Organic chemistry 9e wade 3

446 108 0
  • Loading ...
1/446 trang
Tải xuống

Thông tin tài liệu

Ngày đăng: 26/04/2018, 14:33

www.downloadslide.net 18-17 917 Use of Acetals as Protecting Groups Proposed synthesis incompatible functional groups rotate + BrMg CH2CH2 C H cyclohexanone C H3O+ H CH2CH2 O C HOCH2CH2OH H Br H+ CH2CH2 HOCH2CH2OH H Br H+ MgBr MgBr C O CH2CH2 C O O OMgBr C CH2CH2 O O C H protected from basic reagents Mg H O CH2CH2 BrMg ether “masked” aldehyde OMgBr C CH2CH2 CH2CH2 BrMg ether O O O Mg H “masked” aldehyde + CH2CH2 C H O H target compound O CH2CH2 C If the aldehyde is protected as an acetal, however, it is unreactive toward a Grignard reagent The “masked” aldehyde is converted to the Grignard reagent, which is allowed to react with cyclohexanone Dilute aqueous acid both protonates the alkoxide to give the alcohol and hydrolyzes the acetal O to give O the deprotected aldehyde O O O Br CH2CH2 C Actual synthesis O OH (impossible reagent) Actual synthesis Br O OMgBr CH2CH2 O O C O H protected from basic reagents O H CH2CH2 O H O OH H3O+ H3O+ C H O OH target compound CH2CH2 C H + CH2CHSelective C HAcetal Formation Because aldehydes form acetals more readily than ketones, we can protect an aldehyde selectively in the presence of a ketone This selective procompound tection leaves the ketone available for modification under neutraltarget or basic conditions without disturbing the more reactive aldehyde group The following example shows the reduction of a ketone in the presence of a more reactive aldehyde: O equiv O H H H H+ O O C OH H3O+ NaBH4 OH OH C OH H O O C H C O O PROBLEM 18-29 Show how you would accomplish the following syntheses You may use whatever additional reagents you need O O (a) (b) O HO CH3 CH2OH CHO (c) O (d) O CH2 Br CHO CHO Ph O CH3 CH3 O CH3 H OH O CH3 (continued) H 918 www.downloadslide.net CHAPTER 18     Ketones and Aldehydes (e) (f) O OH O CH2 C O O BrCH2CH2CCH3 Ph HC CCH2CH2CCH3 18-18 The Wittig Reaction We have seen carbonyl groups undergo addition by a variety of carbanion-like reagents, including Grignard reagents, organolithium reagents, and acetylide ions In 1954, Georg Wittig discovered a way of adding a phosphorus-stabilized carbanion to a ketone or aldehyde The product is not an alcohol, however, because the intermediate undergoes elimination to an alkene In effect, the Wittig reaction converts the carbonyl group of a ketone or an aldehyde into a new C “ C double bond where no bond existed before This reaction proved so useful that Wittig received the Nobel Prize in Chemistry in 1979 for this discovery The Wittig reaction R´ R C + O R´ − C H ketone or aldehyde R´ Ph P Ph Ph + R C R´ phosphorus ylide + Ph3P C O H alkene The phosphorus-stabilized carbanion is an ylide (pronounced “ill´-id”)—a molecule that bears no overall charge but has a negatively charged carbon atom bonded to a positively charged heteroatom Phosphorus ylides are prepared from tri-phenylphosphine and alkyl halides in a two-step process The first step is nucleophilic attack by triphenylphosphine on an unhindered (usually primary) alkyl halide The product is an alkyltriphenylphosphonium salt The phosphonium salt is treated with a strong base (usually butyllithium) to abstract a proton from the carbon atom bonded to phosphorus H Ph Ph P Ph + H C Ph + Ph P Ph X R triphenylphosphine C Li CH2CH2CH3 H H − C R + C4H10 butane butyllithium H + LiX Ph Ph P Ph R X− alkyl halide δ −CH2 H Ph + Ph P Ph δ+ phosphonium salt C R phosphorus ylide Examples Ph3P Ph3P + + Ph CH3 CH2 + Ph3P Br Br− Bu CH3 Li methyltriphenylphosphonium salt Br + Ph3P Ph benzyltriphenylphosphonium salt CH2 ylide Br− CH2 − + Ph3P Bu Li + Ph3P − CH ylide Ph www.downloadslide.net 18-18 The phosphorus ylide has two resonance forms: one with a double bond between carbon and phosphorus, and another with charges on carbon and phosphorus The double-bonded resonance form requires ten electrons in the valence shell of phosphorus, using a d orbital The pi bond between carbon and phosphorus is weak, and the charged structure is the major contributor The carbon atom actually bears a partial negative charge, balanced by a corresponding positive charge on phosphorus PROBLEM 18-30 Trimethylphosphine is a stronger nucleophile than triphenylphosphine, but it is rarely used to make ylides Why is trimethylphosphine unsuitable for making most phosphorus ylides? Because of its carbanion character, the ylide carbon atom is strongly nucleophilic It attacks a carbonyl group to give a charge-separated intermediate called a betaine (pronounced “bay´-tuh-ene”) A betaine is an unusual compound because it contains a negatively charged oxygen and a positively charged phosphorus on adjacent carbon atoms Phosphorus and oxygen form strong bonds, and the attraction of opposite charges promotes the fast formation of a four-membered oxaphosphetane ring (In some cases, the oxaphosphetane may be formed directly by a cycloaddition, rather than via a betaine.) The four-membered ring quickly collapses to give the alkene and triphenylphosphine oxide Triphenylphosphine oxide is exceptionally stable, and the conversion of triphenylphosphine to triphenylphosphine oxide provides the driving force for the Wittig reaction MECHANISM 18-6 The Wittig Reaction Step 1: The ylide attacks the carbonyl to form a betaine + + Ph3P C Ph3P R´ H − C O H R´ R ylide ketone or aldehyde O C C R R´ − a betaine Step 2: The betaine closes to a four-membered ring oxaphosphetane (first P ¬ O bond formed) + Ph3P H − O Ph3P R´ C C R R´ a betaine H O C C R R´ R´ oxaphosphetane Step 3: The ring collapses to the products (second P ¬ O bond formed) Ph3P Ph3P H O C C R R´ O R´ H R´ four-membered ring C R C R´ triphenylphosphine oxide + alkene R´ The Wittig Reaction 919 920 www.downloadslide.net CHAPTER 18     Ketones and Aldehydes The following examples show the formation of carbon–carbon double bonds using the Wittig reaction Mixtures of cis and trans isomers often result when geometric isomerism is possible O − + + Ph3P CH2 CH2 85% C + + Ph3P O C H − C H H C H (cis + trans) PROBLEM 18-31 Like other strong nucleophiles, triphenylphosphine attacks and opens epoxides The initial product (a betaine) quickly cyclizes to an oxaphosphetane that collapses to an alkene and triphenylphosphine oxide (a) Show each step in the reaction of trans-2,3-epoxybutane with triphenylphosphine to give but-2-ene What is the stereochemistry of the double bond in the product? (b) Show how this sequence might be used to convert cis-cyclooctene to trans-cyclooctene Planning a Wittig Synthesis The Wittig reaction is a valuable synthetic tool that converts a carbonyl group to a carbon–carbon double bond A wide variety of alkenes may be synthesized by the Wittig reaction To determine the necessary reagents, mentally divide the target molecule at the double bond, and decide which of the two components should come from the carbonyl compound and which should come from the ylide In general, the ylide should come from an unhindered alkyl halide Triphenylphosphine is a bulky reagent, reacting best with unhindered primary and methyl halides It occasionally reacts with unhindered secondary halides, but these reactions are sluggish and often give poor yields The following example and Solved Problem show the planning of some Wittig syntheses Analysis H 3C H 3C H 3C CH2CH3 C C H C C H H (1) Ph3P (2) BuLi CH2CH3 C H or could come from H 3C Synthesis CH2CH3 + Ph3P − (preferred) − C H 3C Br O H 3C + H3C + Ph3P − CH2CH3 C H H3C C + PPh3 O + O CH2CH3 C H H 3C H 3C CH2CH3 C C H www.downloadslide.net 18-19 Oxidation of Aldehydes 921 SOLVED PROBLEM 18-2 Show how you would use a Wittig reaction to synthesize 1-phenylbuta-1,3-diene H C C H C H C H H 1-phenylbuta-1,3-diene SO L UTI ON This molecule has two double bonds that might be formed by Wittig reactions The central double bond could be formed in either of two ways Both of these syntheses will probably work, and both will produce a mixture of cis and trans isomers Analysis C H C H CH + H Ph3P C CH H could come from C O CH2 or CH2 C PPh3 + H O H C CH CH2 You should complete this solution by drawing out the syntheses indicated by this analysis (Problem 18-32) PROBLEM 18-32 PROBLEM-SOLVING HINT (a) Outline the syntheses indicated in Solved Problem 18-2, beginning with aldehydes and alkyl halides (b) Both of these syntheses of 1-phenylbuta-1,3-diene form the central double bond Show how you would synthesize this target molecule by forming the terminal double bond Plan a Wittig synthesis so that the less hindered end of the double bond comes from the ylide Remember that the ylide is made by SN2 attack of triphenylphosphine on an unhindered alkyl halide, followed by deprotonation PROBLEM 18-33 Show how Wittig reactions might be used to synthesize the following compounds In each case, start with an alkyl halide and a ketone or an aldehyde (a) Ph ¬ CH “ C(CH3 )2 (c) Ph ¬ CH “ CH ¬ CH “ CH ¬ Ph (b) Ph ¬ C(CH3 ) “ CH2 H (d) C CH3 18-19 Oxidation of Aldehydes Unlike ketones, aldehydes are easily oxidized to carboxylic acids by common oxidants such as bleach (sodium hypochlorite), chromic acid, permanganate, and peroxy acids Aldehydes oxidize so easily that air must be excluded from their containers to avoid slow oxidation by atmospheric oxygen Because aldehydes oxidize so easily, mild reagents such as Ag2O can oxidize them selectively in the presence of other oxidizable functional groups O R C isobutyraldehyde O H [O] (oxidizing agent) R C OH isobutyric acid (90%) 922 CHAPTER 18     Ketones and Aldehydes www.downloadslide.net R Examples C H R (oxidizing agent) C O CH3 CH OH O C H Na2Cr2O7 CH3 dil H2SO4 CH CH3 C OH CH3 isobutyric acid (90%) isobutyraldehyde O O C H C Ag2O OH THF/H2O (97%) cyclohex-3-en-1-carboxylic acid cyclohex-3-en-1-carbaldehyde A Tollens test is usually done on a small scale, but it can also create a silver mirror on a large object O R C H aldehyde Silver ion, Ag + , oxidizes aldehydes selectively in a convenient functional-group test for aldehydes The Tollens test involves adding a solution of silver–ammonia complex (the Tollens reagent) to the unknown compound If an aldehyde is present, its oxidation reduces silver ion to metallic silver in the form of a black suspension or a silver mirror deposited on the inside of the container Simple hydrocarbons, ethers, ketones, and even alcohols not react with the Tollens reagent O + + Ag(NH3)2 H2O + − OH Ag Tollens reagent + R C silver O− + NH3 + H2O carboxylate PROBLEM 18-34 Predict the major products of the following reactions (a) (b) CHO + + Ag2O HO (c) CHO K2Cr2O7/H2SO4 HO CHO + + Ag(NH3)2 − OH (d) CHO + KMnO4 (cold, dilute) O 18-20 Reductions of Ketones and Aldehydes We have discussed several reductions of ketones and aldehydes in earlier sections Here, we review those reactions and then cover some additional reductions that are useful in synthesis 18-20A Hydride Reductions (Review) Ketones and aldehydes are most commonly reduced by sodium borohydride (see Sections 10-11 and 18-11) Sodium borohydride (NaBH4) reduces ketones to secondary alcohols and aldehydes to primary alcohols Lithium aluminum hydride (LiAlH4) also accomplishes these reductions, but it is a more powerful reducing agent, and it is much more difficult to work with Sodium borohydride is preferred for simple reductions of ketones and aldehydes Sodium triacetoxyborohydride [NaBH(OAc)3] is less reactive than NaBH4, and it selectively reduces aldehydes even in the presence of ketones O OH C H cyclohexanecarbaldehyde NaBH4, CH3CH2OH C H H cyclohexylmethanol (95%) C C NaBH , CH CH OH www.downloadslide.net cyclohexanecarbaldehyde cyclohexylmethanol (95%) 18-20 C Reductions of Ketones and Aldehydes OH