 10 Serum amyloid-A1 (SAA1), 12 Serum amyloid-A2 (SAA2), 12 Serum biomarkers, in primary open-angle glaucoma, 8–16 protein biomarkers, 8–14 Short-wavelength automated perimetry (SWAP), 108–111, 143 SIX1, 15 Slit lamp, 198 Spectral-domain optical coherence tomography (SD-OCT), 147, 149 Spectral-domain optical coherence tomography (SDOCT), 81–82, 88, 111–117, 113t, 117f, 119–121, 124 S1 RNA-binding domain (SRBD1), 219 Standard automated perimetry (SAP), 104–114, 106f, 109f, 122–124, 136, 143–144 global trend analysis, 138–140 guided progression analysis, 137–138, 139f news modeling techniques, 142–143 pointwise trend analysis, 141–142 Starflow, 352 Stegmann Canal Expander, 349, 349f Steroid-induced glaucoma, mechanism of, 273–274 Steroids, for wound healing, 322 Structural change, detecting, 111–122, 113t, 117f, 120f earliest changes, 119–121 longitudinal structural measurements, 118–119 macula, imaging, 115–118, 117f normative databases, 122 Structural progression, of glaucoma, 144–149 Superoxide dismutase (SOD), 19 Suramin, for wound healing, 328 Surgical iridectomy, for angle closure in uveitic glaucoma, 254–255 Swedish interactive threshold algorithm (SITA), 105–107, 106f, 109–110 Symmetric dimethylarginine (SDMA), 13–14 Symptom Impact Glaucoma, 364 Synechial angle closure, 248 Systemic carbonic anhydrase inhibitors, for intraocular pressure, 253–254 Systemic risk factors, 91–93 blood pressure, 91–92 cerebrospinal fluid pressure, 92–93 genetics, 93 perfusion pressure, 91–92 T Tears biomarkers, in primary open-angle glaucoma, 6–8 3-Tesla magnetic resonance with diffusion tensor imaging (3-T MR-DTI), 51, 58 Thank-binding kinase (TBK1), 220 Time-domain optical coherence tomography (TDOCT), 112, 147 Time of flight (TOF) technique, 160–162, 162f Timolol, 221 Toll-like receptor (TLR4), 219 Tonometer/ tonometry digital GAT, 73–74, 73f dynamic contour, 69–70 Goldmann applanation tonometry, 67–71 Pascal, 69–70 rebound, 70–73, 72f transpalpebral, 75 Tonometry, Goldmann applanation, 281 Topiramates, and uveitic glaucoma, 249 Topographic change analysis (TCA), 144–145 T3 plus glaucoma valve, 346f Trabectome, 350 Trabecular meshwork (TM), 192, 194, 196, 199, 202 Index Trabecular meshwork damage biomarkers, 14, 17–18 Trabecular meshwork, morphological changes in, 244–245 Trabecular Microbypass Stents, 350–351 Trabeculectomy, 319–320, 322 for primary congenital glaucoma, 182 for uveitic glaucoma, 256–257 Trabeculotomy for primary congenital glaucoma, 182–183 Tranilast, for wound healing, 328 Transferrin, 11, 20 Transforming growth factor (TGF)-b for wound healing, 320–321, 327–328 Transforming growth factors (TGF), 18 Trans-lamina cribrosa pressure difference (TLCPD), 34–39 and glaucomatous optic neuropathy, 39–41 Transpalpebral tonometers, 75 Transscleral diode laser cyclophotocoagulation, for angle-closure glaucoma, 204 Transthyretin (TTR), 11, 20 Travoprost/timolol fixed combinations (TTFC) for normal-tension glaucoma, 222 Trend-based analysis, of glaucoma progression, 136 Tumor necrosis factor alpha (TNF-a), U Ultrasound biomicroscopy (UBM), 248 angle-closure glaucoma, 193–194, 195f, 199–200, 201f, 204, 205f Urine biomarkers, in primary open-angle glaucoma, Urrets-Zavalia syndrome (UZS), 286–287, 286f Uveitic glaucoma angle closure (see Angle closure, in uveitic glaucoma) clinical evaluation of, 252–253 ocular infections and, 249–252, 251f open-angle (see Open-angle glaucoma, uveitic) pathogenesis of, 244–252 treatment of, 252–259 V Van Herick grading system, 198 Van Herick technique, 193 Vascular dementia, 53 See also Dementia Vascular dysregulation, in normal-tension glaucoma, 214–217 Vascular endothelial growth factor (VEGF), 320–321, 328–330 Vasoactive strategies, for normal-tension glaucoma, 223 Vertical cup–disc ratio (VCDR), 15 Veterans Affairs Low Vision Visual Functioning Questionnaire, 368 Vimentin, 10 Viscogoniosynechiolysis, for angle closure in uveitic glaucoma, 256f Vision-related quality of life, 360–364 Visual acuity (VA), 360–364 Visual field index (VFI), 138, 142 Visual field (VF) loss, 360–364 Vitreous body biomarkers, 2–3, 20–21 Vitronectin, 11 Vogt-Kayanagi-Harada disease, 254 Voxel-based morphometry (VBM), 57, 160–162, 165, 169–170 W Watershed areas (WSA), 58–59 WDR36 (WD repeat-containing protein 36), 15, 219 White matter lesions (WML), 58 Wound healing modulation, in glaucoma surgery, 321f amniotic membrane transplantation for, 331 clinical practice, 321–323 cytokines for, 330–331 cytoskeletal regulators for, 324–327, 325t growth factors for, 327–330 proteinases for, 331 response, 320–321 X Xen Implant, 347, 347–348f XIAP, 20 XPGC, 16 Z Zonular dehiscence, and uveitic glaucoma, 249 383 Other volumes in PROGRESS IN BRAIN RESEARCH Volume 167: Stress Hormones and Post Traumatic Stress Disorder: Basic Studies and Clinical Perspectives, by E.R de Kloet, M.S Oitzl and E Vermetten (Eds.) – 2008, ISBN 978-0-444-53140-7 Volume 168: Models of Brain and Mind: Physical, Computational and Psychological Approaches, by R Banerjee and B.K Chakrabarti (Eds.) – 2008, ISBN 978-0-444-53050-9 Volume 169: Essence of Memory, by W.S Sossin, J.-C Lacaille, V.F Castellucci and S Belleville (Eds.) – 2008, ISBN 978-0-444-53164-3 Volume 170: Advances in Vasopressin and Oxytocin – From Genes to Behaviour to Disease, by I.D Neumann and R Landgraf (Eds.) – 2008, ISBN 978-0-444-53201-5 Volume 171: Using Eye Movements as an Experimental Probe of Brain Function—A Symposium in Honor of Jean Buăttner-Ennever, by Christopher Kennard and R John Leigh (Eds.) – 2008, ISBN 978-0-444-53163-6 Volume 172: Serotonin–Dopamine Interaction: Experimental Evidence and Therapeutic Relevance, by Giuseppe Di Giovanni, Vincenzo Di Matteo and Ennio Esposito (Eds.) – 2008, ISBN 978-0-444-53235-0 Volume 173: Glaucoma: An Open Window to Neurodegeneration and Neuroprotection, by Carlo Nucci, Neville N Osborne, Giacinto Bagetta and Luciano Cerulli (Eds.) – 2008, ISBN 978-0-444-53256-5 Volume 174: Mind and Motion: The Bidirectional Link Between Thought and Action, by Markus Raab, Joseph G Johnson and Hauke R Heekeren (Eds.) – 2009, 978-0-444-53356-2 Volume 175: Neurotherapy: Progress in Restorative Neuroscience and Neurology — Proceedings of the 25th International Summer School of Brain Research, held at the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands, August 25–28, 2008, by J Verhaagen, E.M Hol, I Huitinga, J Wijnholds, A.A Bergen, G.J Boer and D.F Swaab (Eds.) –2009, ISBN 978-0-12-374511-8 Volume 176: Attention, by Narayanan Srinivasan (Ed.) – 2009, ISBN 978-0-444-53426-2 Volume 177: Coma Science: Clinical and Ethical Implications, by Steven Laureys, Nicholas D Schiff and Adrian M Owen (Eds.) – 2009, 978-0-444-53432-3 Volume 178: Cultural Neuroscience: Cultural Influences On Brain Function, by Joan Y Chiao (Ed.) – 2009, 978-0-444-53361-6 Volume 179: Genetic models of schizophrenia, by Akira Sawa (Ed.) – 2009, 978-0-444-53430-9 Volume 180: Nanoneuroscience and Nanoneuropharmacology, by Hari Shanker Sharma (Ed.) – 2009, 978-0-444-53431-6 Volume 181: Neuroendocrinology: The Normal Neuroendocrine System, by Luciano Martini, George P Chrousos, Fernand Labrie, Karel Pacak and Donald W Pfaff (Eds.) – 2010, 978-0-444-53617-4 Volume 182: Neuroendocrinology: Pathological Situations and Diseases, by Luciano Martini, George P Chrousos, Fernand Labrie, Karel Pacak and Donald W Pfaff (Eds.) – 2010, 978-0-444-53616-7 Volume 183: Recent Advances in Parkinson’s Disease: Basic Research, by Anders Bj€orklund and M Angela Cenci (Eds.) – 2010, 978-0-444-53614-3 Volume 184: Recent Advances in Parkinson’s Disease: Translational and Clinical Research, by Anders Bj€orklund and M Angela Cenci (Eds.) – 2010, 978-0-444-53750-8 Volume 185: Human Sleep and Cognition Part I: Basic Research, by Gerard A Kerkhof and Hans P.A Van Dongen (Eds.) – 2010, 978-0-444-53702-7 Volume 186: Sex Differences in the Human Brain, their Underpinnings and Implications, by Ivanka Savic (Ed.) – 2010, 978-0-444-53630-3 Volume 187: Breathe, Walk and Chew: The Neural Challenge: Part I, by Jean-Pierre Gossard, Re´jean Dubuc and Arlette Kolta (Eds.) – 2010, 978-0-444-53613-6 Volume 188: Breathe, Walk and Chew; The Neural Challenge: Part II, by Jean-Pierre Gossard, Re´jean Dubuc and Arlette Kolta (Eds.) – 2011, 978-0-444-53825-3 Volume 189: Gene Expression to Neurobiology and Behaviour: Human Brain Development and Developmental Disorders, by Oliver Braddick, Janette Atkinson and Giorgio M Innocenti (Eds.) – 2011, 978-0-444-53884-0 385 386 Other volumes in PROGRESS IN BRAIN RESEARCH Volume 190: Human Sleep and Cognition Part II: Clinical and Applied Research, by Hans P.A Van Dongen and Gerard A Kerkhof (Eds.) – 2011, 978-0-444-53817-8 Volume 191: Enhancing Performance for Action and perception: Multisensory Integration, Neuroplasticity and Neuroprosthetics: Part I, by Andrea M Green, C Elaine Chapman, John F Kalaska and Franco Lepore (Eds.) – 2011, 978-0-444-53752-2 Volume 192: Enhancing Performance for Action and Perception: Multisensory Integration, Neuroplasticity and Neuroprosthetics: Part II, by Andrea M Green, C Elaine Chapman, John F Kalaska and Franco Lepore (Eds.) – 2011, 978-0-444-53355-5 Volume 193: Slow Brain Oscillations of Sleep, Resting State and Vigilance, by Eus J.W Van Someren, Ysbrand D Van Der Werf, Pieter R Roelfsema, Huibert D Mansvelder and Fernando H Lopes da Silva (Eds.) – 2011, 978-0-444-53839-0 Volume 194: Brain Machine Interfaces: Implications For Science, Clinical Practice And Society, by Jens Schouenborg, Martin Garwicz and Nils Danielsen (Eds.) – 2011, 978-0-444-53815-4 Volume 195: Evolution of the Primate Brain: From Neuron to Behavior, by Michel A Hofman and Dean Falk (Eds.) – 2012, 978-0-444-53860-4 Volume 196: Optogenetics: Tools for Controlling and Monitoring Neuronal Activity, by Thomas Kn€opfel and Edward S Boyden (Eds.) – 2012, 978-0-444-59426-6 Volume 197: Down Syndrome: From Understanding the Neurobiology to Therapy, by Mara Dierssen and Rafael De La Torre (Eds.) – 2012, 978-0-444-54299-1 Volume 198: Orexin/Hypocretin System, by Anantha Shekhar (Ed.) – 2012, 978-0-444-59489-1 Volume 199: The Neurobiology of Circadian Timing, by Andries Kalsbeek, Martha Merrow, Till Roenneberg and Russell G Foster (Eds.) – 2012, 978-0-444-59427-3 Volume 200: Functional Neural Transplantation III: Primary and stem cell therapies for brain repair, Part I, by Stephen B Dunnett and Anders Bj€orklund (Eds.) – 2012, 978-0-444-59575-1 Volume 201: Functional Neural Transplantation III: Primary and stem cell therapies for brain repair, Part II, by Stephen B Dunnett and Anders Bj€orklund (Eds.) – 2012, 978-0-444-59544-7 Volume 202: Decision Making: Neural and Behavioural Approaches, by V.S Chandrasekhar Pammi and Narayanan Srinivasan (Eds.) – 2013, 978-0-444-62604-2 Volume 203: The Fine Arts, Neurology, and Neuroscience: Neuro-Historical Dimensions, by Stanley Finger, Dahlia W Zaidel, Franc¸ois Boller and Julien Bogousslavsky (Eds.) – 2013, 978-0-444-62730-8 Volume 204: The Fine Arts, Neurology, and Neuroscience: New Discoveries and Changing Landscapes, by Stanley Finger, Dahlia W Zaidel, Franc¸ois Boller and Julien Bogousslavsky (Eds.) – 2013, 978-0-444-63287-6 Volume 205: Literature, Neurology, and Neuroscience: Historical and Literary Connections, by Anne Stiles, Stanley Finger and Franc¸ois Boller (Eds.) – 2013, 978-0-444-63273-9 Volume 206: Literature, Neurology, and Neuroscience: Neurological and Psychiatric Disorders, by Stanley Finger, Franc¸ois Boller and Anne Stiles (Eds.) – 2013, 978-0-444-63364-4 Volume 207: Changing Brains: Applying Brain Plasticity to Advance and Recover Human Ability, by Michael M Merzenich, Mor Nahum and Thomas M Van Vleet (Eds.) – 2013, 978-0-444-63327-9 Volume 208: Odor Memory and Perception, by Edi Barkai and Donald A Wilson (Eds.) – 2014, 978-0-444-63350-7 Volume 209: The Central Nervous System Control of Respiration, by Gert Holstege, Caroline M Beers and Hari H Subramanian (Eds.) – 2014, 978-0-444-63274-6 Volume 210: Cerebellar Learning, Narender Ramnani (Ed.) – 2014, 978-0-444-63356-9 Volume 211: Dopamine, by Marco Diana, Gaetano Di Chiara and Pierfranco Spano (Eds.) – 2014, 978-0-444-63425-2 Volume 212: Breathing, Emotion and Evolution, by Gert Holstege, Caroline M Beers and Hari H Subramanian (Eds.) – 2014, 978-0-444-63488-7 Volume 213: Genetics of Epilepsy, by Ortrud K Steinlein (Ed.) – 2014, 978-0-444-63326-2 Volume 214: Brain Extracellular Matrix in Health and Disease, by Asla Pitkaănen, Alexander Dityatev and Bernhard Wehrle-Haller (Eds.) – 2014, 978-0-444-63486-3 Other volumes in PROGRESS IN BRAIN RESEARCH Volume 215: The History of the Gamma Knife, by Jeremy C Ganz (Ed.) – 2014, 978-0-444-63520-4 Volume 216: Music, Neurology, and Neuroscience: Historical Connections and Perspectives, by Francáois Boller, Eckart Altenmuăller, and Stanley Finger (Eds.) – 2015, 978-0-444-63399-6 Volume 217: Music, Neurology, and Neuroscience: Evolution, the Musical Brain, Medical Conditions, and Therapies, by Eckart Altenmuăller, Stanley Finger, and Francáois Boller (Eds.) 2015, 978-0-444-63551-8 Volume 218: Sensorimotor Rehabilitation: At the Crossroads of Basic and Clinical Sciences, by Numa Dancause, Sylvie Nadeau, and Serge Rossignol (Eds.) – 2015, 978-0-444-63565-5 Volume 219: The Connected Hippocampus, by Shane O’Mara and Marian Tsanov (Eds.) – 2015, 978-0-444-63549-5 Volume 220: New Trends in Basic and Clinical Research of Glaucoma: A Neurodegenerative Disease of the Visual System, Part A, by Giacinto Bagetta and Carlo Nucci (Eds.) – 2015, 978-0-444-63566-2 387 ... renin-angiotensin (SRA) and Kinin–Kallikrein (SKK) systems in tears, blood, and AH (Borovic et al., 2009), reporting increased levels of kallikrein and angiotensinconverting enzyme activity in. .. proteins, the apoptosis-inducing facto, the cyclic AMPresponsive element-binding protein, ephrin type-A receptor, and huntingtin protein were indicated as potential biomarkers of disease, since... S-transferase (GST), vimentin, myelin basic protein, glial fibrillary acidic protein (GFAP), retinaldehydebinding protein, or retinal S-antigen are just examples (Gramlich et al., 2013) In a study of Maruyama

Ngày đăng: 14/05/2018, 12:41

Từ khóa liên quan

Mục lục

  • Serial page

  • Copyright

  • Contributors

  • Preface

  • Molecular biomarkers in primary open-angle glaucoma: from noninvasive to invasive

    • Abstract

    • Keywords

    • Introduction: what is a biomarker?

    • Defining Biomarkers

      • Proteomics Technologies for Biomarker Identification

      • Noninvasive biomarkers in primary open-angle glaucoma

        • Tears Biomarkers

        • Urine Biomarkers

        • Minimally invasive biomarkers in primary open-angle glaucoma

          • Serum Biomarkers

            • Protein Biomarkers

              • Autoimmunity Markers

              • Inflammatory Markers

              • Neurodegenerative/Apoptotic Biomarkers

              • Oxidative Stress Markers

              • Biomarkers of Trabecular Meshwork Dysfunction

              • Genetic Biomarkers

              • Invasive biomarkers in primary open-angle glaucoma

                • Aqueous Humor Biomarkers

                  • Trabecular Meshwork Damage Biomarkers

                  • RGC Damage Biomarkers

                  • Oxidative Stress Biomarkers

                  • Vitreous Body Biomarkers

Tài liệu cùng người dùng

Tài liệu liên quan