Modern nuclear chemistry 2nd ed walter d loveland et al (wiley, 2017)

739 899 0
Modern nuclear chemistry 2nd ed   walter d  loveland et al  (wiley, 2017)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Modern Nuclear Chemistry Second Edition Walter D Loveland Oregon State University David J Morrissey Michigan State University Glenn T Seaborg University of California, Berkeley Copyright © 2017 by John Wiley & Sons, Inc All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada Library of Congress Cataloging-in-Publication Data Names: Loveland, Walter D | Morrissey, David J | Seaborg, Glenn T (Glenn Theodore), 1912–1999 Title: Modern nuclear chemistry / Walter D Loveland, David J Morrissey, Glenn T Seaborg Description: Second edition | Hoboken, NJ : John Wiley & Sons, Inc., 2017 | Includes bibliographical references and index Identifiers: LCCN 2016045901| ISBN 9780470906736 (cloth) | ISBN 9781119328483 (epub) Subjects: LCSH: Nuclear chemistry–Textbooks | Chemistry, Physical and theoretical–Textbooks Classification: LCC QD601.3 L68 2017 | DDC 541/.38–dc23 LC record available at https://lccn.loc.gov/2016045901 Cover Image: Courtesy of the author Cover Design: Wiley Set in 10/12pt Warnock by SPi Global, Pondicherry, India Printed in the United States of America Contents Preface to the Second Edition xv Preface to the First Edition xvii Introductory Concepts 1.1 1.2 1.3 1.4 1.4.1 1.4.2 1.5 1.6 1.7 1.8 1.8.1 1.8.2 1.8.3 1.8.4 1.8.5 Introduction The Excitement and Relevance of Nuclear Chemistry The Atom Atomic Processes Ionization X-Ray Emission The Nucleus: Nomenclature Properties of the Nucleus Survey of Nuclear Decay Types Modern Physical Concepts Needed in Nuclear Chemistry 12 Elementary Mechanics 13 Relativistic Mechanics 14 de Broglie Wavelength: Wave–Particle Duality 16 Heisenberg Uncertainty Principle 18 Units and Conversion Factors 19 Problems 19 Bibliography 21 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Nuclear Properties 25 Nuclear Masses 25 Terminology 28 Binding Energy Per Nucleon 29 Separation Energy Systematics 31 Abundance Systematics 32 Semiempirical Mass Equation 33 Nuclear Sizes and Shapes 39 Quantum Mechanical Properties 43 2.8.1 2.9 2.9.1 2.9.2 Nuclear Angular Momentum 43 Electric and Magnetic Moments 45 Magnetic Dipole Moment 45 Electric Quadrupole Moment 48 Problems 51 Bibliography 55 Radioactive Decay Kinetics 3.1 3.2 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 3.7 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 5.1 5.2 5.3 5.4 57 Basic Decay Equations 57 Mixture of Two Independently Decaying Radionuclides Radioactive Decay Equilibrium 66 Branching Decay 76 Radiation Dosage 77 Natural Radioactivity 79 General Information 79 Primordial Nuclei and the Uranium Decay Series 79 Cosmogenic Nuclei 81 Anthropogenic Nuclei 83 Health Effects of Natural Radiation 83 Radionuclide Dating 84 Problems 90 Bibliography 92 65 93 Introduction 93 Radiopharmaceuticals 94 Imaging 96 99 Tcm 98 PET 101 Other Imaging Techniques 103 Some Random Observations about the Physics of Imaging Therapy 108 Problems 110 Bibliography 112 Nuclear Medicine 113 Particle Physics 113 The Nuclear Force 117 Characteristics of the Strong Force 119 Charge Independence of Nuclear Forces 120 Problems 124 Bibliography 124 Particle Physics and the Nuclear Force 104 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Nuclear Structure 125 Introduction 125 Nuclear Potentials 127 Schematic Shell Model 129 Independent Particle Model 141 Collective Model 143 Nilsson Model 149 Fermi Gas Model 152 Problems 161 Bibliography 164 𝛂-Decay 7.1 7.2 7.3 7.4 7.5 7.6 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 9.1 9.2 9.3 9.4 9.5 9.6 9.7 167 Introduction 167 Energetics of α Decay 169 Theory of α Decay 173 Hindrance Factors 182 Heavy Particle Radioactivity 183 Proton Radioactivity 185 Problems 186 Bibliography 188 𝛃-Decay 191 Introduction 191 Neutrino Hypothesis 192 Derivation of the Spectral Shape 196 Kurie Plots 199 β Decay Rate Constant 200 Electron Capture Decay 206 Parity Nonconservation 207 Neutrinos Again 208 β-Delayed Radioactivities 209 Double β Decay 211 Problems 213 Bibliography 214 𝛄-Ray Decay 217 Introduction 217 Energetics of γ-Ray Decay 218 Classification of Decay Types 220 Electromagnetic Transition Rates 223 Internal Conversion 229 Angular Correlations 232 Mössbauer Effect 238 Problems 244 Bibliography 245 10 Nuclear Reactions 247 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 10.10 10.11 10.12 10.12.1 10.12.2 10.12.3 10.12.4 10.12.5 10.13 10.13.1 10.13.2 10.13.3 10.13.4 Introduction 247 Energetics of Nuclear Reactions 248 Reaction Types and Mechanisms 252 Nuclear Reaction Cross Sections 253 Reaction Observables 264 Rutherford Scattering 264 Elastic (Diffractive) Scattering 268 Aside on the Optical Model 270 Direct Reactions 271 Compound Nuclear Reactions 273 Photonuclear Reactions 279 Heavy-Ion Reactions 281 Coulomb Excitation 284 Elastic Scattering 284 Fusion Reactions 284 Incomplete Fusion 288 Deep-Inelastic Scattering 289 High-Energy Nuclear Reactions 291 Spallation/Fragmentation Reactions 291 Reactions Induced by Radioactive Projectiles 295 Multifragmentation 296 Quark–Gluon Plasma 298 Problems 298 Bibliography 302 11 11.1 11.2 11.2.1 11.2.2 11.2.3 11.2.4 11.2.5 11.3 11.4 11.4.1 11.4.2 11.4.3 11.5 Fission 305 Introduction 305 Probability of Fission 308 Liquid Drop Model 308 Shell Corrections 310 Spontaneous Fission 312 Spontaneously Fissioning Isomers 315 The Transition Nucleus 316 Dynamical Properties of Fission Fragments 323 Fission Product Distributions 327 Total Kinetic Energy (TKE) Release 327 Fission Product Mass Distribution 327 Fission Product Charge Distributions 330 Excitation Energy of Fission Fragments 334 Problems 337 Bibliography 338 12 12.1 12.2 12.3 12.3.1 12.4 12.5 12.5.1 12.5.2 12.5.3 12.5.4 12.5.5 12.6 12.6.1 12.6.2 12.6.3 12.6.4 12.6.5 12.7 13 13.1 13.2 13.2.1 13.2.2 13.2.3 13.2.4 13.2.5 13.3 13.4 13.5 13.5.1 13.5.2 13.5.3 13.5.4 13.6 13.7 13.8 339 Introduction 339 Elemental and Isotopic Abundances 340 Primordial Nucleosynthesis 343 Stellar Evolution 347 Thermonuclear Reaction Rates 351 Stellar Nucleosynthesis 353 Introduction 353 Hydrogen Burning 353 Helium Burning 357 Synthesis of Nuclei with A < 60 359 Synthesis of Nuclei with A > 60 360 Solar Neutrino Problem 366 Introduction 366 Expected Solar Neutrino Sources, Energies, and Fluxes Detection of Solar Neutrinos 369 The Solar Neutrino Problem 371 Solution to the Problem: Neutrino Oscillations 371 Synthesis of Li, Be, and B 373 Problems 375 Bibliography 376 Nuclear Astrophysics 379 Introduction 379 Nuclear Reactors 380 Neutron-Induced Reaction 380 Neutron-Induced Fission 383 Neutron Inventory 384 Light Water Reactors 386 The Oklo Phenomenon 391 Neutron Sources 392 Neutron Generators 392 Accelerators 393 Ion Sources 394 Electrostatic Machines 396 Linear Accelerators 400 Cyclotrons, Synchrotrons, and Rings 403 Charged-Particle Beam Transport and Analysis 410 Radioactive Ion Beams 415 Nuclear Weapons 421 Reactors and Accelerators 367 Problems 425 Bibliography 427 14 14.1 14.2 14.3 14.4 14.5 14.6 14.7 The Transuranium Elements 429 15 Nuclear Reactor Chemistry 15.1 15.2 15.3 15.3.1 15.3.2 15.3.3 15.3.4 15.4 15.4.1 15.4.2 15.4.3 15.4.4 15.5 15.5.1 15.5.2 15.6 15.6.1 15.6.2 15.6.3 15.6.4 15.6.5 15.6.6 15.6.7 15.6.8 15.6.9 15.6.10 15.7 15.7.1 Introduction 429 Limits of Stability 429 Element Synthesis 434 History of Transuranium Element Discovery 437 Superheavy Elements 449 Chemistry of the Transuranium Elements 453 Environmental Chemistry of the Transuranium Elements Problems 468 Bibliography 469 473 Introduction 473 Fission Product Chemistry 475 Radiochemistry of Uranium 478 Uranium Isotopes 478 Metallic Uranium 478 Uranium Compounds 478 Uranium Solution Chemistry 479 The Nuclear Fuel Cycle: The Front End 480 Mining and Milling 481 Refining and Chemical Conversion 483 Isotopic Enhancement 484 Fuel Fabrication 487 The Nuclear Fuel Cycle: The Back End 488 Properties of Spent Fuel 488 Fuel Reprocessing 490 Radioactive Waste Disposal 493 Classifications of Radioactive Waste 493 Waste Amounts and Associated Hazards 494 Storage and Disposal of Nuclear Waste 496 Spent Nuclear Fuel 497 HLW 498 Transuranic Waste 499 Low-Level Waste 499 Mill Tailings 500 Partitioning of Waste 500 Transmutation of Waste 501 Chemistry of Operating Reactors 504 Radiation Chemistry of Coolants 504 461 15.7.2 15.7.3 Corrosion 505 Coolant Activities 505 Problems 506 Bibliography 507 16 Interaction of Radiation with Matter 509 16.1 16.2 16.2.1 16.2.2 16.3 16.4 16.4.1 16.4.2 16.4.3 16.5 16.6 Introduction 509 Heavy Charged Particles 512 Stopping Power 512 Range 521 Electrons 526 Electromagnetic Radiation 532 Photoelectric Effect 534 Compton Scattering 536 Pair Production 537 Neutrons 540 Radiation Exposure and Dosimetry 544 Problems 548 Bibliography 550 17 Radiation Detectors 553 17.1 17.1.1 17.1.2 17.1.3 17.1.4 17.1.5 17.2 17.2.1 17.2.2 17.3 17.4 17.5 17.6 17.7 17.7.1 17.7.2 17.7.3 Introduction 553 Gas Ionization 554 Ionization in a Solid (Semiconductor Detectors) 554 Solid Scintillators 555 Liquid Scintillators 555 Nuclear Emulsions 555 Detectors Based on Collecting Ionization 556 Gas Ionization Detectors 557 Semiconductor Detectors (Solid State Ionization Chambers) 567 Scintillation Detectors 578 Nuclear Track Detectors 584 Neutron Detectors 585 Nuclear Electronics and Data Collection 587 Nuclear Statistics 589 Distributions of Data and Uncertainty 591 Rejection of Abnormal Data 597 Setting Upper Limits When No Counts Are Observed 598 Problems 599 Bibliography 600 18 Nuclear Analytical Methods 603 18.1 18.2 Introduction 603 Activation Analysis 603 11 Figure 2.12 Artistic representation of the relative sizes of the halo nucleus Li and SUVr SUVr SUVr 208 Pb Figure 4.9 Amyvid-PET images are shown for three subjects where red in the highest standard uptake value ratio (SUVr) Top row, normal subject with no β-amyloid plaques, middle row moderate load of β-amyloid plaques associated with early stage Alzheimer’s disease, and bottom row high load of β-amyloid plaques associated with late stage Alzheimer’s disease (From Butler Hospital) (a) (b) [11C]cocaine Axial brain scans Time activity curves 120 Uptake High 100 10 min 20 min High 30 % of peak 80 60 40 20 40 Low 0 10 [11C]methamphetamine 120 20 40 30 Time (min) 50 60 100 10 min 20 min 30 % of peak 80 60 40 20 38 75 90 0 20 40 60 Time (min) 80 100 Figure 4.10 Pharmacokinetics of cocaine and methamphetamine in the human brain (a) Axial brain scans (b) Time activity curves The fast brain uptake of the drugs corresponds to the user “high” Reproduced with permission from Annu Rev Pharmcol Toxicol 52, 321 (2012) S Stress R Redist (a) Stress Redist (b) Stress Redist (c) Figure 4.11 Images from 201 Tl cardiac imaging (Saha (2010) Reproduced with the permission of Springer) Figure 9.12 Energy level diagram of two 57 members of the A = 57 mass chain Co 57 decays to excited states of Fe, which result in the M1 transition from the 3∕2− state at 14.41 keV to the 1∕2− ground state 57Co(271 day) decay scheme 271 day 7/2 – Q = 836.1 5/2 – 14 12 23 136 366 352 692 570 339 3/2 – 1/2 – 57 27 Co 0.174% 706.76 706 3/2 – 5/2 – 366.89 136.47 99.8% 14.41 57 26Fe Stable 400 Coulomb Nuclear V(r), I = V(r), I = 10 V(r), I = 100 V (MeV) 300 200 100 –100 10 15 20 r (fm) 16 Figure 10.11 The nuclear Coulomb and total potentials for the interaction of O with for several values of the orbital angular momentum 208 Pb Fission isomers Fm Es Cf Bk Cm Am Pu Np U Pa Th 100 99 98 97 96 95 94 93 92 91 90 140 141 142 143 144 145 146 147 148 149 150 151 Figure 11.6 The positions of the known spontaneously fissioning isomers in the high mass end of the chart of nuclides The dark-colored boxes indicate one isomeric state, while the light-colored boxes indicate two isomeric states (Vandenbosch and Huizenga (1973) Reproduced with the permission of Elsevier) Log abundance (%) –2 –4 –6 Solar Crustal –8 –10 10 15 20 25 30 35 40 Z Figure 12.1 The abundances of the first 40 elements as a percentage by mass of the earth’s crust (filled circles) and in the solar system (open squares) (Reproduced with the permission of Haynes et al (1994)) 0.01 Fraction of critical density 0.02 0.05 mass fraction 0.25 0.24 0.23 4He 0.22 10–4 Number relative to H Figure 12.6 The variation of the relative abundances of the big bang nuclei (bottom) and the He mass fraction (top) versus the baryon density The boxes indicate the measured values and estimates of their uncertainty The curves indicate the dependence of the yield on the baryon density in the big bang models and the vertical bar indicates the region of overlap D 3He 10–5 10–9 7Li 10–10 Baryon density (10–31 g/cm3) Total rates: Standard model versus experiment Bahcall–Pinsonneault (2000) 7.6 +1.3 –1.1 128 +9 –7 1.0 +0.20 –0.16 0.48 ± 0.02 0.55 ± 0.08 71 +7 –6 +0.20 1.01 ± 0.12 +0.20 1.0 –0.16 1.0 –0.16 71 ± 2.56 ± 0.23 0.35 ± 0.02 Gallex + GNO Sage SuperK Kamioka H 2O CI Theory Ga 7Be 8B p-p, pep CNO SNO All ν SNO νe 2H O 2H O Experiments Uncertainties Figure 12.19 A summary of the comparison between standard solar model predictions and experimental measurements emphasizing the effects of neutrino oscillations in detector systems that are sensitive to only one form of neutrino (Bahcall, Reproduced with the permission of Bahcall website) Figure 14.2 The half-lives of the known transuranium nuclei plotted as a function of Z and N (Karpov et al (2012) Reproduced with the permission of World Scientific Publishing Co Pvt Ltd) Proton number >1 year >1 day >1 s >1 ms >1 μs +13 108 104 103 102 101 100 99 98 97 96 95 94 93 130 106 105 140 110 112 111 109 107 150 160 170 180 190 Figure 14.4 The predicted half-lives of the transuranium nuclei with Z ≤ 112 (Möller (1997) Reproduced with the permission of John Wiley & Sons) 107 106 Cross section (pb) 105 Cold fusion Hot fusion 104 Figure 14.5 The observed cross sections for the production of heavy elements by the “cold” and “hot” fusion reactions 103 102 101 100 10–1 10–2 100 102 104 106 108 110 112 114 116 118 120 122 ZCN γ-detectors SHIP 94 Si-detectors TOF detectors 7.5° magnet Target wheel Magnets Beam stop Electric field Lenses Figure 14.9 A schematic diagram of the SHIP velocity filter separator at the GSI in Germany 1024 Longest-lived isotopes of transuranium elements 1021 Decay by spontaneous fission 1018 Half-life (s) 1015 1,000,000 years 1012 1,000 years 109 year day 106 1h 103 1s 10–3 10–6 Decay by losing α particles 10–9 10–12 94 98 102 106 110 Atomic number Figure 14.11 Half-lives of the longest-lived isotope of the heaviest elements versus atomic number, Z, circa 1970 130 126 120 114 < μs Proton number Proton number >1 year >1 day >1 s >1 ms >1 μs

Ngày đăng: 23/03/2018, 08:52

Từ khóa liên quan

Mục lục

  • Contents

  • Introductory Concepts

    • Introduction

    • The Excitement and Relevance of Nuclear Chemistry

    • The Atom

    • Atomic Processes

    • The Nucleus: Nomenclature

    • Properties of the Nucleus

    • Survey of Nuclear Decay Types

    • Modern Physical Concepts Needed in Nuclear Chemistry

    • Problems

    • Bibliography

    • Nuclear Properties

      • Nuclear Masses

      • Terminology

      • Binding Energy Per Nucleon

      • Separation Energy Systematics

      • Abundance Systematics

      • Semiempirical Mass Equation

      • Nuclear Sizes and Shapes

      • Quantum Mechanical Properties

      • Electric and Magnetic Moments

Tài liệu cùng người dùng

Tài liệu liên quan