O CH3 H NaBH4, CH3OH CH2CH3 CH3 CH CH2CH3 (±) butan-2-ol (100%) butan-2-one 18-20B Catalytic Hydrogenation Like alkene double bonds, carbonyl double bonds can be reduced by catalytic hydrogenation Catalytic hydrogenation is slower with carbonyl groups than with olefinic double bonds, however Before sodium borohydride was available, catalytic hydrogenation was often used to reduce aldehydes and ketones, but any olefinic double bonds were reduced as well In the laboratory, we prefer sodium borohydride over catalytic reduction because it reduces ketones and aldehydes faster than olefins, and no gas-handling equipment is required Catalytic hydrogenation is still widely used in industry, however, because H2 is much cheaper than NaBH4, and pressure equipment is more readily available there The most common catalyst for catalytic hydrogenation of ketones and aldehydes is Raney nickel Raney nickel is a finely divided hydrogen-bearing form of nickel made by treating a nickel–aluminum alloy with a strong sodium hydroxide solution The aluminum in the alloy reacts to release hydrogen, leaving behind a finely divided nickel powder saturated with hydrogen Pt and Rh catalysts are also used for hydrogenation of ketones and aldehydes O O OH C H C H C H Ni-H2 H (Raney nickel) Ni-H2 H (90%) 18-20C Deoxygenation of Ketones and Aldehydes A deoxygenation replaces the carbonyl oxygen atom of a ketone or aldehyde with two hydrogen atoms, reducing the carbonyl group past the alcohol stage all the way to a methylene group Formally, a deoxygenation is a four-electron reduction, as shown by the following equations These equations use H2 to symbolize the actual reducing agents, according to the general principle that one molecule of H2 corresponds to a two-electron reduction Formally, the deoxygenation requires two molecules of H2, corresponding to a four-electron reduction H2 deoxygenation (4-e reduction) O C H2 (2-e reduction) H OH C H2 (2-e reduction) H H C + H2O In actual use, H2 is not a good reagent for deoxygenation of ketones and aldehydes Deoxygenation can be accomplished by either the Clemmensen reduction (under acidic conditions) or the Wolff–Kishner reduction (under basic conditions) Clemmensen Reduction (Review) The Clemmensen reduction commonly converts acylbenzenes (from Friedel–Crafts acylation, Section 17-11B) to alkylbenzenes, but it also works with other ketones and aldehydes that are not sensitive to acid The carbonyl compound is heated with an excess of amalgamated zinc (zinc treated with mercury) and hydrochloric acid The actual reduction occurs by a complex mechanism on the surface of the zinc H H 923 924 www.downloadslide.net CHAPTER 18     Ketones and Aldehydes O Ph C Zn(Hg) CH2CH3 propiophenone CH3 (CH2)5 Ph HCl, H2O Zn(Hg) HCl, H2O CHO heptanal O CH2 CH2CH3 n-propylbenzene (90%) CH3 (CH2)5 CH3 n-heptane (72%) H H Zn(Hg) HCl, H2O cyclohexanone cyclohexane (75%) Wolff–Kishner Reduction Compounds that cannot survive treatment with hot acid can be deoxygenated using the Wolff–Kishner reduction The ketone or aldehyde is converted to its hydrazone, which is heated with a strong base such as KOH or potassium tert-butoxide Ethylene glycol, diethylene glycol, or another high- boiling solvent is used to facilitate the high temperature (140–200 °C) needed in the second step O N + H2N C H+ NH2 NH2 H KOH heat + H2O C C H + H2O + N N hydrazone Examples O NNH2 N2H4 KOH, 175 ° C HOCH2CH2OCH2CH2OH propiophenone (diethylene glycol) hydrazone O N N2H4 cyclohexanone NH2 + N2 n-propylbenzene (82%) H H t-BuO− K+ O CH3 hydrazone S CH3 + N2 cyclohexane (80%) (DMSO, a solvent) The mechanism for formation of the hydrazone is the same as the mechanism for imine formation (Key Mechanism 18-4 in Section 18-14) The actual reduction step involves two tautomeric proton transfers from nitrogen to carbon (Mechanism 18-7) In this strongly basic solution, we expect a proton transfer from N to C to occur by loss of a proton from nitrogen, followed by reprotonation on carbon A second deprotonation sets up the intermediate for loss of nitrogen to form a carbanion This carbanion is quickly reprotonated to give the product MECHANISM 18-7 Wolff–Kishner Reduction Formation of the Hydrazone: See Key Mechanism 18-4 Reduction step 1: Proton transfer from N to C (Basic conditions: Remove, then replace.) R´ R C hydrazone N N H H −OH R´ R remove proton from N C N − N H R´ −C R N N replace proton on C H H2O R´ H C R N + N H − OH www.downloadslide.net 18-20 Reductions of Ketones and Aldehydes 925 Another deprotonation enables loss of N2 Reduction step 2: Remove second proton from N R´ H C R N R´ H C R − N OH H Step 3: Lose N2 N N Step 4: Protonate R´ H C R − N N R´ H C R H2O − carbanion H + − OH product PROBLEM 18-35 Propose a mechanism for both parts of the Wolff–Kishner reduction of cyclohexanone: the formation of the hydrazone, and then the base-catalyzed reduction with evolution of nitrogen gas PROBLEM 18-36 Predict the major products of the following reactions: (a) (b) O O (1) H2NNH2 Zn(Hg) HCl, H2O (2) KOH, heat (d) (c) O O O O (1) N2H4 (2) KOH, heat O Zn(Hg) HCl, H2O O SUMMARY Reactions of Ketones and Aldehydes Addition of organometallic reagents (Sections 9-7B and 10-9) O− M+ O R C + R´ R˝ M R (M = metal = MgX, Li, etc.) C OH H3O+ R´ R C R˝ R˝ alkoxide alcohol R´ Reduction (Sections 10-12 and 18-20A) O− O R C R´ + NaBH4 (or LiAlH4) R C (or H2/Raney nickel) ketone or aldehyde OH R´ H+ R C H H alkoxide alcohol R Deoxygenation reactions a Clemmensen reduction (Sections 17-11B and 18-20C) O R C R´ ketone or aldehyde + Zn(Hg) HCl H R H C R´ (continued) 926 www.downloadslide.net CHAPTER 18     Ketones and Aldehydes b Wolff–Kishner reduction (Section 18-20C) O R C N R´ + H2N NH2 R C hydrazine ketone or aldehyde NH2 H KOH heat R´ hydrazone + H R H2O R´ + C N N Hydration (Section 18-12) O R HO C + R´ ketone or aldehyde H2 O OH R C R´ hydrate Formation of cyanohydrins (Section 18-13) O R C + R´ HO − CN HCN R ketone or aldehyde CN C R´ cyanohydrin Formation of imines (Section 18-14) O R C + R´ NH2 R˝ ketone or aldehyde H+ R primary amine N R˝ C R´ + imine (Schiff base) H2O Formation of oximes and hydrazones (Section 18-15) O R + R´ C H2 N ketone or aldehyde H+ OH + R´ C H2 N ketone or aldehyde NH H+ R˝ H Ph C R´ R N NH C R´ R˝ hydrazone derivative hydrazine reagent R˝ = OH oxime hydroxylamine O R R N Reagent Name Derivative Name hydrazine phenylhydrazine hydrazone phenylhydrazone semicarbazide semicarbazone O C NH2 Formation of acetals (Section 18-16) O R C + R´ R˝ aldehyde or ketone H+ OH alcohol R˝ O R OR˝ C + R´ H2 O acetal (or ketal) The Wittig reaction (Section 18-18) + Ph3P R C − R´ + R phosphorus ylide R´ R C O R´ ketone or aldehyde C + C R R´ alkene Ph3P O I10 Ethynylcyclohexane, 891 Ethynyl estradiol, 429, 1277 Exact mass, 588 Exergonic, 162 Exhaustive alkylation, 963 Exothermic, 164 E-Z nomenclature, 304–305 F www.downloadslide.net Index Faraday, Michael, 764–765 Fast proton transfers, 640–641 Fats, 1266–1267 Fatty acids, 1002, 1014, 1074, 1144, 1150, 1205, 1265, 1266 composition of some fats & oils, 1269t structures, melting points of some common, 1267t Fermentation of food grains to produce ethanol, 469 Ferric bromide, 767, 819 Ferric chloride, 830 Fibrin, 1246 Fibrinogen, 1246 Fibroin, 1222 Fibrous proteins, 1254 Filters, polarized, 213–214 Fingerprint region, 561 Fireflies, Fischer, Emil, 225, 1173, 1186, 1196 Fischer esterification, 537, 1024–1027 Fischer projections, 226–230 assigning (R) and (S) configurations from, 229–230 represents totally eclipsed conformation, 1173 using, 230 Fischer-Rosanoff convention, 236, 1175 Flagpole hydrogens, 136 Flamingos, 876 Fluocinolone acetonide, 914, 1277 Fluoride, 832 Fluoroacetic acid, 80 Fluorodopa, 976 2-Fluoro-l-DOPA, 976 Fluoroethane, 248 4-(2-Fluoroethyl)heptane, 248 (S)-1-Fluoro-1-methoxyethane, 274 1-Fluoropropane, 249 Flurbiprofen, 847–848 Folic acid, 966 Food additives, 160 Formal charges, 11 Formaldehyde, 9, 15–16, 36, 58, 438, 478, 479, 484, 514, 877, 882, 888, 904–905 Formaldimine, Formalin, 880, 882, 904 Formalism, curved arrow, 88–90 Formamide, 1046 Formate, 451 Formic acid, 95, 452, 514, 1002, 1004, 1027 Formulas condensed structural, 23–24 empirical, 26 molecular, 25–26 structural, 22–23 Formyl, 835 2-Formylbenzoic acid, 878 2-Formylcyclohexanecarboxamide, 1050 Fourier transform, 649 Fourier transform infrared spectrometer (FT-IR), 563 Fourier transform spectroscopy, 649 Fragmentation patterns in mass spectrometry, 585, 590–597 Fragments, 585 Free energy, 162, 163t Free induction decay, 649 Free-radical allylic bromination, 728 Free-radical chain reaction, 157–158 Free-radical halogenation, 159–160, 177, 255–256 Free-radical polymerization, 405–407, 1288–1289 Free-radical reactions, 183–184 Free radicals, 158, 190 Free-radical stabilities, 177–180 Freon-11, 251 Freon-12, 251 Freon-134a, 251 Freon-22, 247, 251 Freons, 119, 155, 251 Frequency, 557–558 bond stretching, 560t domains, 564 Friedel, Charles, 830 Friedel-Crafts acylation, 835–838, 884, 890–891 Friedel-Crafts alkylation, 830–834, 837 Frost circle, 773 Frost-Musulin diagram, 773 Fructofuranose, 1182 Fructose, 1173, 1181, 1185, 1201 Fruit browning, 857 Fullerenes, 791 Fuller, R Buckminster, 791 Fumarase, 341 Fumarate, 341 Fumaric acid, 201, 202 Functional groups, 55, 91 with nitrogen, 96–98 with oxygen, 93–96 priority of, in naming organic compounds, 464t priority of in naming organic compounds, 878 Furan, 94, 679, 755t, 782, 786–787, 1182 Furanose, 1182 Fused heterocyclic compounds, 791–792 Fused rings, 146, 787 G Gabriel, Siegmund, 984 Gabriel synthesis, 984–985 Galactitol, 1185 Galactose, 1202 Galactosidic linkage, 1200 Gallstones, 1277 g-Aminobutyric acid, 1003, 1004, 1047, 1092 g-Butyrolactam, 1055, 1092 g-Butyrolactone, 1045, 1055 g-Pyrone, 787 Garlic, 495 Gas chromatograph, 587 Gas chromatograph-mass spectrometry (GC-MS), 587 Gasohol, 94 Gasoline, 65, 119, 677 Gatterman-Koch synthesis, 838 Gauche, 127, 128n, 129f, 222 Gauss, 609 Geckos, 61 Geim, Andre, 790 Gelatin, 1227 Geminal dihalides, 249, 439–440 Gentiobiose, 1200–1201 Geometric isomerism, 45, 303 Geometric isomers, 131, 201, 230–232 Geometry general rules of, 37–38 tetrahedral, 36 trigonal, 34, 35 Geranial, 1280 Geraniol, 696 Geranium oil, 1044 Geranyl acetate, 1044 Gibbs free energy, 162 Gilman reagents, 48, 4865, 844, 896, 1155 Ginseng, 429 Glasses, 1302 Glass transition temperature, 1302 Globular proteins, 1254 Glucaric acid, 1186 Glucitol, 1185, 1204 Gluconic acid, 1186 Glucopyranose, 1182 Glucopyranoside, 1188 Glucose, 914, 1002, 1172–1174, 1177, 1179, 1180, 1182, 1184, 1186, 1192, 1196 L-(+)-Glucose, 238 Glucose oxidase, 1188 Glucoside, 1188 Glucosidic linkage, 1199 Glucuronic acid, 1192 Glues, modern, 705–706 Glutamic acid, 1227, 1248 L-(+)-Glutamic acid, 236 L-Glutamic acid, 1232 Glutathione, 496 Gluten, 705 Glycans, 1203 Glycaric acid, 1186 Glyceraldehyde, 229, 1175, 1176, 1196, 1224 Glycerides, 1265, 1266 Glycerin, 539 Glycerol, 539, 1014, 1070, 1074, 1266 Glyceryl trinitrate (nitroglycerin), 539 Glycine, 1223, 1227, 1229 Glycogen, 1173, 1205, 1205–1206 cis-Glycol, 398, 399 Glycols, 395, 396, 398, 400, 464, 536 Glycoprotein N-glycoside, 1190 Glycosides, 1188, 1189–1190, 1198 Glyme, 675 Glyphosate, 771 Glyphosphate, 1227 Glyptal, 1090 GMP (guanidylic acid), 1209 Goodyear, Charles, 1286, 1295 Grain alcohol, 469–470 Graphite, 790 Grease, emulsion of, 1272 Grignard reagents, 476, 478, 479, 480, 482, 484–485, 488, 676, 692, 704, 733, 889, 894, 1020–1021, 1082, 1084 Grignard, Victor, 476 Grubbs, Robert, 408 Guanine, 65, 1208, 1211, 1212 Guanosine, 1208 Guanosine monophosphate, 1209 Gum Benzoin, 764 Gyromagnetic ratio, 609 H Halides, 247, 985 Haloalkanes, 248 Haloform reaction, 1123–1125 Halogenated compounds in environment, 251 Halogenation, 122, 155 alpha See Alpha halogenation base-promoted, 1122–1123 of benzene, 811–813 free-radical, 159–160, 255–256 selectivity in, 176–181 side-chain, 853–854 temperature dependence of, 175 Halogen exchange reactions, 264 Halogens, 122, 1123 adding to alkenes, 382–385 adding to alkynes, 444–445 elements of unsaturation, 300 Halogen substituents, 826–827 Halohydrins, 385–388, 694–696 Halonium ions, 383, 826 Halothane, 247, 250, 673 Hammond’s postulate, 181–183, 1068 Hard water, 1272 Hard-water scum, 1272 Harlequin poison frog, 428 Harrier II jet, 705 Haworth projection, 1179 HCFCs, 251 Hearts, artificial, Heat of combustion, 133 Heat of hydrogenation, alkenes, 310 Heats of hydrogenation molar heats of hydrogenation of alkenes, 312t usually exothermic, 313 Heat, exothermic and endothermic, 164 Heck reaction, 845–846 Heck, Richard F., 843 Heisenberg uncertainty principle, Helium, Hell-Volhard-Zelinsky (HVZ) reaction, 1127–1128, 1232 Heme ring, 784 Hemiacetal, 902, 912, 913, 1178–1182 Hemiaminal, 906, 907, 958 Hemiketal, 1181 Hemoglobin, 1254 Hemophiliac factor VIII, 1248 Hept-2-yn-4-ol, 439 Hepta-1,3,5-triene, 302 Hepta-1,6-dien-4-ol, 483 Heptalene, 776, 783 Heptan-1-ol, 511 Heptan-1-one, 884 Heptan-2-one, 572 www.downloadslide.net Heptanal, 511, 924 Heptane-2,6-dione, 1137 n-Heptane, 119, 924 Heptanoic acid, 1063 Heptanoic anhydride, 1063 Heptanoyl chloride, 1063 1,3,5-Heptatriene, 302 Hertz (Hz), 557–558 Heteroatoms, 300 Heterocyclic aromatic compounds, 783–787 Heterocyclic compounds, 678 Heterogeneous catalysis, 389 Heterolytic cleavage (ionic cleavage), 166 Hex-1-ene, 566–567 cis-Hex-2-ene, 92 Hex-1-yne, 436, 449, 451, 452 trans-Hex-2-ene, 92, 593 trans-Hex-2-enoic acid, 636 Hex-4-enal, 894 Hex-4-enonitrile, 894 trans-Hexa-1,3-diene, 317 trans-Hexa-1,4-diene, 317 Hexa-1,4-diene, 751 Hexa-2,4-diene, 751 Hexa-1,3,5-triene, 747, 748, 751 Hexa-2,4-dienediocid acid, 1015 Hexachlorocyclopentadiene, 252 Hexadecenyl acetate, 1089 Hexamethylenediamine, 1094, 1298 Hexan-1-ol, 468, 505 Hexanal, 449 Hexane, 64, 77, 566–567, 591–592 Hexane-1,6-diamine, 1298 cis-Hexane-3,4-diol, 399 meso-Hexane-3,4-diol, 453 Hexanoic acid, 573 Hexanoyl chloride, 965 Hide glue, 705 High-density polyethylene, 1295 Highest Occupied Molecular Orbital (HOMO), 744–745 High explosives, 539 High-resolution mass spectrometry (HRMS), 587–588 Histamine, 942, 1236 Histidine, 755t, 1236 Histidine decarboxylase, 1236 Histrionicotoxin, 428 HIV virus, 1207 H NMR, 649, 650–652 Hoffman, Roald, 743 Hofmann elimination, 967–969 Hofmann product, 328 Homogeneous catalysis, 389 Homologous series, 108 Homologs, 108 Homolytic cleavage (radical cleavage), 166, 167t Homopolymers, 1297 Honeybees, 505, 944, 1202 Hormones See also specific hormone adrenocortical, 1277 bradykinin, 1239 testing Olympic athletes, 588 thyroid, 248 Household bleach, 508 Hückel, Erich, 774 Hückel’s rule described, 774–776 molecular orbital derivation of, 776–777 Human brain, MRI scan of, 607f Hund’s rule, 6, 773 Hybrid atomic orbitals, 28, 32 Hybridization effects on acidity, 81–83 general rules of, 37–38 and molecular shapes, 32–33 Hybrid molecular orbitals, 27 Hydrates, 902, 903 Hydration, 65 of alkynes, 891–892 of alkynes to ketones and aldehydes, 447 of ketones and aldehydes, 902–904 by oxymercuration-demercuration, 372–375 Hydrazines, 909–911 Hydrazones, 909, 924 Hydride reagents, 489 Hydride reductions, 922–923 Hydride shift, 281–283 Hydroboration of alkenes, 376–381 described, 378 stereochemistry of, 380–381 stoichiometry of, 379–380 Hydroboration-oxidation, 448 Hydrobromic acid, 519–523 Hydrocarbons, 776 alkanes, 90–91 alkenes, alkynes, 92 aromatic, 93 classification, 108t described, 90 infrared spectroscopy of, 565–569 polynuclear aromatic, 787–789 Hydrochloric acid, 521–522, 952 Hydrocracking, 120, 121–122 Hydrogen, Hydrogenation alkenes, 310 of triglycerides, 1269 Hydrogen bonding, 62–64, 65, 67, 673 Hydrogen bonds, 62 Hydrogen chloride, 156 Hydrogen cyanide, 904 Hydrogen-deuterium exchange, 816 Hydrogen gas, 472 Hydrogen halides addition of to alkenes, 362–369 addition of, to alkynes, 445–446 Hydrogenolysis, 1236 Hydrogen peroxide, 690 Hydrogens acetylenic, 618–619 allylic, 728 primary, secondary, tertiary, 176f Hydrohalic acids acid-catalyzed opening of epoxides, 698–699 reactions of alcohols with, 519–523 Hydroiodic acid (HI), 687 Hydrolysate, 1242 Hydrolysis, 975 of carboxylic acid derivatives, 1073–1078 of fats or oils, 1014 of lactose, 1200 partial, 1246–1247 Hydroperoxides, 381, 688 Hydrophilic, 66, 1271 Hydrophobic, 66, 117–118, 467, 1271 Hydroquinone, 462, 466, 857–858 Hydroxide, 261–262, 270 Hydroxide salt, 967 Hydroxy, 463 o-Hydroxybenzoic acid, 1004 3-Hydroxybutanal, 878 2-Hydroxybutanenitrile, 1050 3-Hydroxybutanoic acid, 463 4-Hydroxybutanoic acid, 657, 1045 2-Hydroxycyclopentane-2-carbaldehyde, 878 trans-3-(2-Hydroxyethyl)cyclopentanol, 463 Hydroxy groups, 94 Hydroxylamines, 909–911 Hydroxylation, 398 Hydroxyl group, 347 Hydroxylic solvents, 268 Hydroxyl radicals, and cancer, 158, 186 5-Hydroxylysine, 1227 Hydroxymethylacetylene, 430 2-(Hydroxymethyl)cyclohexanone, 463 4-Hydroxy-2-methylpentanoic acid lactone, 1045 4-Hydroxy-4-methyl-2-pentanone, 878 4-Hydroxy-4-methylpentan-2-one, 878, 1130 9-Hydroxynonanoic acid lactone, 1089 9-Hydroxynonanoic acid, 1089 5-Hydroxypentanoic acid lactone, 1045 Hydroxyproline, 1227 4-Hydroxyproline, 1227 Hydroxy protons, 640–641 Hypochlorous acid, 508 Hypophosphorus acid, 977 I Imaging magnetic resonance imaging (MRI), 658–659 nuclear magnetic resonance, 658–659 Imidacloprid, 944 Imidazole, 785, 944 Imines, 906–909 Iminium ion, 957 Iminium salt, 982 Imipenem, 1043, 1093 Incomplete proteins, 1227 Indianapolis 500, 469 Indigo, 753f, 754, 756 Indigo Carmine, 754 Indole, 783, 791, 944 Indoxyl, 755–756 Induced magnet field, 610, 611f Inductive effects, 80–81, 188 Inductive stabilization, 819 Infrared (IR) spectroscopy of amines, 954–955 of aromatic compounds, 796 of carboxylic acid derivatives, 1053–1057 of carboxylic acids, 1015–1016 described, 557 Index I11 of ethers, 680–682 of hydrocarbons, 565–569 identifying drugs with, 587 image of mouse, 556f IR stretching frequencies, 578–580 reading, interpreting IR spectra, 580–584 using to monitor biological reactions’ progress, 576 Infrared (IR) spectrum, 559, 562–565 Infrared region of electromagnetic spectrum, 558–559 Infrared spectrometers, 562 Inhibition, competitive, 515 Inhibitors, radical, 186–187 Inorganic acids described, 537–538 esters of, 537–540 Insecticides chlorinated, 252 DichloroDiphenylTrichlorethane (DDT), 251 diflubenzuron, 1206 imidacloprid, 944 Sevin, 1097–1098 Insulin, 1248, 1254 Integrators, 622 Interconversion of acid derivatives by nucleophilic acyl substitution, 1060–1069 Interferograms, 563 Interferometers, 563 Intermediate, 172 Intermolecular forces, 60–63 Internal acetylene, 430 Internal alkynes, 430 Internal mirror plane, 207 International Space Station (ISS), 672 International Union of Pure & Applied Chemistry (IUPAC), 110 Inversion of configuration, 273, 274, 279 Invertases, 1202 Invert sugar, 1202 Iodide, 261 Iodide ion, 686 Iodination of benzene, 813 Iodoacetic acid, 80 Iodobenzene, 813, 844, 845 Iodobenzene derivatives, 976 2-Iodobutane, 249 Iodocyclohexane, 248 3-Iodo-2,2-dimethylbutane, 325 Iodohydrin, 387 Iodomethane, 261, 476 1-Iodo-1-methylcyclohexane, 276 1-Iodo-2-methylcyclohexane, 339 3-(Iodomethyl)pentane, 248 Iodonium ion, 383 1-Iodopropane, 636 Ionic bond, Ionic structures, 12 Ion sources, 585 IR absorptions, and wavenumbers, 559 IR-active and IR-inactive vibrations, 561–562 IR-inactive, 562 I12 IR spectroscopy See Infrared (IR) spectroscopy sec-Isoamyl, 448 Isoamyl acetate, 1044, 1088 Isoamyl group, 112 Isobutane, 44, 108, 109, 179–180, 256 Isobutylene, 299, 303, 404, 683, 1290 Isobutyl group, 112, 113 Isobutyraldehyde, 922, 1030 Isobutyric acid, 922 Isocyanate, 1300 Isoelectric pH, 1229 Isoelectric points and electrophoresis of amino acids, 1229–1231 Isoflurane, 250 Isolated double bonds, 317, 716 Isomerism, 44–46 Isomers, 44 geometric, 131 optical, 215 types of, 232 Isoniazid, 391 Isooctane, 119 Isopentane, 45, 62, 108, 109 Isopentyl acetate, 505, 1088 Isopentylamine, 985 Isopentyl bromide, 985 Isopentyl group, 112 Isophthalic acid, 1005 Isoprene, 303, 750, 751f, 1279, 1295 Isopropyl acetate, 537 Isopropyl alcohol, 94, 306–307, 460, 464, 470, 537, 685 N-Isopropylaniline, 981 Isopropylbenzene, 833, 854 Isopropyl bromide, 248, 272, 436 Isopropylcyclopentane, 91 Isopropyldimethyloctane, 115 Isopropyl formate, 1045 Isopropyl group, 112, 113, 629, 644 4-Isopropyloctane, 113 4-Isopropyl-2,2,3,6-tetramethyloctane, 115 Isotactic, 1294 Isotope ratios, 588 Isotopes, “exact” masses of common, 587t Isovaleric acid, 895, 1003, 1004 Isovaleroyl chloride, 895 Isoxazole, 787 IUPAC, 110 IUPAC names described, 110–111 old and new, 302 summary, Appendix IUPAC rules, 110 J Jackson, Michael, 795 cis-Jasmone, 1136 Jones reagent, 511 Joules, 62–63 K www.downloadslide.net Index Keflex, 1043, 1093 Kekulé, Friedrich, 765 Kekulé structure, 765, 766 Kent, Stephen, 219 Kepone, 252 Kerosene, 119, 1265 Ketal, 911n, 1181n Ketamine, 219 Ketene, 1085 Keto-acid, 451, 1231 Keto-aldehyde, 451 Keto-enol tautomerism, 447, 449, 1114–1115 Keto ester enolate, 1140 Keto form, 1114–1117 Ketoglutaric acid, 1232 Ketones, 94, 438, 476, 478, 480, 482, 486, 506, 508, 511, 836, 876–877 acetoacetic ester synthesis, 1151–1154 addition of an enolate to, 1113 aldol condensation of, 1128–1131 alkylation of carboxylic acids to form, 1031 alpha halogenation of, 1121–1127 carbon NMR spectra of, 884 characteristic absorptions of carbonyl compounds, 571–574 condensations of amines with, 910t formation of acetals, 911–914 formation of imines, 906–909 hydration of, 902–904 industrial importance of, 888–889 infrared spectra of, 882–883 mass spectra of, 884–887 nomenclature of, 878–880 physical properties of, 880–882 proton NMR spectra of, 883 reactions of, 898–902 reactions of amines with, 958 reduction of, 922–927 review of syntheses of, 889–892 synthesis from acid chlorides and esters, 895–898 synthesis from carboxylic acids, 893–894 synthesis from nitriles, 893–894 ultraviolet spectra of, 887–888 used in household products, 889t Wittig reaction, 918–921 Ketosis, 880, 1173, 1174 Kevlar, 1298 Kiliani-Fischer synthesis, 1176 Kinetic control, 727 Kinetic product, 727 Kinetics, 156 E1 vs E2 elimination reactions, 334–335 and rate equation, 169–171 SN1 vs SN2 reactions, 285 Knocking, 119 Knowles, William, 390 Kumepaloxane, 247 Kuru, 1258 L Lactams, 1047, 1055, 1092 Lactic acid, 225 (R)-Lactic acid, 228 (S)-Lactic acid, 228, 1002 Lactones, 1055, 1089–1090 Lactose, 914, 1200 Lactose-intolerant, 1200 Laetrile, 1190 Lanosterol, 699, 1281 Large-ring annulenes, 775–776 Latex, 1295 Latex surgical gloves, 1300 Lavender oil, 1088 Leaving group amines as, 967–969 effects on SN1 reactions, 278 Leaving groups, 260 effects on the substrate, 269–272 weak bases that are common, 271t Lecithins, 1274 Leftorium, 202 Leucine, 1237 Leukemia, and benzene, 766 Levodopa, 390 Levorotatory, 216 Levulose, 1202 Lewis acids, 86–87 Lewis bases, 86–87 Lewis, Gilbert N., 86 Lewis, G N., Lewisite, 494 Lewis structures, Lexan polycarbonate, 1099, 1300 Lidocaine, 1046 Light energy of photon, 157n plane-polarized, 213–214 Lime, 432 Limonene, 1281 Lindlar’s catalyst, 442, 443, 452 Line-angle drawings, 25t Line-angle formulas, 24 Linear bonding, 33 Linear combination of atomic orbitals (LCAO), 28 Linear polyethylene, 1295 Linoleic acid, 1266 Lipid bilayer, 1274, 1275f Lipids introduction, 1265 phospholipids, 1273–1275 prostaglandins, 1278–1279 saponification of fats and oils, 1270–1273 steroids, 1275–1277 terpenes, 1279–1281 triglycerides, 1266–1270 waxes, 1265, 1266 Lipitor, 1276 Lipophilic, 1271 Liquefied petroleum gas (LPG), 119 Liquefied natural gas, 118 Lister, Joseph, 473 Lithium, 6, 7, 475 Lithium alkoxide, 1030 Lithium aluminum hydride (LAH), 489–491, 922, 982, 1078, 1084, 1088, 1095 Lithium carbonate, Lithium carboxylate, 893 Lithium dialkylcuprates, 485–486, 896, 1084, 1155 Lithium diisopropylamide (LDA), 1117, 1118 Lithium divinylcuprate, 486, 844, 1155 Lithium enolates, 1134 Lithium hydroxide, 1012 Lithium iodide (Lil), 675 Lithium lialkylcuprate reagents, 844 Lithium pentanoate, 1012 Lithium tri-tert-butoxyaluminum hydride, 895 Lithium valerate, 1012 London dispersion forces, 60, 61, 253 Lone pairs, 8, 58 Low-density polyethylene, 406, 1289 Lowest Unoccupied Molecular Orbital (LUMO), 744–745 Lowry, Thomas, 68 LSD, 792 L series, 1176 Lucas reagent, 521 Lucas test, 522 Luciferin, 2,6-Lutidine, 695 Lysine, 947, 1227, 1230–1231 M M+, 585 M+1 peak, 588 M+2 peak, 588 Macintosh, Charles, 1295 Maconda well blowout, 2010, 117f Magnesium alkoxide salt, 693 Magnesium monoperoxyphthalate (MMPP), 397, 694 Magnesium salt, 1082 Magnetically coupled, 625, 627–629 Magnetic deflection, 585 Magnetic moment, 608 Magnetic resonance imaging (MRI), 658–659 Magnetic shielding by electrons, 610–612 Ma Huang, 952 Major contributors, 15–17 Malaria, 45 (S)-Malate, 341 MALDI (Matrix-Assisted Laser Desorption/Ionization) technique, 586 Male hormones, 1045 Maleic acid, 201, 202 Maleic anhydride, 1049 Malonate, 1144 Malonic acid, 1009 Malonic ester, 1147 Malonic ester enolate, 1156 Malonic ester synthesis, 1146, 1148–1151 Malt, 469, 1199 Maltose, 1199–1200 Mandelonitrile, 904–905 Manganate ester, 399 Manganese dioxide, 399 Mannitol, 1185, 1204 Mannose, 1177, 1195 MAO (Monoamine oxidase), 971 MAPP (MethylAcetyleneProPadiene), 432 Margarine, 1269 Markovnikov’s orientation, 365, 387, 446, 447 Markovnikov’s product, 365, 445 Markovnikov’s rule, 364–365 Markovnikov, Vladimir, 364 Mass spectrometers, 584, 585, 586f Mass spectrometry (MS), 26 of amines, 957 of aromatic compounds, 796 of carboxylic acids, 1018 described, 557 determination of molecular formulas by, 587–590 www.downloadslide.net of ethers, 680–682 fragmentation patterns in, 590–597, 596–597 introduction, 556–557, 584–587 of ketones and aldehydes, 884–887 Mass spectrum, 584 Mauveine, 753f, 809 McLafferty rearrangement of ketones, aldehydes, 885–887, 1018 mCPBA (meta-chloroperoxybenzoic acid), 397, 693 Meat tenderizer, 1247 Melibiose, 1203 Melting points, 60 of alkanes, 117–118 of carboxylic acid derivatives, 1051–1052 carboxylic acids, 1007 of some common fatty acids, 1267t Menthol, 460, 514, 1280 Menthone, 460 Mercaptans, 494–496 2-Mercaptoethanol, 494 Mercurial ether, 684 Mercuric salts, 891 Mercurinium ion, 373–375 Merrifield resin, 1249 Merrifield, Robert Bruce, 1248 Mesitylene, 793 Mesityl oxide, 1132 Meso compounds, 233–235 Messenger RNA, 1207 meta, 465 Meta-, 793 Meta-allowing, 823 Meta attack, 820, 823, 826 Meta-directing substituents, 822–825 Meta-directors, 823, 824 Metal-ammonia reduction to trans alkenes, 443–444 Metaldehyde, 882 Methamphetamine, 942 Methane, 8, 11, 33, 36, 109, 110, 118, 120, 122, 433, 494 chlorination of, 156–157, 162, 164, 174 free-radical chain reaction, 157–159 reactions with halogens, 175 Methane hydrate, 121 Methanethiol, 494 Methanoic acid, 95, 1004 Methanol, 56, 63, 94, 170, 261, 265, 275, 276, 280, 460–461, 464, 466t, 468–469, 514, 560t, 615, 750, 1014, 1069, 1299 Methanotrophs, 36 Methionine, 691, 1227 Methoxide, 326, 1066–1067 Methoxybenzene, 677, 792, 819–821 1-Methoxybutane, 263 Methoxycyclohexane, 677 trans-2-Methoxycyclopentanol, 697, 698 trans-2-Methoxycyclopentanol, 700 2-Methoxy-3,3-dimethylpentane, 682 Methoxyethane, 677, 880 3-Methoxyfuran, 679 1-Methoxy-1-methylcyclopentane, 376–381 2-Methoxyhexane, 684 5-Methoxyhexanenitrile, 1048 p-Methoxypropiophenone, 1084 3-Methyl-1-butanamine, 944 2-Methyl-2-butene, 302 3-Methyl-1-butene, 302 2-Methyl-1-penten-3-yne, 430 2-Methyl-2-pentene, 304 Methyl-2-phenylethanoate, 1045 Methyl acetate, 493, 1139 Methyl acetylene, 92, 430, 431–432, 1048 N-Methylacetamide, 97, 1032, 1052 Methyl acrylate, 846, 1292 Methyl a-cyanoacrylate, 1293 Methyl a-D-glucopyranoside, 1191 Methyl alcohol, 94, 460, 461, 464, 468–469, 684 Methylamine, 8, 56, 63, 76, 907, 908, 950, 1032 Methylammonium chloride, 13, 56 Methylammonium ion, 538 Methylammonium sulfate, 1075 4-Methylaniline, 944 o-Methylacetanilide, 830 Methyl-b-D-glucopyranoside, 1188 p-Methylbenzaldehyde, 891 Methylbenzene, 617, 792 Methyl benzoate, 482, 1025, 1054f, 1061, 1069, 1143, 1145 2-Methylbenzoic acid, 793 Methyl bromide, 249 2-Methylbuta-1,3-diene, 303 3-Methylbutan-1-amine, 944, 983 N-Methylbutan-2-amine, 944 3-Methylbutanamide, 983 N-Methyl-2-butanamine, 944 2-Methylbut-1-ene, 324 3-Methylbut-1-ene, 302, 311 2-Methylbut-2-ene, 46, 302, 311, 324, 377 (S)-2-Methylbutanal, 510 (S)-2-Methylbutan-l-ol, 510 2-Methylbutan-1-ol, 236 3-Methylbutan-1-ol, 595 2-Methylbutan-2-ol, 64, 899 3-Methylbutan-2-ol, 377, 523 2-Methylbutane, 222, 311 3-Methylbutane-1-thiol, 494 3-Methylbutanoic acid, 1004 3-Methylbutanoyl chloride, 983 3-Methylbut-1-yne, 438 Methyl cation, 188f Methyl chloride, 157 Methyl cinnamate, 846 Methylcyclobutane, 45 Methyl cyclobutanecarboxylate, 1028 1-Methylcycloheptanol, 381 2-Methylcycloheptanol, 381 Methylcyclohexane, 140, 141 1-Methylcyclohexanol, 369, 529 1-Methylcyclohexene, 328, 369 3-Methylcyclohex-2-enone, 1137 Methylcyclopentane, 91, 130f, 184 Methyl cyclopentanecarboxylate, 1045 1-Methylcyclopentanol, 379, 462 trans-2-Methylcyclopentanol, 380 trans-3-Methylcyclopentanol, 274 3-Methylcyclopentanone, 878 1-Methylcyclopentene, 302, 379, 380, 381, 388, 402 3-Methylcyclopentene, 402 4-Methyl-1,3-dioxane, 679 3-Methylenecyclohexene, 302, 751 2-Methylpent-1-en-3-yne, 430 2-Methylpent-2-ene, 304 4-Methylpent-3-en-2-one, 1132 2-Methylpentane, 592 2-Methylphenol, 466 4-Methyl-1-phenylpent-2-yn-1-ol, 438 Methylcyclopropane, 299 Methylene, 192, 391 Methylene chloride, 249, 250, 384 Methylenecyclohexane, 328 Methylene groups, 108, 192, 302, 448, 640 Methylene halides, 249 Methylene iodide, 392 Methyl ester, 1028, 1070 Methyl ethers, 1191 Methyl ethyl ketone, 95, 879 1-Methylethyl methanoate, 1045 Methyl formate, 1143 Methyl group, 43, 113 Methyl halides, 249, 253t 3-Methylheptane, 486 cis-2-Methylhex-4-en-3-ol, 452 3-Methylhex-4-yn-3-ol, 439 3-Methylhexan-3-ol, 480 Methylidene group, 302 Methyl iodide, 262f, 263, 496, 542, 1190–1191 Methyl isopropyl ketone, 629 Methyl ketones, 629, 891 Methyllithium, 477 Methylmagnesium iodide, 476, 1082 Methyl mercaptan, 494 Methyl orange, 977–978 Methyloxirane, 704 3-Methylphenol, 462 4-Methylphenol, 793 Methyl phenylacetate, 1045 N-Methy-2-phenylacetamide, 1075 Methyl phenyl ether, 672, 677, 689 Methyl phenyl ketone, 792 2-Methyl-3-phenylpentanedioic acid, 1005 2-Methylpropan-1-ol, 462, 464 2-Methylpropan-2-ol, 462, 464 2-Methylpropanal, 453 2-Methylpropane, 179–180, 320–321 2-Methylpropene, 303 Methyl propionate, 645 2-Methylpropenoic acid, 1015–1016 4-Methylpyran, 679 1-Methylpyrrolidine, 944 2-Methylpyridine, 944 N-Methylpyridinium iodide, 691 N-Methylpyrrolidine, 944 Methyl radicals, 190 Methyl salicylate, 1088 Methyl shift, 283 Methylsulfate ion, 538 2-Methyltetrahydrofuran, 675, 695 Methyl tert-butyl ether (MTBE), 94, 170, 275, 622, 677, 681 (S)-2-(Methylthio)butane, 690 Methyltriphenylphosphonium salt, 918 Micelles, 1271 Michael acceptor, 1155 Michael addition, 1155, 1157 Index I13 Michael donor, 1155 Michael reaction, 1154–1157 Microns, 558 Miner’s lamp, 433 Minor contributors, 15–17 Mirror planes of symmetry, 207 Miscible, 467 Misoprostol, 1279 Mitomycin C, 945 Mitscherlich, Eilhard, 764 Mixed anhydrides, 1049 Mixed triacyglycerols, 1266 MMPP (magnesium monoperoxyphthalate), 694 Mobile Servicing System (MSS), 672 Molar absorptivity, 750 Molar extinction coefficient, 750 Molecular biology, 1214 Molecular formulas, 25–26 Molecular ion, 585 Molecular orbitals of allylic system, 730–731 of benzene, 769–771 of cyclobutadiene, 772–773 described, 28 nonbonding, 731 picture of conjugated systems, 718–723 Molecular sieves, 1026 Molecular vibrations, 559–561 Molecules, polarity of, 56–60 Molozonide, 401 Molybdenum metathesis catalysts, 408 Monoamine oxidase (MAO), 971 Monochromator, 562, 749 Monomers, 403, 1286, 1297 Monomethyl phosphate, 540 Monosaccharides, 1173 anomers of: mutarotation, 1182–1184 classification of, 1174–1175 cyclic structures of, 1178–1182 D and L configurations of sugars, 1175–1177 epimers, 1177–1178 oxidation of, 1186–1187 reactions of: reduction, 1185 Monosubstituted cyclohexanes conformations of, 140–142 energy differences between axial & equatorial conformations of, 142t Monoterpene, 1280 Morphine, 2, 72, 942 Morpholine, 74 Mothballs, 248, 795 Motor oil, 66 MRI (nuclear magnetic resonance imaging) described, 658–659 scan of human brain, 607f scan of human spine, foot, 659 MTBE (Methyl tert-butyl ether), 94 Muconic acid, 1015 Mull, 562 Multiplet, 627 Multistep reactions, rates of, 174 Multistep synthesis, 543–544 Murex sea snails, 753f Muscalure, 297 Muscone, 889 I14 Index Mushroom Amanita muscaria, 1202 Mustard gases, 692 Mutarotation, 1183–1184 Mylar polyester film, 1044, 1090, 1091, 1299 Myrcene, 1279, 1280 N N + rule, 626–627 Nanotubes, 791 Naphthalene, 675, 776, 783, 787, 795 p-Naphthoic acid, 1004 1-Naphthol, 1098 2-Naphthol, 675 1-Naphthyl-N-methylcarbamate, 1097 Naproxen, 846 Natta, Giulio, 1294 “Natural,” 952 Natural and synthetic rubber, 1295–1296 Natural gas, 433, 494 in clean-burning vehicles, 119 liquified, 118 Negishi, Ei-Ichi, 843 Neon, Neonicotinoid insecticides, 944 Neopentane, 45, 62, 64, 108, 109 Neopentyl alcohol, 524, 529 Neopentyl bromide, 524 Neutralizer, 1242 Neutrons in atomic structure, Newman projections, 123, 124 Nexium, 221 Niacin, 515, 942, 1415 Nickel, 492, 923 Nickel boride, 442 Nicontinic acid (NAD+), 515, 1415 Nicotinamide, 1077, 1215 Nicotinamide adenine dinucleotide (NAD), 514, 1415 Nicotine, 251, 942, 943 Nicotinic acid, 942 Nicotinonitrile, 1077 Ninhydrin, 1237, 1243 Nitrate esters, 539 Nitration of benzene, 813–814 of toluene, 817–818 Nitric acid, 511, 539, 813, 1186– 1187 Nitric oxide, 539 Nitrile bonds, 577 Nitriles, 97, 986, 1043 dehydration of amides to, 1092 described, 1047–1048 hydrolysis of, 1077–1078 summary of chemistry of, 1094–1095 synthesis of ketones and aldehydes from, 893–894 used as solvents in organic reactions, 1053t o-Nitroaniline, 959 p-Nitroaniline, 964 m-Nitroanisole, 820, 829 o-Nitroanisole, 820 p-Nitroanisole, 820 Nitrobenzene, 792, 813, 814, 822, 823 m-Nitrobenzoic acid, 828 p-Nitrobenzoyl chloride, 891 www.downloadslide.net p-Nitrobenzophenone, 891 p-Nitro-tert-butylbenzene, 833 Nitro compounds, reduction of, 987–988 Nitrogen, in airbags, 986 elements of unsaturation, 300 functional groups with, 96–98 protons, signals in NMR, 641 Nitrogen inversion, 945–946 Nitroglycerin, 824 Nitro groups, 84, 85, 1011 m-Nitrotoluene, 817 Nitromethane, 15 Nitromide, 817 Nitronium ion, 813 2-Nitropentane, 987 2-Nitrophenol, 474, 683 3-Nitrophenol, 465, 474 4-Nitrophenol, 474, 793 meta-Nitrophenol, 465 p-Nitrophenol, 793 5-Nitro-1-propoxyaniline, 817 Nitrosamines, 974 o-Nitrotoluene, 817, 987 p-Nitrotoluene, 632, 814, 817, 829 Nitrous acid, 973–974 Nitrous oxide, 673 NMR spectrometers, 612, 614 NMR spectroscopy See also Nuclear magnetic resonance (NMR) spectroscopy of carboxylic acids, 1016–1017 of ethers, 681 N-Nitrosoamines, 974 Nobel, Alfred, 539 Nobel Prizes, 539 Nodal plane, Nodes, 4, 28, 720 Nomenclature, 90 of alcohols, 461–466 of alkanes, 110–117 of alkenes, 301–303 alkenes, 305 of alkyl halides, 248–249 of alkynes, 429–430 of amides, 1045–1046 of amines, 942–945 of benzene derivatives, 792–794 of bicyclic alkanes, 147 of carboxylic acid derivatives, 1044–1050 of carboxylic acids, 1003–1006 of cis-trans isomers, 303–305 configurations of chiral centers, 209 of cycloalkanes, 130–131 of dicarboxylic acids, 1005–1006 of ethers, 677–680 E-Z, 304–305 of functional groups, 1050t IUPAC names See IUPAC names of ketones and aldehydes, 878–880 of multifunctional compounds, 1049–1050 of peptides, 1240 (R) and (S) from Fischer projections, 230 (R) and (S) of asymmetric carbon atoms, 208–212 Nomex, 1298 Nonan-2-ol, 505 Nonaromatic compounds, 773–774 Nonbinding electrons, Nonbonding molecular orbitals, 731 Nonoxynol, 1273 Nonpolar covalent bond, 10 Norbornane, 146, 316 Norbornene, 381, 739 Norepinephrine, 692, 971 Novoselov, Konstantin, 790 Noyori, Ryoji, 390 N-terminal end, 1239 N terminus, 1239 Nuclear magnetic resonance imaging, 658–659 Nuclear magnetic resonance (NMR) spectroscopy, 557, 558 areas of the peaks, 622–624 of aromatic compounds, 796 carbon See Carbon NMR carbon-13, 648–655 of carboxylic acid derivatives, 1057–1058 complex splitting, 634–637 drawing NMR spectrum, 630 integrators, 622 interpreting proton NMR spectra, 643–645 introduction, 607 number of signals, 620–621 spin-spin splitting, 625–633 stereochemical nonequivalence of protons, 637–639 theory of, 608–610 time dependence of, 640–642 Nuclear magnetic resonance spectrum, 612 Nuclear spin, 608 Nucleic acids, 540, 1206–1207 Nucleophiles, 87, 88, 261, 266 alcohols as, 515–517 some common, 266t strength of, 265–269 Nucleophilic acyl substitution, 1022–1024, 1031, 1066–1067 Nucleophilic additions to carbonyl groups, 901–902 reactions of ketones, aldehydes, 898–900, 927 Nucleophilic aromatic substitution the addition-elimination mechanism, 839–840 benzene mechanism: elimination-addition, 841–843 of pyridine, 961–962 Nucleophilicity, 266 solvent effects on, 268–269 steric effects of, 267–268 trends in, 266 Nucleophilic acyl substitution, 1060–1069 Nucleophilic substitution, 260, 286, 854–855 Nucleotides, 1207, 1214–1216 Nucleus in atomic structure, 3–4 Nutmeg, 1266 Nylon, 1044, 1094, 1296, 1297–1298 Nylon 6, 1298 Nylon 6,6, 1014, 1094, 1298 O Oct-1-yne, 568 Oct-2-en-1-ol, 513 Oct-2-enal, 513 cis-Oct-2-ene, 566–567 trans-Oct-2-ene, 443 trans-Oct-2-enoic acid, 1016 Oct-2-yne, 443 Oct-4-yne, 568 Octa-1,3,5,7-tetraene, 751 Octan-1-ol, 505 (R)-Octan-2-ol, 526 Octanal, 1079 Octane conformation, 129f n-Octane, 564 Octane-2,7-dione, 1137 Octane number, 119 Octanoic acid, 1003 Octanoyl chloride, 1079 Octet rule, Octets, Octyl methoxycinnamate, 846 Off-resonance decoupling, 652–653 Oil crude, 120 Oil of wintergreen, 1088 Olefin metathesis of alkenes, 407–410 described, 407 mechanism of, 409–410 Olefins, 296 Oleic acid, 1031, 1268 Oleoyl chloride, 1031 Oligomers, 1297 Oligopeptide, 1239 Oligosaccharides, 1203 Olive oil, 296 Omnivorous leafroller (OLR), 410f Opium poppies, 2, 72 Optical activity, 213–217, 214 Optical isomers, 215 Optically active, 214 Optical purity (o.p.), 220 Oral contraceptives, 1278 Orbitals degenerate atomic, 3–4 wave properties of electrons in, 27–28 Order of reactions, 169 Orexin A, 1240 Organic, Organic chemistry, 1–3 Organic compounds colored, 752–754 common bonding patterns in, 12t priority of functional groups in naming, 430t, 464t Organic synthesis problems in this book, 410–412 Organocuprate reagents, couplings using, 844–845 Organolithium reagents, 477, 704, 893 Organomagnesium halide, 476 Organomercurial alcohol, 447 Organometallic compounds, reactions of, 478–486 Organometallic reagents for alcohol synthesis, 475–477 aromatic substitution using, 843–849 described, 475 reactions of acid derivatives with, 1081–1082 side reactions of, 486–488 www.downloadslide.net Orientation of epoxide ring opening, 703 Orlon, 1292 Ortho, 465, 793, 819 Ortho attack, 820, 823, 826 Ortho, para-director, 817 Osmic acid, 398 Osmium tetroxide, 398, 399 Overall order of equations, 169 Overtone, 562 Oxalic acid, 514 Oxaloacetic acid, 1232 Oxalyl chloride, 511, 1031 Oxane, 679 Oxaphosphetane, 919 Oxetanes, 679 Oxidations of alcohols, 507–511 of alcohols to synthesis ketones, aldehydes, 889–890 of aldehydes, 921–922 of alkynes, 450–452 of amines, 970–972 of cholesterol, 888 of monosaccharides, 1186–1187 of phenols to quinones, 857–858 permanganate, 450–451 of primary alcohols, 509–510 reactions, 506 reactions of alkenes, 416 of secondary alcohols, 508–509 states of alcohols, 506–507 Swern, 511 of tertiary alcohols, 511 Oxidative cleavages of alkenes, 400–403 described, 400 Oximes, 909 Oxiranes, 393–394, 678, 704 Oxolane, 675, 679 Oxonium ion, 680–681 3-Oxopentanal, 878 4-Oxo-4-phenybutanoic acid, 1086 Oxygen, elements of unsaturation, 300 functional groups with, 93–96 Oxygen-acetylene cutting torch, 432 Oxymercuration, 373–375 Oxytocin, 1241f, 1245, 1247 Ozone, 59 biochemical effects, 401 hole over Antarctica, 155 layer around Earth, 400 as oxidizing agent, 402 Ozonolysis of alkenes, 890 of alkynes, 451–452 described, 400–402 vs permanganate cleavage, 402–403 P Palladium catalysts, 442, 845–846, 847 Panaxytriol, 429 Pantothenic acid, 1227 Papain, 1247 para, 465 Para-, 793 Para attack, 820, 823, 826 Para-directing, 819 Paraffins, 65, 66, 121, 1266 Paraformaldehyde, 880, 882 Paraldehyde, 882 Parent peak, 586 Parkinson’s disease, 390, 976 Parr hydrogenation apparatus, 389 Parsalmide, 429 Pascal’s triangle, 627 Pasteur, Louis, 239 Pauli exclusion principle, 4, 297 Pauling electronegativities, 10–11 PCB (polychlorinated bipenyl), 248 Pellagra, 1415 Penicillin G, 1044 Penicillins, 1043, 1044, 1093 Penicillin V, 1093 Pent-1-en-4-yne, 430 Pent-1-ene, 45, 301, 304, 717 Pent-1-yne, 445, 446 Pent-2-enal, 878 Pent-2-ene, 45, 301, 327 cis-Pent-2-ene, 304 trans-Pent-2-ene, 304, 717 Pent-2-yne, 445, 450, 451, 452 Penta-1,2-diene, 717 Penta-1,3-diene, 749 trans-Penta-1,3-diene, 717 Penta-1,4-diene, 716, 717, 749 Penta-1-ene, 749 Penta-2,3-diene, 225 Pentalene, 776, 782 Pentan-1-amine, 984 Pentan-1-ol, 64, 479 Pentan-2-amine, 987 Pentan-2-ol, 206, 480 (R)-Pentan-2-ol, 525 Pentan-2-one, 981 Pentan-2-one oxime, 981 Pentan-3-ol, 206, 483 Pentane, 45, 77, 108, 109, 717 n-Pentane, 45, 62 Pentane-1,5-diamine, 947 Pentane-2,3-dione, 450 Pentane-2,4-dione, 192 Pentanoic acid, 451, 452, 1012, 1018 Penta-O-acetyl-b-D-fructofuranoside, 1193 2-Pentenal, 878 1-Penten-4-yne, 430 1-Pentene, 301, 304 2-Pentene, 301 cis-2-Pentene, 304 trans-2-Pentene, 304 Peppermint oil, 460 Peptide bonds, 1222, 1239 Peptides described, 1239 laboratory peptide synthesis, 1247–1253 solid-phase synthesis, 1251–1253 structure determination, 1242–1247 structure, nomenclature of, 1238–1242 synthesis of, 1247–1253 Peracids, 693 Pericyclic reactions, 743–746 Periodic acid cleavage of glycols, 536 Periodic table acidity trends within, 80f first three rows, 6f Perkin, Sir William Henry, 754 Perlon, 1298 Permanent wave, 1242 Permanganate, 768, 921 Permanganate dihydroxylation, 399 Permanganate oxidations, 450–451 Permanganates, 677 Peroxide effect, 368 Peroxyacetic acid, 394, 397, 697 Peroxyacids, 393–394, 690, 693, 921 Peroxybenzoic acid, 394, 397, 678 Peroxyformic acid, 697, 1242–1243 PETN (pentaerythritol tetranitrate), 539 PET (Positron emission tomography) scan radiotracer, 976 Petroleum refining, 120 PEX plumbing pipe, 1295 Ph (symbol), 794 pH and acid strength, 70–71 Phenanthrene, 787–788, 788 Phenol-formaldehyde resins, 888 Phenolphthalein, 754 Phenols, 74, 186, 462, 468, 507, 542, 792, 822, 841 acidity of, 470–471 described, 461 electrophilic aromatic substitution of, 858 nomenclature of, 465–466 oxidation of phenols to quinones, 857–858 reactions of, 856–858 Phenoxides, 822, 858 3-Phenoxycyclohexene, 793 Phenylacetylene, 430 Phenylboronic acid, 847 N-Phenylbutanamide, 983 2-Phenybut-3-yn-2-ol, 439 2-Phenyethylamine, 986 2-Phenyhex-3-yn-2-ol, 439 Phenylacetic acid, 1021, 1029, 1075, 1077 Phenylacetone, 630 Phenylacetonitrile, 986, 1021, 1077 Phenylacetylene, 792 Phenylalanine, 755t, 771, 1227, 1231, 1232, 1236, 1252 Phenyl benzoate, 1045 1-Phenylbut-2-yne, 793 2-Phenyl-1,3-cyclopentadiene, 303 2-Phenylcyclopenta-1,3-diene, 303 Phenylcyclopentane, 93 1-Phenylethanol, 493 2-Phenylethanol, 793, 1029, 1078 Phenyl ethers, 683, 687–688, 822 2-Phenylethylamine, 986 2-Phenylethyl azide, 986 Phenyl group, 303, 330, 794 2-Propenyl group, 303 Phenylhydrazine, 910 Phenyl isocyanate, 1300 Phenyl ketones and aldehydes, 890–891 Phenyllithium, 477, 848, 893 Phenylmagnesium bromide, 479, 483, 493, 704, 894 3-Phenyl-2-oxopropanoic acid, 1231 3-Phenylpentan-3-ol, 483 3-Phenylpentanoic acid, 1004 Phenyl propanoate, 655 Index I15 trans-3-Phenyl-2-propenoic acid, 1004 3-Phenylpropanoic acid, 1031 1-Phenyl-1-propanone, 878 1-Phenylpropan-1-one, 878 3-Phenylpropanoyl chloride, 1031 3-Phenypropan-1-ol, 1019 3-Phenypropanoic acid, 1019 3-Phenypropionate, 1142 Phenylthiohydantoin, 1244, 1245 Phenylthiourea, 1244 Pheromones, 505, 1089 Phillips Triolefin Process, 408 Phosgene, 250, 1098 Phosphate esters, 540 Phosphatidic acids, 1273, 1274 Phosphoglycerides, 1273 Phospholipids, 1273–1275 Phosphonium salt, 918 Phosphoric acid, 540, 1273 Phosphorus halides, 524–525 Phosphorus oxychloride, 530, 1092 Phosphorus pentachloride, 524 Phosphorus pentoxide, 1092 Phosphorus tribromide, 524 Phosphorus trichloride, 524 Phosphorus trihalides, 524–525 Phosphorus triiodide, 524 Photochemical induction of cycloadditions, 745–746 Photography, black-and-white, 857 Photons, 557–558 Photosynthesis, 1172 Phthalic acids, 1005, 1024, 1086, 1090 Phthalic anhydride, 1049, 1086 Phthalimide, 985 Phthalimide hydrazide, 985 Physostigmine, 1099 pI, 1229 Pi bond, 31–32, 298–299, 360–361, 433, 747 Picric acid, 539, 824 Pi-donating, 820 Pinacolone, 534, 535 pinacol rearrangement, 534–535 Pinene, 297 Piperazine, 942 Piperidine, 943, 944, 952, 965, 1252, 1253 pKa and acid strength, 70–71 of amines, 949t of carboxylic acids, 1008t Planck’s constant, 557 Plane-polarized light, 213 Plant leaves, 1266 Plasticizers, 1303 Plastics, recycling of, 1303–1304 Pleated sheet, 1254, 1255f P NMR spectroscopy, 658 “Poisoned” catalysts, 442 Polar aprotic solvents, 269 Polar bonds, effects of electric field on, 561f Polar covalent bond, 10 Polarimeter, 215 Polarimetry, 213, 215–216 Polarity of alkenes, 308–309 of bonds and molecules, 56–60 effects on solubilities, 64–67 of ethers, 673 Polarizable, 267 I16 Index Polar solvents, ethers as, 673–674 Polyalkene, 1293 Polyamides, 1094, 1298 Polyamines, 706 Polycarbonate, Poly(carbonate ester), 1299 Polycarbonates, 1099, 1299–1300 Polychlorinated biphenyls, 1277 Polyene antifungals, 303 Polyesters, 1014, 1088, 1090–1091, 1299 Polyethylene, 307, 359, 403, 1301 Poly(ethylene terephthalate) resin (PET), 1090, 1091, 1299 Polygon rule, 773 Poly(hexamethylene adipamide), 1094, 1298 Polyhydroxyaldehydes, 1173 Polyhydroxybutyrates, 1289 Polyisobutylene, 404 cis-1,4-Polyisoprene, 1295 Polyketide synthases, 1141 Polylactic acid (PLA), 1286 Polymer crystallinity, 1301–1302 Polymerization, 1287 of alkenes, 403–407 stereochemical control of, 1294–1295 Polymerize, 307 Polymers, 307, 403, 880, 1249 amorphous, 1302 chain-growth, 1287–1293 copolymers of two or more monomers, 1297 described, 1286 important addition, 1288t step-growth, 1297–1301 stereochemistry of, 1293–1294 structure and properties, 1301–1303 Polynuclear aromatic hydrocarbons, 787–789 Polyolefins, 307 Polypeptides, 1239 Polyphenol oxidase (PPO), 857 Polyphosphoric acid (PPA), 1086 Polypropylene, 307, 403 Polysaccharides, 1172, 1174, 1203–1206 Polystyrene, 403, 405, 406, 1286, 1288–1289 Poly(tetrafluoroethylene) (PTFE), 308 Polyunsaturated, 1268 Polyurethanes, 3, 1098, 1099, 1300–1301 Poly(vinyl chloride), 403, 1303 Porphobilinogen, 784 Portable breath testers, 511 Potassium, 475, 541 Potassium fluoride, 677 Potassium hydroxide, 542 Potassium nitrate, 539 Potassium permanganate, 399, 400, 511, 677 Potassium tert-butoxide, 264, 472 Prefixes, correspondence of, of carbon atoms, 90t Prickly pear cactus, Priestly, Joseph, 1295 Prilosec, 221 Primary alcohol, 461, 462, 479, 506–507, 890 oxidation of, 509–510 reaction with HBr (SN2), 520 www.downloadslide.net Primary amides, 1046 Primary amines, 942, 947, 951, 971, 981, 984–988 Primary (carbon bonds), 113 Primary halides, 249 Primary ozonide, 401 Primary structure of DNA, 1211–1212 Primary structure of proteins, 1254, 1257f Primaxin, 1043, 1093 Principle of Microscopic Reversibility, 370, 909 Prion diseases, 1257–1258 Prion proteins, 1258 Procaine, 814 1,2-Product, 741 1,3-Product, 741 1,4-Product, 741 Progesterone, 1278 Prohibition, 468–469 Proline, 1227, 1236 Prop-2-en-1-ol, 464 Prop-2-yn-1-ol, 439 Propagation steps, 157, 158 Propan-1-amine, 956f Propan-1-ol, 94, 464, 466, 880, 1007 Propan-2-ol, 94, 228, 460, 464, 466, 470, 899, 1064 Propan-2-one, 95 Propanal, 95, 880, 904, 905, 1138 Propanal cyanohydrin, 905 Propanal hydrate, 904 Propane, 109, 110, 119, 120, 126, 251, 299, 396, 467 bromination of, 180–181 chlorination of, 176–178 Propane-1,2-diol, 465, 515 (R)-Propane-1,2-diol, 225, 228 Propanoic acid, 95 Propanoyl chloride, 837, 1048 Propanoyl group, 835 Propargyl alcohol, 430, 439 Propenal, 887 Propene, 92, 299, 301, 303, 308, 315, 374, 384, 386, 394, 436 Propionaldehyde, 95, 1007 Propionamide, 1052 Propionic acid, 74, 451, 452, 1002 Propionic anhydride, 1056f Propionyl chloride, 1048, 1084 Propionyl group, 835 Propiophenone, 482, 483, 837, 879, 924, 1138 Propofol, 795 n-Propyl, 113 n-Propyl alcohol, 94, 464, 685 n-Propylamine, 952 n-Propylammonium chloride, 952 n-Propylbenzene, 837, 924 N-Propylbutan-1-amine, 957 n-Propyl butyrate, 537 2-Propyl cyclopentanecarboxylate, 1064 Propylene, 92, 301, 303, 306, 308, 470 Propylene glycol, 306–307, 465, 515 Propylene oxide, 307, 396, 704 n-Propyl ether, 685 Propyl group, 113 n-Propyl fluoride, 249 3-Propyl-1-heptene, 302 3-Propylhept-1-ene, 302 Propyne, 75, 77, 92, 299, 438, 1048 Prostaglandins, 856, 1265, 1278–1279 Prosthetic group, 1253 Protecting groups, 692 described, 916 use of acetals as, 916–917 Proteins as amides, 96–97 classification of, 1253–1254 complete, 1226 cysteines, 495 denaturation, 1256–1258 described, 755, 1222, 1239 determining mass of, 585 determining structure of, 650 examples of functions, 1222t GMO, 1248 incomplete, 1227 levels of structure, 1254–1256 and peptides, structure and nomenclature, 1238–1242 standard amino acids of, 1224–1226 structure of, 1223f Proteolytic, 1247 Protic solvents, 268 Protonation of aromatic ring, 816 Proton, NMR, 607 Proton NMR spectroscopy of amines, 955 of carboxylic acid derivatives, 1057 of ketones and aldehydes, 883 Protons in atomic structure, carboxylic acid, 619 comparing two, 639 hydrogen-bonded, 619 interpreting NMR spectra, 643–645 stereochemical nonequivalence of, NMR, 637–639 vinyl, aromatic, 616–618 Proton transfers, 1115 Provitamin D3, 743 Prusiner, Stanley B., 1258 Pure Food and Drug Act, 754 Purine, 755t, 785, 786, 791, 944, 1214 Purine bases, 1208 Purines, 1208 “Purple benzene,” 677 Putrescine, 947 Pyranose, 1182 Pyrans, 679, 787, 1182 Pyrene, 789 Pyrethrin, 888, 889 Pyrethrum flowers, 888 Pyridine, 516–517, 530, 537, 691, 755t, 782–784, 944, 952, 958–962, 963, 1032, 1064, 1085, 1237 Pyridinium acetate, 952 Pyridinium chlorochromate (PCC), 510, 890 2-Pyridone, 786 Pyridoxine, 942 Pyrimidine, 755t, 785, 786, 944, 1208 Pyrimidine bases, 1208 Pyrrole, 755t, 782, 784–785, 944, 951 Pyrrolidine, 944, 982, 1120 Pyrylium ion, 787 Q Quadrupole mass filter, 587 Quaternary ammonium hydroxide, 967–968 Quaternary structure of proteins, 1255–1256, 1257f Quercetin, 753f Quinidine, 45 Quinine, 45, 792 Quinoline, 442, 783, 791 Quinone, 186, 857–858 Quinones, 857–858 Quinuclidine, 943 R Racemases, 1224 Racemate, 219 Racemic mixtures, 219–220 Racemization, 273, 281 Radical cation, 585 Radical inhibitors, 186–187 Radicals, 158 Radioactive waste, treatment with crown ethers, 676 Radio-wave frequencies, 558 Raffinose, 1203 Random coil, 1255 Raney nickel, 492, 923 Rate constant, 169 Rate-determining step, 174 Rate equation, and kinetics, 169–171 Rate-limiting step, 174 Rate of a reaction, 169 Rayon, 1173, 1203 RDX (research department explosive), 539 Reaction coordinates, 172–173 Reaction-energy diagrams, 172–174 for 2nd step of addition of HBr to buta-1,3-diene, 726f addition of hydrogen halides to alkenes, 364f dehydration of alcohol, 528f of E1 reaction, 322f SN1 and SN2 reactions, 277 for SN2 reaction, 262f Reaction mechanisms, proposing, 346–348, 531–533 Reactions of acid chlorides, 1083–1084 of acid derivatives with organometallic reagents, 1081–1082 addition, of benzene derivatives, 849–852 of alcohols, 505, 546–548 of alcohols with hydrochloric acid, 521–522 of alcohols with hydrohalic acids, 519–523 of alcohols with Lucas reagent, 522t of alcohols with phosphorus halides, 524–525 of alkanes, 121–122 www.downloadslide.net of alkenes, 359–416, 412–414 of alkoxides, 540–542 of alkynes, 454–455 of amides, 1091–1092 of amines, 978–980 of amines with ketones and aldehydes, 958 of amines with nitrous acid, 973–974 of amino acids, 1235–1238 of anhydrides, 1086–1087 anti-Markovnikov, 366 of arenediazonum salts, 975–978 of carboxylic acids, 1034–1035 of carboxylic acids and derivatives, 1022–1024 chain, 157 concerted, 262, 694, 743 in cyclohexane systems, 332–334 dehydration, of alcohols, 527–531 Diels-Alder, 740–742 of diols, 534–536 with electrophilic multiple bonds, 488 elimination, 335 of epoxides, 704, 707 of esters, 1088–1089 of ethers, 689 haloform, 1123–1125 halogen exchange, 264 Hell-Volhard-Zelinsky (HVZ), 1127–1128 of ketones and aldehydes, 898–902 Michael, 1154–1157 of monosaccharides, 1185 of nitriles, 1095 order of, 169 of organometallic compounds, 478–486 of phenols, 856–858 radical, 186–187 rate of, 169 rates of multistep, 174 Sandmeyer, 976 side-chain, 852–856 side reactions of organometallic reagents, 486–488 Simmons-Smith, 392 SN1 See SN1 reactions SN2 See SN2 reactions of stabilized carbanions, 1163 stereospecific, 274 Stork, 1121 of sugars, 1196–1198 of terminal alkynes, 455 termination, 160 Wittig, 918–921, 1132 Reactive intermediate, 158 Reactive intermediates, 174, 187–189 Reagents See also specific reagent alkyl halides, 250 aromatic substitution using organometallic, 843–849 for dihydroxylating alkenes, 399 for epoxidation, 397f stable complexes of ethers with, 675–677 Rearrangements described, 281 in E1 reaction, 322 E1 vs E2 elimination reactions, 335 pinacol, 534–535 in SN1 reactions, 281–284 SN1 vs SN2 reactions, 285–286 Recycling of plastics, 1303–1304 Red tide, 1019 Reducing sugars, 1187 Reductions of alcohols, 518 of carbonyl group, 489–494 of carboxylic acid derivatives, 1078–1081 of carboxylic acids, 1029–1030 Clemmensen, 923–924 of ketones and aldehydes, 922–927 of monosaccharides, 1185 nitro compounds, 987–988 reactions, 506 Reductive amination, 980–982 Reference beam, 562, 749 Reference cell, 749 Refrigerants and foaming agents, 251 Regiochemistry, 362 Regioselective, 372 Relative configuration, 235–237 Relaxation times, 658, 659 Residue, 1239 Resins, epoxy, 705–706 Resolution described, 239 of enantiomers, 238–241 Resolving agents, 239 Resonance, 14–18 delocalization, 85, 728 effects on acidity, basicity, 83–86 hybrids, 14–15 lowering of carbonyl frequencies, 575 major and minor contributors, 15–16 stabilization, 277–278 stabilized cations, 593–594 and stabilizing carbanions, 191 Resonance-donating, 820 Resonance energies, 767 Resonance energy, 317, 718 Resonance forms, 14, 15, 16, 18–20 Resonance stabilization, 188–189, 820, 1062, 1239 Resonance-stabilized, 14 Resonance structures, 14 Resorcinol, 466 Respiratory distress syndrome (IRDS), 1274 Retention of configuration, 279 Retrosynthetic analysis, 410 Rhodium, 390 Rhodopsin, 304 Ribofuranoside, 1188 Ribonuclease, 1248 Ribonucleic acids (RNA), 540, 1207, 1210–1214 Ribonucleosides, 1208–1209 Ribonucleotides, 1209 Ribose, 135 Riboside, 1188 L-Ribulose, 1176 Rice, 1227 Rigidity of double bonds, 43–44 Ring-closing metathesis, 408–409 Ring current, 616 Ring-flips, 140, 144 Ring-opening metathesis polymerization, 408–409 Ring-opening with ethylene oxide, 483–484 Ring strain, 132 RNA (ribonucleic acid), 1207 phosphate esters in, 540 sugar components of, 135 structure of, 1210–1214 Robinson annulations, 1156, 1157–1158 Rocket fuel, 909 Rollerblades, 1098 Rose hips, Rotating bonds, 42–44 Rotation of plane-polarized light, 214–215 of polarized light, 216 Roundup, 1227 Royal purple, 809 Rubber, natural and synthetic, 1295–1296 Rubbing alcohol, 470 Ruff degradation, 1193–1194, 1196 Ruff, Otto, 1193 Ruhemann’s purple, 1237 Ruthenium, 390 Ruthenium phosphine catalyst, 408 S Saccharic acid, 1186 S-Adenosylmethionine (SAM), 691 Salicin, 1190 Salicylic acid, 856, 1004, 1073 Salt of a carboxylic acid, 1011 Salts of amines, 952–954 ammonium, 952 of carboxylic acids, 1011–1013 of fatty acid, 1074 Sample beam, 749 Sandmeyer reaction, 976 Sanger method, 1246 Saponification, 1073–1075, 1270–1273 Saran, 1297 Saturated, 108 Saturated alkenes, 298–299 Saturated fat, 1268 Saturated hydrocarbons, 108 Saturn’s moon Titan, 107 Saturn’s rings, 746f Sawhorse structures, 124, 125 Saytzeff, 324 Schiff base, 906, 907 Schrock, Richard, 408 s-Cis conformations, 723, 736–737 Scrapie, 1257, 1258 Scurvy, Secondary alcohol, 461, 462, 480, 506–509 Secondary amides, 1046 Secondary amines, 942, 947, 951, 981, 984, 1119 Secondary (carbon bonds), 113 Secondary halides, 249 Secondary overlap, 738–739 Secondary structure of proteins, 1254–1255, 1257f Selectivity in halogenation, 176–181 Index I17 Semicarbazide, 910 Semicarbazones, 909 Serine, 1223, 1227 Serotonin, 971 Sesquiterpenes, 1280 Sevin, 1097 Sevoflurane, 250 Sharpless epoxidation, 695–696 Sharpless, K Barry, 695 Shell Oil, 122 Shielded, 610, 612 Siamyl, 448 Side-chain reactions of benzene derivatives, 852–856 Sigma bond, 29 alkenes, 297–298 in ethylene, 747 overlap, 30–31 Sigma complex, 809, 810, 811, 814, 815, 824, 831, 858 Silver bromide, 857 Silver mirror, 1187 Silver nitrate, 325 Silver oxide, 1190–1191 Silyl ethers, 689–693 Simmons-Smith reagent, 392 Simple lipids, 1265, 1275 Simple proteins, 1253 Simple sugars, 1173 Single bonds, Situs inversus, 202 Skeletal structures, 24 Skew conformation, 125 Skin cancer, 745 Skunk scent, 494, 496 SN1 reactions compared with SN2 reactions, 284–288 described, 275 hydride shift in, 282–283 methyl shift in, 283 racemization in, 281 rearrangements in, 281–284 solvent effects on, 279 stereochemistry of, 279–281 unimolecular nucleophilic substitution, 275–279 SN2 mechanism, 262 SN2 reactions, 261–263 of alkyl halides, 264t compared with SN1 reactions, 284–288 displacement reactions of allylic halides and tosylates, 733 effect of substituents on, 271t factors affecting, 265–269 generality of, 263–264 inversion of configuration in, 273 reactivity of substrate, 269–272 stereochemistry of, 273–274 of tosylate esters, 517t Soap, 1012, 1074, 1271–1273 Sodamide, 435 Sodium, 475 Sodium acetate, 13, 1011 Sodium acetylide, 264, 436, 476 Sodium alkoxide, 541 Sodium amide, 75, 77, 435, 476, 841 Sodium azide, 985, 986 Sodium benzoate, 1075 Sodium borohydride, 489, 490, 491, 922, 981 I18 Index Sodium butynide, 435 Sodium chloride, 65 Sodium cyanoborohydride, 981 Sodium dichromate, 508, 509 Sodium dodexyl sulfate, 1273 Sodium ethanethiolate, 690 Sodium ethoxide, 472, 542, 1140 Sodium formate, 1085 Sodium hydride, 541 Sodium hydrosulfide, 495 Sodium hydroxide, 192, 336, 694–695, 839, 953, 1011, 1118, 1270 Sodium hypochlorite, 507, 508, 692, 921 Sodium lauryl sulfate, 1273 Sodium metal, 541 Sodium methoxide, 263, 968, 1142 Sodium nitrite, 973 Sodium phenoxide, 473, 841 Sodium propionate, 1074 Sodium propoxide, 683 Sodium propynide, 75, 77 Sodium stearate, 1270 Sodium tert-butoxide, 683 Sodium tetraphenylborate, 848 Sodium triacetoxyborohydride, 900, 922 Soldier beetles, 429 Solid-phase method, 1248 Solid-phase peptide synthesis, 1251–1253 Solubilities of alcohols in water, 468t of carboxylic acid derivatives, 1052–1053 carboxylic acids, 1007 polarity effects on, 64–67 properties of alcohols, 467–468 Solution-phase methods, 1248 Solvents acidity & basicity limitations in common, 78t alkyl halides, 250 E1 vs E2 elimination reactions, 334 effects on acidity, basicity, 76–78 effects on nucleophilicity, 268–269 effects on SN1 reactions, 279 esters, amides, & nitriles used in organic reactions, 1053t SN1 vs SN2 reactions, 285 Solvolysis, 275, 320 Soot, 790 Sorbitol, 1185, 1204 Soybeans, 1278 sp2 hybrid orbitals, 34 sp3 hybrid orbitals, 36 Spanish fly, 1085 Spearmint oil, 219, 888 Spectrometers ultraviolet, 749f UV-visible, 747 Spectrometry, mass See Mass spectrometry Spectroscopy of amines, 954–958 of aromatic compounds, 796–798 of carboxylic acid derivatives, 1053–1059 of carboxylic acids, 1015–1019 comparison of wavelengths used in, 746t www.downloadslide.net described, 584 of ethers, 680–682 information provided by each time, 659t, 660 infrared See Infrared (IR) spectroscopy of ketones and aldehydes, 882–888 NMR See Nuclear magnetic resonance (NMR) spectroscopy ultraviolet absorption, 746–752 Spermaceti, 1044–1045, 1088, 1266 sp hybrid orbitals, 33–34 Spider webs, 1222 Spin-spin splitting C NMR, 652–653 coupling constants, 631–633 described, 625 N + rule, 626–627 range of magnetic coupling, 627–629 theory of, 625–626 Spirocyclic compounds, 146 Spironolactone, 1045 Splitting tree, 635 Squalene, 296, 699, 1281, 1282 Squalene epoxidase, 699, 700 Stabilization energy, 719 Stabilized carbanions, 1163 Staggered conformation, 125 Standard amino acids, 1224–1226 Standard Gibbs free energy change, 162 Standing waves, 27–28 Starch, 1172–1173, 1174 Starches, 1204–1206 Starch-iodide test for oxidizers, 1205 Statins, 1276 Stearic acid, 1002, 1268 Step-growth polymerization, 1287 Step-growth polymers introduction, 1297 nylon, 1297–1298 plasticizers, 1303 polycarbonates, 1299–1300 polyesters, 1299 polyurethanes, 1300–1301 Sterculic acid, 315 Stereocenters, 205, 206, 225 Stereochemical nonequivalence of protons, NMR, 637–639 Stereochemistry, 45, 201, 362 of a-amino acids, 1223–1227 control of polymerization, 1294–1295 E1 vs E2 elimination reactions, 335 of E2 reaction, 329–331 of halogen addition to alkenes, 384 of hydroboration, 380–381 of polymers, 1293–1294 requirements of Diels-Alder reaction transition state, 736–740 of SN1 reactions, 279–281 SN1 vs SN2 reactions, 285 of SN2 reactions, 273–274 Stereogenic atom, 205 Stereoisomers, 45–46, 201, 230, 232, 235 Stereospecific reactions, 274, 330, 381 Steric effect, 900 Steric hindrance, 128n, 267, 268, 272 Steric strain, 127–128 Steroids, 296 biosynthesis of, 699 conformations of, 137 described, 1275–1277 Stick figures, 24 trans-Stilbene, 306, 845 Stoichiometry of hydroboration, 379–380 Stork, Gilbert, 1121 Stork reaction, 1121 s-Trans conformations, 723 Strecker, Adolph, 1233 Strecker synthesis, 1233 Structural formulas, 22–23 Structural isomers, 44, 201, 232 Strychnine, 1235 Styrene, 303, 404–407, 634–635, 792, 797, 844, 845, 1249, 1286, 1288–1290 Substituents, 111 activating, ortho, para-directing, 819–822 complex, 116 deactivating, meta-directing, 822–825 directing effects of, 827 halogen, 826–827 Substitutions, 157, 260 alpha, 1112–1113 competition between substitutions and, 336–340 effects, alkenes, 310–313 effect of on rates of SN2 reactions, 271t predicting, 340 reactions of alkenes, 360 trans Substitutents, 131, 143 Substrates, 173, 261, 269 E1 vs E2 elimination reactions, 334 SN1 vs SN2 reactions, 284–285 Succinic acid, 729, 1086 Succinic anhydride, 1086 Succinimide, 728, 729 Sucrose, 1189, 1201–1202 Sugar alcohols, 1185 Sugar hydroxy group, 1191 Sugar polymers, 1172 Sugars, 914 See also carbohydrates amino, 1206 anomers of monosaccharides, 1182–1184 chain lengthening: Kiliani-Fischer synthesis, 1194–1196 chain shortening, 1193–1194 classification of carbohydrates, 1173–1174 cyclic structures of monosaccharides, 1178–1182 D and L configurations of, 1175 D family of aldoses, 1177f disaccharides, 1198–1203 ether, ester formation, 1190–1193 monosaccharides, 1174–1178 nonreducing: formation of glycosides, 1188–1190 polysaccharides, 1203–1206 reactions of, 1196–1198 reducing, 1186–1187 ribonucleosides, ribonucleotides, 1208–1209 Sulfa drugs, 966, 967 Sulfate, 36 Sulfate esters, 538 Sulfides, 689–693 Sulfonamides, formation of, 965–966 Sulfonation of benzene, 814–815 Sulfones, 690 Sulfonic acids, 496 Sulfonium salts, 691 Sulfonyl chloride, 965–966 Sulfoxides, 690 Sulfur, 1096 in coal, 786 in vulcanized rubber, 1295–1296 Sulfuric acid, 67–68, 69–70, 403, 809, 813, 952, 965 Sulfur mustards, 692 Sulfur trioxide, 814, 815 Sunglasses, 214f Sunscreen ingredient, 846 Sunset Yellow, 754 Superimposable, 203f Suzuki, Akira, 843 Suzuki coupling, 847 Suzuki reaction, 847–849 Sweet clover, 1088–1089 Swern oxidation, 511 Symmetrical ether, 672 Symmetry-allowed, 744 Symmetry-forbidden, 744 Syn, 389 Syn addition, 380 Syn-coplanar, 329, 331 Syn-coplanar conformation, 329 Syndiotactic, 1294 Syntex chemical company, 1278 Synthesis See also Organic synthesis of 1° and 2° alcohols, 489–494 acetoacetic ester, 1151–1154 of acid chlorides, 1031–1033, 1083 of alcohols from alkenes, 474–475 of aldehydes and ketones from acid chlorides and esters, 895–898 alkenes, 344–350 of alkenes, 349–350 of alkynes by elimination reactions, 439–441 of alkynes from acetylides, 436–439 of amides, 1028–1029 of amines, 988–989, 1231–1232 of amines by acylation-reduction, 982–983 of amines by reductive amination, 980–982 of amino acids, 1231–1234, 1234 bimolecular condensation of alcohols, 684–685 of carboxylic acids, 1019–1022 of epoxides, 693–695 of esters, 1088 of ethers, 685 Gabriel, 984–985 green, 1015 www.downloadslide.net of ketones and aldehydes, 889–892 of ketones from carboxylic acids, 893–894 Kiliani-Fischer, 1176, 1194–1196 laboratory peptide, 1247–1253 malonic ester, 1148–1151 multistep, 543–544 Robinson annulation, 1157–1158 using b-dicarbonyl compounds, 1146–1147 using electrophilic aromatic substitution, 859–863 Williamson ether, 541 Synthetic detergents, 1272–1273 Synthetic dyes, 754 Synthetic organic polymers, 1286 Synthetic polymers, 1286–1287 Synthetic rubber, 1296 Systematic names, 110 T Table sugar, 911 Tartaric acid, 239 L-(+)-Tartaric acid, 238 meso-Tartaric acid, 234 (R,R)-(+)-Tartaric acid, 240 Tautomerism, 447, 1114 Tautomers, 1114 Teflon, 247, 307, 308, 406 Temperature absolute, 162n crystalline melting, 1302 dependence of halogenation, 175 dependence of rates, 171–172 glass transition, 1302 TEMPO (2,2,6,6-Tetramethylpiperidinyl-1-oxy), 510 Tennis racket string, 764 Terephthalic acid, 1005, 1014, 1090, 1299 Terminal acetylene, 430 Terminal alkynes, 430, 448, 451, 455, 476 Terminal residue analysis, 1244 Termination reactions, 160 Termination steps, 157 Terpenes, 699, 1279–1281 Terpenoids, 1282 Tertiary alcohol, 461, 462, 480, 481, 482, 506–507, 511 Tertiary amides, 1046 Tertiary amines, 942, 947, 951, 981–982, 984 Tertiary (carbon bonds), 113 Tertiary halides, 249 Tertiary structure of proteins, 1255–1256, 1257f Tesla, 609 Testosterone, 1276, 1278 Tetraalkylammonium salt, 963 Tetrabutylammonium chloride, 943 2,3,7,8-Tetrachlorodibenzodioxin (TCDD), 680 Tetracycline, 750 Tetraene, 302 Tetraethylammonium iodide, 943 Tetraethyl lead (TEL), 119 1,1,1,2-Tetrafluoroethane, 251 Tetrafluoroethylene (TFE), 247, 308 Tetrahedral geometry, 36 Tetrahydrofuran (THF), 377, 477, 672, 675, 676, 679, 687 Tetrahydropyran (THP), 679 Tetralin, 853, 854 2,3,4,6-Tetramethyl-D-glucose, 1191 2,4,N,N-Tetramethylhexan-3-amine, 944 Tetramethylsilane (TMS), 613 Tetramethylurea (TMU), 1097 Tetraterpenes, 1280 Tetrodotoxin, Thermodynamic control, 727 Thermodynamic product, 727 Thermodynamics, 156, 161 1,3-Thiazole, 787 Thiazolinone, 1244, 1245 1,1,1-Tribromoethane, 625 1,1,1-Trichloroethane, 247, 250, 626 Thimerosal, 1012 Thioesters, 689–693, 1095–1096, 1141 Thiolate ion, 494 Thiol esters, 1095 Thiols (mercaptans), 494–496 Thionyl chloride, 525–526, 835, 895, 1031 Thiophene, 786–787 Three-dimensional molecules, drawing, 36–37 Threo, 1177 Threonine, 1227 Threose, 1176 Thrombin, 1246 Thymines, 65, 745, 786, 1211, 1212 Thyroid, 213 Thyroid hormone, 248 Thyroxine, 248 Time domains, 564 Tissue plasminogen activator (tPA), 1248 Titan, 107 Titanium(IV) isopropoxide, 696 Titanium tetrachloride, 1294–1295 TMS ether, 1192 TNT (trinitrotoluene), 539, 824 Tollens reagent, 922 Tollens test, 922, 1187, 1188 Toluene, 617, 618, 730, 792, 810, 817–819, 856, 891, 977, 1014, 1015, 1236, 1237 Toluene diisocyanate, 1099, 1301 para-Toluenesulfonic acid (TsOH), 516, 538, 814, 912 para-Toluenesulfonyl chloride (TsCl), 538 o-Toluic acid, 793 p-Toluic acid, 1004 m-Toluidine, 841, 842 p-Toluidine, 841, 842, 944, 977 o-Toluidine, 987 p-Tolyl isobutyrate, 537 Torsional energy, 125, 127 Torsional strain, 125, 133 Toslyate esters, 516, 682 as leaving groups, 518 SN2 reactions of, 517t Tosylates formation of, 515–517 SN2 displacement reactions, 733 Tosyl chloride, 516–517, 518 Tosyl ester (ROTs), 538 Toxicology dependence on amounts and concentrations, 470 mercury compounds, 373 Trans, 131, 303 Transesterification, 1069, 1072– 1073, 1269–1270 Trans fats, 1269 Transient, 649 Transition states, 172–173, 262 Transmissible encephalopathy in mink (TME), 1257 Transmissible spongiform encephalopathies (TSEs), 1258 Transoid, 737 Transport proteins, 1254 Traveling waves, 27–28 Trehalose, 1202 Triacetoxyborohydride, 981 Triacyglycerols, 1266 Trialkylborane, 380 Trialkyl borate ester, 381 Tribromomethane, 192 2,4,6-Tribromoaniline, 959 2,4,6-Tribromoanisole, 821 Trichloroacetaldehyde, 904 Trichloroacetic acid, 80, 1010 2,4,5-Trichlorophenoxyacetic acid (Agent Orange), 680 1,2,2-Trichloropropane, 651, 653 cis-Tricos-9-ene, 297 Triethanolamine, 701 Triethyl aluminum, 1294–1295 Triethylamine, 328, 693, 952 Triethylammonium hydrogen sulfate, 952 Triethylbenzenes, 834 Trifluoroacetic anhydride, 1049 Trifluoroacetic propionic anhydride, 1049 Triglycerides, 1070, 1265, 1266, 1266–1270 Trigonal geometry, 34, 35 Trihalomethyl ketone, 1123 Triisopropylsilyl (TIPS), 692–693 Trimethylamine, 63, 941, 945 Trimethylamine oxide, 941 (R)-1,2,2-Trimethylaziridine, 945 (S)-1,2,2-Trimethylaziridine, 945 1,3,5-Trimethylbenzene, 793 1,3,5-Trinitrobenzene, 793 1,1,3-Trimethylbutyl group, 116 1,1,3-Trimethylcyclopentane, 131 2,2,4-Trimethylpentane, 119 Trimethyl phosphate, 540 Trimethylphosphine, 919 Trimethylsulfonium iodide, 691 Trimyristin, 1266 Trinitrotoluene (TNT), 539, 824 Triolein, 1268 Trioxane, 880, 882 Triphenylmethanol, 462 Triphenylmethyl cation, 189 Triphenylmethyl fluoroborate, 855 Triphenylphosphine, 918, 921 Triple bonds, 9, 24t, 40, 618f Tristearin, 1268, 1270 Triterpene, 1280 Tri-tert-butoxyaluminum hydride, 1084 Trivial names, 110 Tropylium ion, 780 Trypsin, 1246, 1257 Tryptophan, 755t, 1227 L-Tryptophan, 792, 942 Tuberculosis, 391 Tungsten catalysts, 408 Turpentine, 65, 297, 1265 Index I19 Twist boat conformations, 136, 137 Tyrian purple dye, 753f, 754 Tyrosine, 390, 755t Tyrosine phenylthiohydantoin, 1245 U Ubiquinone, 857 Ultrasüss, 817 Ultraviolet absorption maxima of some molecules, 751f Ultraviolet absorption spectroscopy, 746–752 Ultraviolet Imaging Spectrograph, 746f Ultraviolet light and electronic transitions, 747–749 obtaining spectrum, 749–750 and skin cancer, 745 Ultraviolet spectra of benzene & derivatives, 798t of ketones and aldehydes, 887–888 Ultraviolet spectrometer, 749f Ultraviolet (UV) spectroscopy, 746 of aromatic compounds, 796–797 of carboxylic acids, 1017 UMP (uridylic acid), 1209 cis-Undec-8-ene-2,5-dione, 1136 Undecylenic acid, 1014 Unimolecular substitutions vs eliminations, 337–338 Unsaturated alkenes, 299 Unsymmetrical ether, 672 Unsymmetrical reagents, Diels-Alder reaction using, 740–742 Upfield, 612 Uracil, 1208 Ureas, 2, 1097 Urethanes, 1097, 1300 Uridine, 1208 Uridine monophosphate, 1209 UV absorptions of common ring systems in biomolecules, 755t UV lasers, 586 UV-visible analysis in biology, medicine, 754–756 UV-visible spectra, 751–752 UV-visible spectrometers, 747 V Vaccines, 1248 Valence electrons, 6, Valence-shell electron-pair repulsion theory (VSEPR theory), 33 Valerates, 1289 Valeric acid, 1012 Valine, 1223 van der Waal forces, 61 van der Waal radius, 60 Vanillin, 889 Vegetable oils double bonds in, 390 from esters, 1044–1045 Vegetable shortening, 1269 Vibrations IR-active and IR-inactive, 561–562 molecular, 559–561 Vicinal dihalide, 439–440 Vicinal diol, 465 I20 www.downloadslide.net Index Vicinal halides, 249 Vinegaroon (whip-tail scorpion), 1020 Vinegar, 67, 1013 Vinyl alcohol, 447 Vinyl amines, 1119 Vinylbenzene, 303, 792 Vinylborane, 448, 449 Vinyl chloride, 247, 306–307, 308, 477, 1286, 1287, 1297 Vinyl group, 302 Vinyl halides, 247, 278, 439, 847 3-Vinyl-1,5-hexadiene, 302 3-Vinylhexa-1,5-diene, 302 Vinylidene chloride, 1297 Vinyllithium, 477, 486 Vinyl protons, 616–618 Vitalism, 1, Vitamin A, 64 Vitamin B3, 515 Vitamin B6, 942 Vitamin B12, 190, 752 Vitamin C, 2, 55, 85, 1089 Vitamin D, 64 Vitamin E, 187 Vitamins, water solubility of, 64 Volatile organic compounds (VOCs), 119 Vulcanization, 1295, 1296 Vulcanized rubber, 1286 W Walden inversion, 273–274 Walden, Paul, 274 Wallach, Otto, 1279 Warfarin, 1087 Water, 59 acid-catalyzed opening of epoxides, 697 and alcohols, 461 hard, 1272 hydrogen bonding of ketone with, 94f and oil, 66–67 Watson, James D., 1212, 1213 Waveforms, 27–28 Wave function, 27 Wavelength, 557–558 Wavenumber, 558–559 Wave properties of electrons in orbitals, 27–28 Waxes, 1265 Whale oil, 1265 Wheat paste, 705 Whip-tail scorpion, 1020 Wilkinson’s catalyst, 389 Williamson ether synthesis, 541, 682, 856 Willow bark, 1190 Willstätter, Richard, 768 Wine sediments, 239 Wittig reaction, 918–921, 1132 Wohl degradation, 1195 Wöhler, Friedrich, Wood alcohol, 468–469 Wood, and cellulose, 1173 Woodman-Hoffman rules, 743 Woodward, Robert B., 743 X X-ray crystallography, 236 X-rays, 558 L-Xylose, 1176 m-Xylene, 793, 850 o-Xylene, 621, 828 p-Xylene, 814 Y Yeasts, 469, 1202 Ylide, 918, 919 Z Zaitsev orientation, 324 Zaitsev product, 328, 335, 968 Zaitsev’s rule, 312, 324–325, 327, 328, 335 Zeaxanthin, 753f Zeolite crystals, 1026 Ziegler, Karl, 1294 Ziegler-Natta catalysts, 1294–1295 Zigzag structure, 129 Zinc-copper couple, 392 Zingiberene, 1281 Z isomer, 304 Zusammen, 304 Zwitterion, 1227, 1228 Zylon, 764 www.downloadslide.net Common Organic Compounds and Functional Groups Class of Compound General Structure Functional Group alkanes R H none alkyl halides R X X = F, Cl, Br, or I alkenes alkynes R CH R R´ CH C R´ C Example CH3CH2CH2CH3 butane CH3CH2CH2Cl 1-chloropropane carbon–carbon double bond CH3CH2 carbon–carbon triple bond CH3 CH CH2 C CH3 but-1-ene C but-2-yne H aromatic compounds H H benzene ring, also drawn H H H benzene alcohols R OH hydroxy group phenols Ar OH hydroxy group on an aromatic ring CH3CH2 OH ethanol OH phenol R thiols SH CH3 sulfhydryl group ethers R O R´ oxygen between two alkyl groups thioethers R S R´ sulfur between two alkyl groups SH methanethiol CH3CH2 O CH2CH3 CH3 S CH3 diethyl ether dimethyl sulfide O O epoxides C ether in a 3-membered ring C 1,2-epoxycyclohexane O O ketones R C carbonyl group R´ CH3 C acetone O O aldehydes R C carbonyl group H CH3CH2 esters R C C CH3 carboxyl group OH amines nitriles nitroalkanes R R R R C OH O O R´ carboalkoxy group CH3 C O CH2CH3 ethyl acetate O NH2 NH2 C C acetic acid O amides H O O R C propanal O carboxylic acids CH3 N NO2 carboxamide group H C N(CH3)2 N,N-dimethylformamide amino group cyano group nitro group CH3CH2 NH2 ethylamine CH3CH2 C propionitrile CH3CH2 N NO2 nitroethane www.downloadslide.net Common Reagents and Solvents Common Groups in Organic Chemistry Organic Groups Abbreviation Meaning Structure Abbreviation Structure O Ac acetyl allyl H2C O C CH3 CH Ar aryl group Boc tert-butyloxycarbonyl Bn benzyl Bu butyl (n-butyl) i-Bu isobutyl (CH3)2CH s-Bu sec-butyl CH3 R CH2 O Ph CH3 O C CH2 R CH2 CH2 R CH2 CH2 R CH R CH2 acetic anhydride DCC dicyclohexylcarbodiimide CH3 O C O C N C N DIBAL-H diisobutylaluminum hydride DME, “glyme” 1,2-dimethoxyethane diglyme bis(2-methoxyethyl) ether [(CH3)2CHCH2]2AlH CH3 R DMP O (CH3 CH2CH2 O tert-butyl (CH3)3C Bz benzoyl Ph Dess–Martin periodinane O O DMF O Cbz (or Z) benzyloxycarbonyl Et ethyl c-Hx cyclohexyl Ph Me Ph N (CH3)2 C CH3 S CH3 DMSO dimethyl sulfoxide O C EtOH ethanol CH2 R EtO− ethoxide ion Et2O diethyl ether LAH lithium aluminum hydride LiAlH4 LDA lithium diisopropylamide [(CH3)2CH]2N− Li+ mCPBA meta-chloroperoxybenzoic acid MeOH methanol MeO− methoxide ion R R CH3CH2OH CH3CH2 O CH3 R phenyl i-Pr isopropyl CH3 CH2 CH2 (CH3)2CH alkyl group unspecified Sia secondary isoamyl (CH3)2CH Ts para-toluenesulfonyl, “tosyl” CH3 CH R methyl vinyl ketone CH3 NBS N-bromosuccinimide PCC pyridinium chlorochromate R S C CH Py or Pyr pyridine t-BuOH tertiary butyl alcohol C N CH2 Br pyr CrO3 HCl R R t-BuOK potassium tertiary butoxide TEMPO 2,2,6,6-tetramethylpiperidinyl-1-oxy THF tetrahydrofuran TMS tetramethylsilane O H C O O H O− CH3 O O (i-Pr)3Si O O MVK R tetrahydropyranyl triisopropylsilyl O CH3OH R C H3 TIPS C Cl R R vinyl CH2CH3 O methyl propyl O− CH3CH2 9-fluorenylmethoxycarbonyl Pr THP H O OR Fmoc dimethylformamide R O CH2 CH3 CH3 AcO OAc I OAc O R C O CH2CH2)2O C H3 t-Bu CH3 R unspecified aromatic (CH3)3C Ac2O H N rr (CH3)3C (CH3)3C OH O− K + N R Not all of these abbreviations are used in this text, but they are provided for reference O (CH3)4Si O r H www.downloadslide.net Typical Values of Proton NMR Chemical Shifts Approximate δ Type of Proton methyl methylene methine CH3) CH2 ) CH ) ( ( ( alkane Summary of Functional Group Nomenclature Functional Group 0.9 1.3 1.4 R C CH3 C C H CH2 X  carboxy esters -oate alkoxycarbonyl 2.1 amides -amide amido 2.5 nitriles -nitrile cyano 3–4 aldehydes -al formyl 5–6 ketones -one oxo alcohols -ol hydroxy amines -amine amino alkenes alkynes -ene -yne alkenyl alkynyl alkanes -ane alkyl O ) vinyl allylic C -oic acid acetylenic H C carboxylic acids methyl ketone (X = halogen, C 1.7 CH3 Ph H aromatic 7.2 Ph CH3 benzylic 2.3 R R CHO COOH aldehyde acid 9–10 10–12 R OH alcohol variable, about 2–5 Ar OH phenol variable, about 4–7 R NH2 amine variable, about 1.5–4 ethers alkoxy halides halo These values are approximate, because all chemical shifts are affected by neighboring substituents The numbers given here assume that alkyl groups are the only other substituents present A more complete table of chemical shifts appears in Appendix Typical Values of IR Stretching Frequencies Frequency (cm−1) Functional Group Comments 3300 alcohol amine, amide alkyne O N C H H H always broad may be broad, sharp, or broad with spikes always sharp, usually strong 3000 alkane C H just below 3000 cm−1 alkene C acid O 2200 1710 (very strong) 1660 Name as Substituent Main groups in order of decreasing priority O C Name as Main Group alkyne nitrile C C H C C carbonyl just above 3000 cm−1 H very broad 2500–3500 cm−1 N just below 2200 cm−1 just above 2200 cm−1 O ketones, acids about 1710 cm−1 aldehydes about 1725 cm−1 esters higher, about 1735 cm−1 amides lower, about 1650 cm−1 conjugation lowers frequency alkene C C conjugation lowers frequency aromatic C C about 1600 cm−1 imine C N stronger than C C stronger than C C (see above) amide Ethers, esters, and alcohols also show C C O O stretching between 1000 and 1200 cm−1 More complete tables of IR frequencies appear in Appendices 2A and 2B PERIOD 39.10 103 88 Radium (226) Ra 4B (261) Rf 104 Hafnium 178.5 72 Hf Zirconium 91.22 40 Zr Titanium 47.867 Ti 22 5B 6B 7B Fe 26 8B Ni 28 1B 2B 89 Actinium (227) Ac 59 140.1 Thorium 232.0 90 Th Cerium 144.2 60 Nd Bohrium (264) Bh 107 Rhenium 186.2 75 Re Protactinium (231) 91 Pa Uranium 238.0 U 92 Praseodymium Neodymium 140.9 Pr 58 (266) Sg 106 Tungsten 183.84 74 W Seaborgium Ce (98) 43 Tc Manganese 54.94 Mn 25 Molybdenum Technetium 95.94 42 Mo Chromium 52.00 Cr 24 Dubnium (262) Db 105 Tantalum 180.9479 73 Ta Niobium 92.90 41 Nb Vanadium 50.94 V 23 Neptunium (237) 93 Np Promethium (145) 61 Pm Hassium (269) Hs 108 Osmium 190.23 76 Os Ruthenium 101.07 44 Ru Iron 55.85 58.70 (281) Ds 110 Platinum 195.1 78 Pt Palladium 106.4 46 Pd Nickel (272) Rg 111 Gold 197.0 79 Au Silver 107.9 47 Ag Copper 63.546 Cu 29 Plutonium (244) 94 Pu Samarium 150.4 62 Sm Americium (243) 95 Am Europium 152.0 63 Eu Curium (247) 96 Cm Gadolinium 157.3 64 Gd Meitnerium Darmstadtium Roentgenium (268) Mt 109 Iridium 192.2 Ir 77 Rhodium 102.9 45 Rh Cobalt 58.93 Co 27 Berkelium (247) 97 Bk Terbium 158.9 65 Tb Copermicium (285) Cn 112 Mercury 200.6 80 Hg Cadmium 112.4 48 Cd Zinc 65.39 Zn 30 *Numbers in parentheses are mass numbers of the most stable or best-known isotope of radioactive elements Actinide series: Lanthanum 138.9 La 57 Lawrencium Rutherfordium (262) Lr Lutetium 175.0 Barium 137.327 Lu 71 Ba 56 88.91 Yttrium Strontium 87.62 Y 39 Sr 38 44.96 Scandium Calcium 40.08 Sc 21 Lanthanide series: Francium (223) Fr 87 Cesium 132.9 Cs 55 Rubidium 85.47 Rb 37 Potassium Ca 20 19 K Magnesium Sodium 24.31 Mg 12 9.012 11 22.99 3B Californium (251) 98 Cf Dysprosium 162.5 66 Dy (284) 113 Thallium 204.4 81 Tl Indium 114.8 49 In Gallium 69.72 Ga 31 Aluminum 26.98 Al 13 Boron 10.81 Einsteinium (252) 99 Es Holmium 164.9 67 Ho Flerovium (289) Fl 114 Lead 207.2 82 Pb Tin 118.7 50 Sn Germanium 72.64 Ge 32 Silicon 28.09 Si 14 Carbon 12.01 C B Be 4A 3A Beryllium Na Carbon Atomic number Element symbol Atomic weight* Element name 2A Lithium 6.941 Li Hydrogen 1.008 H 1A 12.01 C Periodic Table of the Elements Fermium (257) 100 Fm Erbium 167.3 68 Er (288) 115 Bismuth 209.0 83 Bi Antimony 121.8 51 Sb Arsenic 74.92 As 33 Phosphorus 30.97 P 15 Nitrogen 14.01 N 5A Mendelevium (258.10) 101 Md Thulium 168.9 69 Tm Livermorium (292) Lv 116 Polonium (209) 84 Po Tellurium 127.6 52 Te Selenium 78.96 Se 34 Sulfur 32.07 S 16 Oxygen 16.00 O 6A 4.003 No Nobelium (259) 102 Ytterbium 173.0 70 Yb (294) 118 117 (294) Radon (222) 86 Rn Xenon 131.3 54 Xe Krypton 83.80 36 Kr Argon 39.95 18 Ar Neon 20.18 10 Ne Helium Astatine (210) 85 At Iodine 126.9 I 53 Bromine 79.90 Br 35 Chlorine 35.45 Cl 17 Fluorine 19.00 F 7A He Noble gases 8A www.downloadslide.net ... Analysis H 3C H 3C H 3C CH2CH3 C C H C C H H (1) Ph3P (2) BuLi CH2CH3 C H or could come from H 3C Synthesis CH2CH3 + Ph3P − (preferred) − C H 3C Br O H 3C + H3C + Ph3P − CH2CH3 C H H3C C + PPh3 O +... NH2 CH3CH2CHCH3 NH2 NHCH3 CH3CHCH2CH2 CH3CH2CHCH3 CH3 CH3 CH3 CH3CH2CHCHCHCH3 N(CH3)2 old IUPAC names in blue: new IUPAC names in green: 2-butanamine butan-2-amine 3- methyl-1-butanamine 3- methylbutan-1-amine... hydration: CH3COCH2Cl 18-41 PPh3 C O 18-40 LiAlH(O-t-Bu )3 O (2) H3O+ (i) (CH2CH)2CuLi O O (g) (1) DIBAL-H (− 78 °C) OCH3 H+ (c) CH3 (l) O 18 -39 (b) (d) (f) (h) ClCH2CHO CH2O CH3COCH3 CH3CHO Acetals
- Xem thêm -

Xem thêm: Organic chemistry 9e wade 3, Organic chemistry 9e wade 3

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay