Springer IMANAKA y multilayered low temperature cofired ceramics (LTCC) technology (SPRINGER 2005; 260 p)

260 8 0
  • Loading ...
1/260 trang
Tải xuống

Thông tin tài liệu

Ngày đăng: 11/05/2018, 17:00

Multilayered Low Temperature Cofired Ceramics (LTCC) Technology This page intentionally left blank Multilayered Low Temperature Cofired Ceramics (LTCC) Technology Yoshihiko Imanaka Fujitsu Laboratories, Ltd Japan Springer eBook ISBN: Print ISBN: 0-387-23314-8 0-387-23130-7 ©2005 Springer Science + Business Media, Inc Print ©2005 Springer Science + Business Media, Inc Boston All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Springer's eBookstore at: and the Springer Global Website Online at: http://ebooks.springerlink.com http://www.springeronline.com This book is dedicated to ALL I love This page intentionally left blank Contents Dedication List of Figures List of Tables Preface Acknowledgments Introduction Brief historical review Typical material Typical manufacturing process Typical product types Characteristics of LTCC 1.5.1 High frequency characteristics 1.5.2 Thermal stability (low thermal expansion, good thermal resistance) 1.5.3 Integration of passive components 1.6 Trends in materials developed by relevant companies 1.7 Subject of the book References 1.1 1.2 1.3 1.4 1.5 Part Material technology Ceramic material 2.1 Introduction 2.2 Low temperature firing 2.2.1 Fluidity of glass 2.2.2 Crystallization of glass 2.2.3 Foaming of glass 2.2.4 Reaction between glass and ceramic 2.3 Dielectric characteristics 2.3.1 Dielectric constant 2.3.2 Dielectric loss 2.4 Thermal expansion 2.5 Mechanical strength v xi xxv xxix xxxi 4 6 10 11 12 16 19 21 21 23 24 26 33 36 36 36 41 42 45 viii Multilayered LTCC Technology 2.5.1 Strengthening the glass phase 2.5.2 Thermal shock resistance 2.6 Thermal conductivity References 47 51 54 55 Conducting material 59 59 61 62 62 62 3.1 Introduction 3.2 Conductive paste materials 3.3 Metallization methods for alumina ceramics 3.3.1 Thick film metallization 3.3.1.1 High temperature process type (Mo-Mn method) 3.3.1.2 Low temperature process type 3.3.2 Cofiring metallization 3.3.2.1 Metallization for HTCC 3.4 Conductivity 3.5 Suitability for co-sintering 3.6 Adherence 3.7 Migration resistance 3.8 Bondability (solder wetability and wire bondability) References Resistor materials and high K dielectric materials 4.1 Introduction 4.2 Resistor materials 4.2.1 Ruthenium oxide/glass material 4.2.2 The thermal stability of ruthenium oxide 4.3 High K dielectric material 4.3.1 Issues with low oxygen partial pressure atmosphere firing (point defects and semiconductor formation) References Part Process technology Powder preparation and mixing 5.1 Introduction 5.2 Inorganic ceramic materials 5.3 Organic materials 5.3.1 Binder 5.3.2 Plasticizer 5.3.3 Dispersing agent and dispersibility of slurry References 63 64 66 66 68 72 74 78 79 83 83 84 87 89 92 93 98 101 103 103 104 105 106 108 110 114 Contents Casting 6.1 Introduction 6.2 Casting equipment 6.3 Slurry characteristics 6.4 Green sheet 6.4.1 Characteristics required of green sheets 6.4.2 Green sheet evaluation methods 6.4.3 Various factors affecting the characteristics of green sheets 6.4.4 Green sheet microstructure 6.4.5 Green sheet dimensional stability 6.5 Via hole punching References Printing and laminating 7.1 Printing 7.1.1 Screen printing screen specifications 7.1.2 Printing process conditions 7.1.3 Paste characteristics 7.1.4 Green sheet characteristics 7.2 Via filling 7.3 Laminating 7.3.1 Laminating process technologies 7.3.2 Faults arising in the laminating process 7.3.3 Preventing delamination References Cofiring 8.1 Sintering the copper 8.2 Controlling firing shrinkage 8.3 Mismatches of firing behavior and firing shrinkage rate 8.4 Achieving both antioxidation of the copper and elimination of binder 8.5 Non-shrinkage process 8.6 Cofiring process and future LTCCs References Reliability 9.1 Thermal shock of LTCCs 9.2 Thermal expansion and residual stress of LTCCs 9.3 Thermal conductivity of LTCCs References ix 115 115 115 117 120 120 121 126 136 140 142 143 145 145 147 147 149 152 152 154 154 157 162 165 167 169 169 174 180 189 190 191 193 195 196 200 201 The future of LTCCs 215 of the Ministry of Economy, Trade and Industry’s Nano Structure Forming for Advanced Ceramic Integration Technology Project which began in 2002 [23, 24, 25] Figure 10-5 An outline of aerosol deposition AD equipment Figure 10-6 (a) is a cross sectional photograph of the composition of AD film formed on a resin substrate A dense structure packed with ceramic particles of several dozen nm can be observed The dielectric characteristics (@ 100 kHz) that can currently be obtained are dielectric constant: 400, or so (dielectric constant of bulk around 3,000) Figure 10-6 (b) is the microstructure of the microwave dielectric structure of AD film This exhibits a microstructure of alumina particles distributed uniformly in a BZT matrix The Q value of the film is 500 (Q value of bulk around 5,000) Since the AD method uses ceramic powder as described above to form a film, knowledge taken from the ceramics industry and ceramic materials 216 Multilayered LTCC Technology engineering can be used to good effect The development of dielectric film deposited with the AD method started only recently, but with further technology development, the fabrication of ceramic film with dielectric characteristics equivalent to that of bulk material can be anticipated as various other materials and process technologies are considered AD deposition technology can also be regarded as a core technology for the development of next generation high frequency function modules with integrated passive components Figure 10-6 (a) Cross sectional structure of the composition of AD film formed on a plastic substrate, (b) microstructure of the microwave dielectric structure of AD film, white spot: alumina particle The future of LTCCs 217 Acknowledgement The research of this chapter was partially supported by NEDO projects of “Nano Structure Formation for Advanced Ceramic Integration Technology in Japan – the nano technology program” References [1] “Development of Ubiquitous Service using Wireless Technology”, NTT Technical Journal, No (2003) pp 6-12 [2] “Restructuring System on a Chip Strategy with Package Technology as the New Innovation”, NIKKEI MICRODEVICES, No 189 March (2001) pp 113-132 [3] “Activity Around Technology to Embed Devices Internally in PCB's Suddenly Increases”, NIKKEI ELECTRONICS, No 842, March (2003) pp 57-64 [4] Y Imanaka, “Material Technology of LTCC for High Frequency Application”, Material Integration, Vol 15, No 12, (2002), pp 44-48 [5] A A Mohammed, “LTCC for High-Power RF Application?”, Advanced Packaging, Oct (1999), pp 46-50 [6] H Sobol and M Caulton, Advances in Microwaves, No 8, (1994), pp 11-66 [7] Y Imanaka and M R Notis, “Metallization of High Thermal Conductivity Materials”, MRS Bull., June (2001), pp 471-476 [8] Y Imanaka and N Kamehara, “Influence of Shrinkage Mismatch between Copper and Ceramics on Dimensional Control of Multilayer Ceramic Circuit Board”, J Ceram Soc Jpn., Vol 100, No 4, (1992), pp 560-564 [9] H T Sawhill, R H Jensen, K R Mikeska, “Dimensional Control in Low Temperature Co-fired Ceramic Multilayers”, Ceramic Transactions, Vol 15, (1990), pp 611-628 [10] K R Mikeska, and R C Mason, “Pressure Assisted Sintering of Multilayer Packages”, Ceramic Transactions, Vol 15, (1990), pp 629-650 [11] T Nishii, S Nakamura, T Takenaka, and S Nakatani, “Performance of Any Layer IVH Structure Multi-layered Printed Wiring Board”, Proc Japan International Electronic Manufacturing Technology Symposium (IEMT), Omiya, Dec 1995, pp 93-96 [12] H Yamamoto, A Fujisaki, and S Kikuchi, “MCM and Bare Chips Technology for Wide Range of Computers”, Proc Electronic Components and Technology Conf, Orlando, FL, May 1996, pp 113-138 [13] K Prasad, and E D Perfecto, “Multilevel Thin Film Applications and Processes for High End System”, IEEE Trans-CPMT-B, Vol 17, No (1994), pp 38-49 218 Multilayered LTCC Technology [14] Y Imanaka, “Technology for obtaining high capacitance density in substrate integrating passive function”, Embedding Technology of Passive Component in Printed Wiring Board, Technical Information Institute, (2003), pp 154-161 [15] S Yamamishi, H Yabuta, T Sakuma, and Y Miyasaka, sputtering, “(Ba+Sr)/Ti ratio dependence of the dielectric properties for thin films prepared by ion beam sputtering”, Appl Phys Lett., Vol 64, No 13 28 March (1994), pp 1644-1646 [16] Y Imanaka, T Shioga, and J D Baniecki, “Decoupling Capacitor with Low Inductance for High-Frequency Digital Applications,” FUJITSU Sci Tech J., Vol 38, No June (2002), pp 22-30 [17] P Chahal, R R Tummala, M G Allen, and M Swaminathan, “A Novel Integrated Decoupling Capacitor for MCM-L Technology”, Proc Electronic Components and Technology Conf., Orland, FL, May(1996) pp 125-132 [18] V Agarwal, P Chahal, R R Tummala, and M G Allen, “Improvements and Recent Advances in Nanocomposite Capacitors Using a Colloidal Technique”, Proc Electronic Components and Technology Conference, Seatle, WA (1998), pp 165-170 [19] S Ogitani, S A Bidstrup-Allen, and P Kohl, “An Investigation of Fundamental Factors Influencing the Permittivity of Composite for Embeded Capacitor”, Proc Electronic Components and Technology Conference, San Diego, CA (1999), pp 77-81 [20] H Windlass, P M Raj, S K Bhattacharya, and R R Tummala, “Processing of Polymer-Ceramic Nanocomposites for System-on-Package Application”, Proc Electronic Components and Technology Conf., Orland FL, May(2001) pp 1201- 1206 [21] J Akedo and M Lebedev, “Piezoelectric properties and poling effect of Pb(Zr, thick films prepared for microactuators by aerosol deposition”, Applied Physics Letter, Vol 77, No 11 (2000), pp 1710-1712 [22] J Akedo, and M Lebedev, “Ceramics Coating Technology Based on Impact Adhesion Phenomenon with Ultrafine Particles-Aerosol Deposition Method for High Speed Coating at Low Temperature-”, Materia Japan, Vol 41, No (2002) pp 459-466 [23] Y Imanaka, “Material Technology of LTCC for High Frequency Application”, Material Integration, Vol 15, No 12 (2002) 44-48 [24] Y Imanaka, J Akedo, “Integrated RF Module Produced By Aerosol Deposition Method”, Proc 54th Electronic Components and Technology Conf, Las Vegas, NV, June (2004), pp 1614-21 [25] Y Imanaka, J Akedo, “Passive Integration Technology for Microwave Application Using Aero-Sol Deposition”, Bull Ceram Soc Jpn., Vol 39, No 8, (2004), pp 584-589 Index A absorbed water 74 acceptor 95, 96, 97 acicular in shape 118 acidity 110 acrylic polymer 106 acrylic resin 162 activation energy 23, 24 of crystal growth 29 AD converter adhesion of scraps 142 adsorbed water layer 137 adsorption layer 132 aerosol deposition (AD) method 213, 214, 215 ceramic film 214, 215 Ag 4, 5, 21, 63, 66, 67, 70, 74, 76, 78, 195 70, 74 colloid 74 Ag-Au 66, 76 agglomerated particles 105 agglomeration 120 aggregation 104, 111 of powder 113 Ag-Pd 4, 5, 66, 71, 75, 85 Ag-Pt 4,75 air phase 118 airtightness of plastic film 124 Al 67, 78 Al- 1%Si 78 66 25, 206 Al-Cu 78 alignment 154 alkali 206 glass 25 ion 25, 39, 41 alloy composition 77 Al-Mg 78 tetrahedron 25 alumina 43, 195 substrate 62, 64 aluminum nitride (AlN) 43, 55 ambient atmosphere 70, 97 anchor 64, 65 angle of repose 153 angular frequency 41 angular pore 33 anions 93 annealing point 27 anorthites 36 antenna switch module antifoaming agents 105 antioxidation of metal 167,180 aperture ratio 147 Arrhenius plot 32 Asahi glass 13 as-fired substrate 84 aspect ratio 153 atomic diffusion 169 attenuation of lattice vibration 206 of signal 2, attraction 104 Au 5, 12, 21, 59, 63, 67, 78 Au-Pt Avrami exponent 32 B 22, 25 22 207 207 AD film 215, 216 ball mill 103,115 balun 5, 203 band pass filter (BPF) BaO 25 207 bare LSI 2,12 barium titanate 99, 190 barrier layer 95 220 type dielectric 39 22 93 thin film 210 96, 213, 216, 217 93 93 22 bending strength 47, 95,196 bend and wave in substrate 168 beryllium doped gold 78 22, 64 type 22 type 22 85 binder 61, 85, 91, 101, 105,115, 120, 127, 181 blackened glass/alumina composite 183 blade gap 116 blade thickness 117 blanking 121 bleeding 146,147,149 of pattern 152 block diagram of dual band mobile phone Bluetooth blurring 146, 147, 149 boiling point 108,135 bond strength 62,159 between polymers 109 bondability 78 bonding between particles 128 mechanism 63 of metallization 66 strength 64, 66, 156,196 borosilicate glass 9, 25, 36, 47, 52, 55, 132 bowl shape 139 brittle fractures 175 broadband bubble 33 build-up method of lamination 157 bulk material 213 bulk resistance 61 butyral resin 61 bypass capacitor 83 C C distribution 185 CaO 25 glass 36 capacitors 83, 203 capacity 210 density 210, 211 for integrating passive components capillary 104 force 64 phenomenon 63 carbon 168, 181 impurity 188 residue 168 Multilayered LTCC Technology carbonized residue 108 carbonyl group 107 carrier film 116 conveyor 115 speed 116,117,118 casting equipment 115 head 115,116,117 cations 93 cavities in conductive powder 154 93 CCD camera 154 CdO 64 cellulose resin 61 center line average roughness 122 ceramic contraction coefficient 176 ceramic deposition technologies 213 ceramic film 212 ceramic green sheet 84 ceramic particle 127 diameter 45,46,213 ceramic powder 213 ceramic slurry 116 ceramic/resin composite film 214 187 characteristic impedance 121 charge density of particle surface 110 charged electric potential 112 chemical bonding 63, 64 formation 169 strength 41 chemical durability 25 chemical glassware 24 chemical reaction 66 chipping 141 circuit design of conductor pattern 173 circular delamination 159,161 CO 187 Co 67 gas 181 33,187 cofiring metallization 65 process 167 coloration 193 commercial glass 24 companion powder 74 composite films of ceramic and resin 213 composition 45, 46 of commercial glass 26 of gas 188 shifts 214 compressive stress 47, 51,139,153,180,195 conduction loss 41 conductive metal powder 68 conductive paste 61,145, 205 conductive powder 145 conductor area of the ground and power supply planes 160 Index conductor conductivity conductor fabrication process 208 conductor loss 6, 8, 21, 22, 204, 209 conductor pattern 84,158,159 conductor resistance 204 conductor wiring 50, 209 conductor/ceramic interface 68 interfacial phenomenon 59 connection failures 43 constant supply voltage 83 contact angle 126 contaminated gas 187 contamination 66 continuous furnace with conveyor 187 contraction coefficient 172,173 contraction mismatch 173 control of wiring circuit dimensions 36 CoO 64 cooling process 176 copolymerization 109 copper content 173 contraction coefficient 176 electrode 175 oxide 64, 169, 188 vapor 169 via 178 wiring 2,13 /ceramic interface 173, 175, 195, 196 coprecipitation method 71 Corning 24 co-sintering properties of copper and ceramic 167 cost 66, 84, 210, 211 cost reduction 212 coupler Cr 78 64, 85 cracks 106, 176 cristobalite 36, 38, 43, 44 critical micelle concentration (CMC) 113 cross linking 108 crosshead speed 123 cross-linking bonds 108 86 crystal growth 28, 29 speed 28, 32, 36 precipitation 26, 27, 32, 36 crystallization 24 of glass 26 peak 28 temperature 28 crystallized glass 4, 5, 12, 13, 27, 104, 173, 206 method 47 type LTCC 36 /ceramic composite Cu 5, 21, 59, 63,66,74,76,78,167, 195, 207 66 221 64,95, 182 66 66 CuAl 66 66 CuO 64, 182 64 current density flows 204 cutting process 121 CuZn 66 cyclization 108 cylindrical via hole 153 D D’Arcy equation 124 decoupling capacitor 203,208 deflocculation 120 deformation of screen 148 delamination 157, 188 of multilayer ceramic 71 dendrite crystal 74 dented film 141 Denton 62 deoxidation 169 of 70 depolymerization 108 dewaxing process 167,188 diagonal wiring 51 diameter of crystal 32 of wire 147,148 distribution 126 di-butyl phthalate 110,135 dielectric breakdown 75 characteristics 93,190,213 constant 9,22,36,37, 207,211 fabrication process 209 layer fabrication 208 loss 6, 8, 21, 22,41,42,97,206,207 material 83,205 /conductor interface configuration 204 differential thermal analysis (DTA) 27,89 diffuse electric double layer 110 diffusion force from thermal motion 110 dimensional aging of green sheet 139,140 change 65,106,121,210 precision stability 127,129 diopside 206 dipole relaxation loss 41 direction of shrinkage 156 discrete component dispersibility 110,112,113, 121,122 dispersing agent 61, 101, 106,108, 119, 120 dissimilar material 83,167,203,209 222 distortion loss 41 doctor blade 117 gap 117,118 method 116,118,120 donor 96, 97 Dr Jun Akedo 214 dried sheet 116 drill 153 drilling 141 driving force 64 dry ceramic fine powder 214 drying area 115,117 condition 106 of coating 122 rate of slurry 116,137 shrinkage rate 117 temperature profile 116 DTA curve 31 duplexe Dupont 13,15 E elastic deformation of mask 146 elastic modulus 51, 52 electric charge 104 displacement 41 field 39, 40, 74 furnace 187 electrical neutrality 93, 110 electrical resistance 2, 59, 70, 177, 178 electrode 39, 74, 106 electrolytic phenomenon 74 electromigration 74 electron 94 electronic polarization 38 Electro-Science Lab 15 electrostatic attraction 110 elimination of binder 167,180 Ellingham diagram 69, 70 elongation 32,121,123,130 embedded capacitor 210, 211 passive component 11,190 embodiment 156 empirical logarithmic law 57 emulsion 147 endothermic peak 70, 89 entrance and exit of furnace 187 environmental issue 64 epoxy 9, 108, 210, 213 /carbon fiber composite laminate 50, 51 /E-glass 10 equivalent circuit model 87 ETC eutectic type 77 excessive sintering 33 exhaust vent 187 exothermal peak 28, 29, 30 Multilayered LTCC Technology external electric field 110 plasticization 109, 110 F failure probability 48 fatty acid sodium 113 Fe 76,78 64 FeO 95 Ferro 15 fiber reinforced resin material 50 filling ratio 153 film thickness 213 filter 10, 83, 203, 207 final shrinkage coefficient 174,180 fine stainless steel wire 147 fired substrate 167 firing environment 14 process 65,167 shrinkage 68,104 shrinkage behavior 59,72,167 shrinkage rate 104,169,209 temperature 22 flexibility 105,106,108, 141 flexural strength 45 flip chip method flocculation 120 flow of gas 187 Floyd 62 fluidity 24 of binder resin 162 foaming 24, 105, 180 of glass 33,171 formability 104 forsterite 43 FR4 9,210,212 fracture critical temperature 52 Frenkel disorder 93, 95 frit bonding 63, 64 front end module frozen section method 125 Fujitsu 13, 215 fused silica 26 G gap printing 145 gas chromatography 187 gas composition 185 gas curtain 187 gas permeability 124, 130 Gaussian distribution 28 64 Georgia Institute of Technology 213 Gibbs free energy 181 glass composition 24 Index flux 64 melt 33 phase 175 residue 173 transition point 28, 108,110 viscosity 24 glass/alumina composite 4, 33, 43, 174, 183, 190, 195 glass/ceramic composite 5, 23, 36, 42, 104, 200 glossiness 123 of green sheet 129 gold 190 GPS 1,5 grain boundaries 39, 42, 64 granular in shape 118 green laminate body 105 sheet 106, 115, 120, 127 casting 115 compact 121 density 132, 171 dimensional stability 139 evaluation method 121 surface unevenness 137 thickness 117 ground pattern 159 H 187 181 33 74 handleability 106 hardness 121 heat dissipation 207 exposure test 10,193 flow 200, 201 speed direction 54 resistance of resin 213 heating rate 175 zone 137 heat-resisting glass 24 height of fluid level 116 Heraeus 15 heterogeneous nucleation 27 High boiling point 108 density mounting 2, 12 dielectric constant 83, 209, 213, 214 frequency 2003 application 212 characteristics 6, 212 field simulation 204 insulating material 207 integrated module 212 transmission loss humidity atmosphere 74 223 K dielectric material 92 level of integration of active device 207 processing temperature 207 purity alumina substrate 63 speed transmission 10,12, 203 temperature and high humidity bias test 193 Hitachi 13 HLB value (Hydrophile Lipophile Balance) value 112,113 hole 94 punching 115, 132 homogeneity of dielectric material 204 homogeneous dispersion 118 drying 137 pore structure 118 nucleation 27 structure 104 HTCC (High Temperature Co-fired Ceramic) 2, 21, 55, 62,199 humidity 130 hydrogen gas 188 hydroperoxide group 107 hydrophilic group part 112, 113 I IBM 2, 13 impurity 42, 66, 67 incidence angle 180 inductance 204 inductor 203 infiltration method 66 infrared heater 116 inorganic additive 61 insufficient sintering 33 integrated component 203 passive component 210, 216 integrating capacitor 210 integration 203, 211 of passive component 10 interactions between dissimilar materials 209 interface adherence mechanism 62 flaw 70 interfacial phenomenon 70, 91 interlayer bonding strength 162,163 interlayer insulation resistance 193 interlock bonding 159 intermetallic compound 66 intermolecular force 109 internal conductor 178, 205 interlayer delamination 159,161 plasticization 109 pore 33,169 resistor 84 stress 196 interstice 93 224 interstitial atom 93 ion exchange strengthening method 47, 49 ion migration 74, 76 ionic (anionic, cationic) dispersing agent 112 ionic conduction 206 ionic mobility 41 ionic polarization 38 ionic vibration 206 loss 41 ions jump 39 ion polarizability 37 85 isoelectric point 111 isotropic stress 42 J Johnson-Mehl-Avrami (JMA) equation 27, 30 K 49 49 25 49 49 KCl 49 Kerner model 42, 43 47, 49 KOH 49 Kröger-Vink notation 94 Kyocera 13,15 L 85 laminated body 106 laminating 145, 154 density 162 process 65 lamination 145,154, 211 lanthanum oxide 97 laser 153,210 strike 86 trimming 84, 86 lattice defect 42, 93 lattice vacancy 93 lead borosilicate glass 87 lead-free glass 64 leakage of current Li ion 25 22 25 LiF 22 light velocity line width 62 linear shrinkage rate 23, 24 lipophilic group part 112, 113 liquid phase sintered ceramic 4, 22, 93 liquidation of the glass 23, 24, 64 localized concentration of electric fields 204 Multilayered LTCC Technology logarithmic mixing rule 200 logarithmic model 40 low dielectric constant dielectric loss electrical resistance firing temperature 23 melting point oxygen concentration atmosphere 107 oxygen partial pressure 89, 93 processing temperature 214 softening point 85, 87 temperature process type 63 thermal expansion transmission loss vapor pressure 108 low pass filter (LPF) LSI high density packaging 60 lumps of powder 119 lytic reaction 153 M mainframe computer 12,158,194 manufacturing process for multilayer ceramic substrate of thick film processing 65 margins for alignment precision 210 marker 154 MARUWA 15 material technology 101, 204 Matsushita 13 Matsushita kotobuki 15 maximum roughness 123 maximum stress 195 Maxwell model 40 mechanical anchor 65, 66 mechanical strength 45, 78 melting point 25, 63, 77 of the metal 4, 65 of the resin 108 temperature 28 mercury porosimetry 126 mesh structure 147 metal/ceramic composite 197 interface 50, 70 metallization for HTCC 66 methods for alumina ceramic 62 metamorphic polyester 108 MgO 25, 43, 62 Mg-Si 78 micelles 113 micro and macro flaw 42 micro-brownian motion 109 microwave band 204 migration 74 phenomenon 59 resistance 59, 77 miniaturization 203, 208 Index Ministry of Economy Trade and Industry 215 mismatch in firing shrinkage 68 in the contraction coefficient 160 in thermal expansion 176 of firing behavior 174, 209 of thermal expansion behavior 209 mixed bonding 63 mixing 103, 106 mixing rule (mixture rule) 39, 42, 45, 56 mixture of fine ceramic particles and gas 214 MnO 63, 64, 98 62 Mo 5, 66, 21, 199 Mo + Cu 66 Mo metallization 63 Mo powder 62 mobile phone 1, 203 modifier oxide 24, 25 moisture content 130 in the refractory material 187 molar volume 89 mole density 87 molecular weight 108, 112, 128 molten alloy method 71 molten salt containing potassium ion 47 Mo-Mn method 5, 62, 63 monolithic module 59, 203 62, 64 62 mullite 43 multi-chip-module (MCM-D) 167, 210, 211 multifunctionality 203 multilayer ceramic circuit board 158 coating 213 substrate 2, 4, 5, Murata 13, 15 N exchange 48 33 25 33 Nano Structure Forming for Advanced Ceramic Integration Technology Project 215 33 National Institute of Advanced Industrial Science and Technology 214 Nd-YAG lasers 141 NEC 13 NEC glass 15 network structures of glass 24, 25 NGK 13,15 Ni 21, 67, 74, 78 Ni-Cr 78, 85 Niko 15 NiO 64, 95, 96 nitrogen atmosphere 169 225 nominal thickness 61 nonaqueous organic solvent 105 non-bridging oxygen 24, 38 nonionic dispersing agent 112 non-Newtonian fluid 117 non-shrinkage process 189, 209 Noritake 13 n-type semiconductor 95, 96 nucleation temperature 28, 31 nuclei 27 number of ceramic layers 173 number of crystal nuclei 29 O OH–ion 39, 41, 206 one–time lamination method 157 opening 147 in mask 209 organic binder 61 material 105 resin contaminant 169 vehicle 61, 68, 85 orientation polarization (dipole orientation) 38 Orowan and Hall-Petch relationship 45 oxygen 25 atmosphere 169 concentration 169 ion vacancies 96 partial pressure 661,70, 81, 97 P packing density of powder 65,153 palladium 169,190 parallelism in the press 160 parallel model 40 parasitic inductance 10 particle diameter 87,104 particle dispersibility 126 particle size (diameter) 24, 87, 104, 169, 214 distribution 104 pascal second 149 passive component 1, 203 paste 149 paste filling 153 paste residue 147 Pb 74, 76, 190 93 93 93 Pb system relaxor 93 22 213 85 22 22 22 226 Multilayered LTCC Technology PbO 25, 64,188 22 64 64 64 22 64 Pd 21, 66, 67, 76, 78, 169, 190 peelability 116 penetration depth 64 peritectic type 77 permeability 204 of free space 204 perovskite oxide 22 PET (polyethylene terephthalate) film 116 pH of solution 111 phase formation of glass 43, 44 phenol resin 108 photodetector 123 photolithographic process 167, 211, 212 physical defects 193 mixing 110 Pincus 62 pink grade 63 plasticity 105,108 plasticization 109 plasticizer 61, 85, 103, 105, 108, 115, 120, 128 plating 210,211,212 poise 149 poisson’s ratio 51, 52, 195 polyacrylonitrile 108 polyethylene 108 polyimide 9,167,211 polymer adsorption layer 112 polymeric materials 107 polymerization 108, 128 polymethyl methacrylate 108 polystyrene 108 pore 13, 14, 33, 34, 107 porosity 45, 46 of the sheet 126 porous metal conductor 66 positive ion interstitial atoms 95 ion vacancy 94, 95 positive ion post-annealing 213 post-LTCC technology 210, 213 powder preparation 203 power amp module power supply 83 pattern 159 pressure cooker test 10, 193 price of metal powder 60 principal chain 108 print quality 148 printability 122 printed circuit board technology 83, 211 printed green sheet 84 printing 145 gap 148 precision 146 process 65 repeatability 146 time 148 process cost 212 process technology 103, 204, 208 processing accuracy 141 processing temperature 207, 213 propagation delay time of signal 22 protrusion of via 199 pseudoplastic fluid 149 Pt 21, 66, 67, 76, 78 p-type semiconductor 95, 96 punching 121, 141, 153, 121 Pyrex 7740 26, 195 pyrolytic properties 107 PZT piezoelectric ceramics 214 Q Q value 6, 9, 15, 21, 206, 217 quartz glass 24 quasi-millimeter waveband R R value 152 random session 108 rapid cooling 195 rapid heating 195 rate of strain 123 rate-determining process of sintering 24 raw material 103,104,121 RCA Corporation reaction between glass and ceramic 36 recovery of structure 151 rate for viscosity 151 time 151 reduction temperature 89, 90 Reed 63 reflected noise 83 refractive index 24 reliability 10,193 remaining glass phase 36 repulsion 104, 110 residual stress 196 residues of organic binder 33 resin compound 213 substrate 213 resinous materials 214 resinous varnish compound 213 resistance characteristics 190 of conductive material 87 Index of glass 87 of grain boundary 87 resistive paste 84, 91 resistor 83, 84, 203 resonating angular frequency 41 retarder thinner 61 retention time 177 rheological property 105,128 ridged firing setter 172 roll mill 61 rolling phenomenon 148 root mean squared roughness 122 rotational force 148 rotational frequency 151 roundness pore 33 Ru 89, 190 85, 190 phase diagram 89 ruthenium 87 ruthenium chloride 87 ruthenium oxide – glass 83, 87 Ryskewitsch 45 S sandwich 161 SAW filter Schottky disorder 93, 94 screen printing 59, 60, 84, 92, 145, 209, 213 secondary crystal phase 42 secondary plasticizer 110 semiconducting property 93 semiconductor 97,190 semiconductor formation 93 series model 40 setter 172 shaping 115 shear rate 118,149,152 shearing stress 149,151 sheet resistance 61, 85 sheet take-up unit 115, 116 shrinkage dimension control 36 shrinkage rate 118, 119 Si distribution 175 SI system of unit 149 side chain 108 signal attenuation noise 10 propagation rate 12 significant running 152 silica glass silicon 10, 22 silicon carbide 55 silicon nitride 43, 55 silicon technology 210, 211, 212 silicon wafer 210 silicone 108 simple mixing method 71 sinterability 104, 167 227 sintered density 24, 34 sintering copper 169 24, 25, 207 64 glass 66 tetrahedron 24 skin depth 7, 204 slide plane 110 slit-shaped nozzle 214 slurry 103, 105, 106 characteristics 117 dispenser 115, 116 flow speed 117 fluid level height 117 tank 116 thickness 117 viscosity 117, 132 Sn(Tin) 67, 74, 76 Sn/Pb63/37 78 snap off properties of screen 148 95 85 33 soda-lime glass 9, 26 soft squeegee material 149 softening point 24, 25, 27, 28, 36, 64, 171 solder 74 reflow 10 wetability 80 soldered joint 60 sol-gel process 211,213,214 solid solution 66, 67, 76 solubility of binder 106 solution property 152 solvent 85,103,115 constituent 119 based slurry 137 space charge polarization 38, 39 specific resistance of metal 61 specific surface area 24,104 speed of carrier film 137 spherical cavities 35 spherical pore 33 spin-coating method 167 spinel 43, 62, 64 sputtering 84, 210, 211, 214 squeegee 60, 62, 146 angle 149 pressure 148 speed 147, 148 SrO 64 85 stability of slurry 110 stacked laminated body 157, 158 stacking process 154 stainless steel mesh 62 standard optical axis 155 steatite 43 stepped interlayer delamination 159, 160 228 steric hindrance 105,110,112 Stern layer 110 storage conditions (temperature and humidity) 132,133,134 storage time 132 storing green sheet 106 strain 197 strain point 27 strength of compact 105 strengthening glass phase 47 stress 68, 70, 176 structural homogeneity 129 Sumitomo metal ceramics 13 Sumitomo metal electrodevice 15 superconducting material 205 surface blistering 159, 161 charge 110 energy 113, 169 metallized electrode 60 mount device (SMD) of conductor layer 204 potential 110, 112 profile of via 197 profile of conductor 204 resistance roughness 122, 130, 213 of conductor 205, 209 of green sheet 121 smoothness 139 tension 105, 126 treatment coupling agent 105 switching noise 83 T Taiyo-yuden 13 TaN 85 TCR - Temperature Coefficient of Resistance 84 resonator structure 207 Teflon (PTFE) temperature change 197 cycle test 10,193 difference 51, 52, 195 tensile strength 123,130,132 tensile stress 51,153, 195 terminal device 1, 203 termination 83 terpineol 61 texanol 61 TG curve 89 TG-DTA analysis 70 thermal conductivity 22, 52, 54, 200 conductance 55 decomposition 107, 108, 186, 187 design 201 diffusivity 52 equilibrium of mixed gases 181 Multilayered LTCC Technology expansion 2, 9, 10, 13,15, 25, 42,195 expansion coefficient 25, 42, 51, 197 resistance 10 shock 195 shock resistance 51, 52, 53 shock test (liquid) 193 stability 6, stress 51, 195 via 60, 201 thermochemical diagram 69, 70 thermocompression bonding 107,145 thermodynamic equilibrium diagram 169, 181 thermoplasticity 121, 127 thermosetting polymer 108 thick film conductors 61 metallization 62 processing 61, 62, 205, 213, 214 resistor paste 84, 85 thickness of emulsion 147 thin film conductors 167 multilayer structure 167 process 167 technique 84 wiring artwork 189 thin resistor film 84 thixotropic agent 61 thixotropy 117, 151 thixotropy index 148 three dimensional circuit wiring network 145 conductor wiring 194 multilayer structure 203 Ti 66, 67, 78, 85 TI - thixotropy index 150, 151 27 Toshiba 13 transfer ratio 146 transfer shape 146 transformation 70 transition point between n-type and p-type semiconductor 97 transition temperature 25 transmission line 22, 203, 207 transmission loss 59, 205 transmission medium 207 triangular opening 147 Turner model 42, 43 U ubiquitous network 203, 204 ultra fine line width 209 uneven pressure 160,161 uniaxial press 156 V vacancy 94 Index vacuum process 210 pump 214 vacuumed pressure atmosphere 213 valence band 94 valency control 39 vapor deposition 84 vapor pressure 188 vehicle 121 vertical splitting 159,160 via conductor 141,153 via filling 145, 153 via hole process 132 via hole punching 141 via hole 145 via opening 115 vinyl acetate 110 vinyl chloride 109 viscoelasticity 149 viscometric property 122 viscosimeter 151 viscosity 25 of paste 148 of base glass phase 36 of glass 64 visual inspection 193 vitrification 28 void 61,63,120,125 void diameter 126 volume expansion 169,188 volume fraction 200 volumetric shrinkage 89 Vycor 7900 26 W W 5, 21, 66, 195, 199 wallof furnace 188 warping 36, 172, 195 water adsorption 132,133 water vapor atmosphere 188 water-based slurry 137 wave length 7, 22, 207 Weibull modulus 47, 48, 49 weight loss 108, 135 wet hydrogen 66 wetability 105,106 wetting 66 Wilcox 66 wire bonding 60 wireless communication technology 203 wireless LAN wire cross 147 wiring 74 conductor pattern 159 conductor 208 density in circuit board dimension 208 inductance 83 withstand voltage 39, 168 229 WLL (Wireless Local Loop) workability 121 working efficiency 137 working point 27 W-Ru 85 X x and y direction 118,119 stage 155 Y Young’s modulus 195 Z Z axis 189 zeta potential 110, 112 ZnO 25, 64, 97, 98 66 27 .. .Multilayered Low Temperature Cofired Ceramics (LTCC) Technology This page intentionally left blank Multilayered Low Temperature Cofired Ceramics (LTCC) Technology Yoshihiko Imanaka Fujitsu... technologies 214 This page intentionally left blank Preface In recent years, Low Temperature Cofired Ceramics (LTCC) have become an attractive technology for electronic components and substrates... technology of that time, and I was very concerned that this technology would be forgotten So in order for this technology to survive into the future, I made a systematic compilation of LTCC technology
- Xem thêm -

Xem thêm: Springer IMANAKA y multilayered low temperature cofired ceramics (LTCC) technology (SPRINGER 2005; 260 p) , Springer IMANAKA y multilayered low temperature cofired ceramics (LTCC) technology (SPRINGER 2005; 260 p)

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay