Mossbauer spectroscopy applications in chemistry biology industry and nanotechnology

657 855 0
Mossbauer spectroscopy applications in chemistry biology industry and nanotechnology

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

€ MOSSBAUER SPECTROSCOPY € MOSSBAUER SPECTROSCOPY APPLICATIONS IN CHEMISTRY, BIOLOGY, AND NANOTECHNOLOGY Edited by Virender K Sharma, Ph.D Göstar Klingelhưfer Tetsuaki Nishida Copyright Ĩ 2013 by John Wiley & Sons, Inc All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication Data: M€ ossbauer spectroscopy : applications in chemistry, biology, industry, and nanotechnology / [edited by] Virender K Sharma, Ph.D., G€ ostar Klingelh€ ofer, Tetsuaki Nishida pages cm Includes bibliographical references and index ISBN 978-1-118-05724-7 (hardback) M€ ossbauer spectroscopy I Sharma, Virender K., editor of compilation II Klingelh€ ofer, G€ ostar, 1956- editor of compilation III Nishida, Tetsuaki, 1950- editor of compilation QD96.M6M638 2014 2013011056 5430 6–dc23 Printed in the United States of America 10 We dedicate this book to the late Professor Attila Vertez, E€otv€os Lorand University, Budapest, Hungary Contents Preface xix Contributors xxi Part I Instrumentation Chapter | In Situ M€ ossbauer Spectroscopy with Synchrotron Radiation on Thin Films Svetoslav Stankov, Tomasz Sle˛zak, Marcin Zaja˛c, Michał Sle˛zak, Marcel Sladecek, Ralf R€ohlsberger, Bogdan Sepiol, Gero Vogl, Nika Spiridis, Jan Ła_zewski, Krzysztof Parlinski, and Jozef Korecki 1.1 1.2 Introduction Instrumentation 1.2.1 Nuclear Resonance Beamline ID18 at the ESRF 1.2.2 The UHV System for In Situ Nuclear Resonant Scattering Experiments at ID18 of the ESRF 1.3 Synchrotron Radiation-Based M€ ossbauer Techniques 10 1.3.1 Coherent Elastic Nuclear Resonant Scattering 10 1.3.2 Coherent Quasielastic Nuclear Resonant Scattering 25 1.3.3 Incoherent Inelastic Nuclear Resonant Scattering 30 1.4 Conclusions 38 Acknowledgments 39 References 39 Chapter | M€ ossbauer Spectroscopy in Studying Electronic Spin and Valence States of Iron in the Earth’s Lower Mantle 43 Jung-Fu Lin, Zhu Mao, and Ercan E Alp 2.1 2.2 Introduction 43 Synchrotron M€ ossbauer Spectroscopy at High Pressures and Temperatures 44 2.3.1 Crystal Field Theory on the 3d Electronic States 46 2.3.2 Electronic Spin Transition of Fe2ỵ in Ferropericlase 47 2.3.3 Spin and Valence States of Iron in Silicate Perovskite 49 2.3.4 Spin and Valence States of Iron in Silicate Postperovskite 52 2.4 Conclusions 54 Acknowledgments 55 References 55 Chapter | In-Beam M€ ossbauer Spectroscopy Using a Radioisotope Beam and a Neutron Capture Reaction 58 Yoshio Kobayashi 3.1 3.2 Introduction 58 57 Mn (!57Fe) Implantation M€ ossbauer Spectroscopy 61 3.2.1 In-Beam M€ ossbauer Spectrometer 61 3.2.2 Detector for 14.4 keV M€ ossbauer g-Rays 62 3.2.3 Application to Materials Science—Ultratrace of Fe Atoms in Si and Dynamic Jumping 62 vii viii CONTENTS 3.2.4 Application to Inorganic Chemistry 63 3.2.5 Development of M€ ossbauer g-Ray Detector 65 3.3 Neutron In-Beam M€ ossbauer Spectroscopy 66 3.4 Summary 66 References 67 Part II Radionuclides 71 Chapter | Lanthanides (151Eu and 155 Gd) M€ ossbauer Spectroscopic Study of Defect-Fluorite Oxides Coupled with New Defect Crystal Chemistry Model 73 Akio Nakamura, Naoki Igawa, Yoshihiro Okamoto, Yukio Hinatsu, Junhu Wang, Masashi Takahashi, and Masuo Takeda 4.1 4.2 4.3 Introduction 73 Defect Crystal Chemistry (DCC) Lattice Parameter Model 76 Lns-M€ ossbauer and Lattice Parameter Data of DF Oxides 79 ossbauer and Lattice Parameter Data of M-Eus (M4ỵ ẳ Zr, Hf, Ce, U, 4.3.1 151Eu-M€ and Th) 79 ossbauer and Lattice Parameter Data of Zr1ÀyGdyO2Ày/2 80 4.3.2 155Gd-M€ 4.4 DCC Model Lattice Parameter and Lns-M€ ossbauer Data Analysis 84 4.4.1 DCC Model Lattice Parameter Data Analysis of Ce–Eu and Th–Eu 85 4.4.2 Quantitative BL(Eu3ỵO)-Composition (y) Curves in ZrEu and HfEu 88 4.4.3 Model Extension Attempt from Macroscopic Lattice Parameter Side 89 4.5 Conclusions 92 References 93 Chapter | M€ ossbauer and Magnetic Study of Neptunyl(ỵ1) Complexes 95 Tadahiro Nakamoto, Akio Nakamura, and Masuo Takeda 5.1 5.2 5.3 5.4 Introduction 95 237 Np M€ ossbauer Spectroscopy 96 Magnetic Property of Neptunyl Monocation (NpO2ỵ) 97 M ossbauer and Magnetic Study of Neptunyl(ỵ1) Complexes 98 5.4.1 (NH4)[NpO2(O2CH)2] (1) 98 5.4.2 [NpO2(O2CCH2OH)(H2O)] (2) 100 5.4.3 [NpO2(O2CH)(H2O)] (3) 101 5.4.4 [(NpO2)2((O2C)2C6H4)(H2O)3]ÁH2O (4) 104 5.5 Discussion 106 ossbauer Relaxation Spectra 106 5.5.1 237 Np M€ 5.5.2 Magnetic Susceptibility and Saturation Moment: Averaged Powder Magnetization for the Ground jJz ẳ ặ4i Doublet 107 5.6 Conclusion 113 Acknowledgment 113 References 113 Chapter | M€ ossbauer Spectroscopy of 161 Dy in Dysprosium Dicarboxylates Masashi Takahashi, Clive I Wynter, Barbara R Hillery, Virender K Sharma, Duncan Quarless, Leopold May, Toshiyuki Misu, Sabrina G Sobel, Masuo Takeda, and Edward Brown 6.1 Introduction 116 6.2 Experimental Methods 117 6.3 Results and Discussion 117 Acknowledgment 122 References 122 116 ... | Spin Crossover in Iron(III) Porphyrins Involving the Intermediate-Spin State 177 Mikio Nakamura and Masashi Takahashi 10.1 10.2 Introduction 177 Methodology to Obtain Pure Intermediate-Spin... invented Since then the M€ ossbauer spectroscopy has been applied in a wide range of fields including physics, chemistry, biology, and nanotechnology The M€ ossbauer spectroscopy is still being... € MOSSBAUER SPECTROSCOPY € MOSSBAUER SPECTROSCOPY APPLICATIONS IN CHEMISTRY, BIOLOGY, AND NANOTECHNOLOGY Edited by Virender K Sharma, Ph.D Göstar Klingelhöfer Tetsuaki Nishida

Ngày đăng: 13/03/2018, 15:17

Từ khóa liên quan

Mục lục

  • Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology

    • Contents

    • Preface

    • Contributors

    • Part I: Instrumentation

      • Chapter 1: In Situ Mössbauer Spectroscopy with Synchrotron Radiation on Thin Films

        • 1.1 Introduction

        • 1.2 Instrumentation

          • 1.2.1 Nuclear Resonance Beamline ID18 at the ESRF

          • 1.2.2 The UHV System for In Situ Nuclear Resonant Scattering Experiments at ID18 of the ESRF

        • 1.3 Synchrotron Radiation-Based Mössbauer Techniques

          • 1.3.1 Coherent Elastic Nuclear Resonant Scattering

          • 1.3.2 Coherent Quasielastic Nuclear Resonant Scattering

          • 1.3.3 Incoherent Inelastic Nuclear Resonant Scattering

        • 1.4 Conclusions

        • Acknowledgments

        • References

      • Chapter 2: Mössbauer Spectroscopy in Studying Electronic Spin and Valence States of Iron in the Earth’s Lower Mantle

        • 2.1 Introduction

        • 2.2 Synchrotron Mössbauer Spectroscopy at High Pressures and Temperatures

          • 2.3.1 Crystal Field Theory on the 3d Electronic States

          • 2.3.2 Electronic Spin Transition of Fe2+ in Ferropericlase

          • 2.3.3 Spin and Valence States of Iron in Silicate Perovskite

          • 2.3.4 Spin and Valence States of Iron in Silicate Postperovskite

        • 2.4 Conclusions

        • Acknowledgments

        • References

      • Chapter 3: In-Beam Mössbauer Spectroscopy Using a Radioisotope Beam and a Neutron Capture Reaction

        • 3.1 Introduction

        • 3.2 57Mn (57Fe) Implantation Mössbauer Spectroscopy

          • 3.2.1 In-Beam Mössbauer Spectrometer

          • 3.2.2 Detector for 14.4 keV Mössbauer γ-Rays

          • 3.2.3 Application to Materials Science—Ultratrace of Fe Atoms in Si and Dynamic Jumping

          • 3.2.4 Application to Inorganic Chemistry

          • 3.2.5 Development of Mössbauer γ-Ray Detector

        • 3.3 Neutron In-Beam Mössbauer Spectroscopy

        • 3.4 Summary

        • References

    • Part II: Radionuclides

      • Chapter 4: Lanthanides (151Eu and 155Gd) Mössbauer Spectroscopic Study of Defect-Fluorite Oxides Coupled with New Defect Crystal Chemistry Model

        • 4.1 Introduction

        • 4.2 Defect Crystal Chemistry (DCC) Lattice Parameter Model

        • 4.3 Lns-Mössbauer and Lattice Parameter Data of DF Oxides

          • 4.3.1 151Eu-Mössbauer and Lattice Parameter Data of M-Eus (M4+ = Zr, Hf, Ce, U, and Th)

          • 4.3.2 155Gd-Mössbauer and Lattice Parameter Data of Zr1 – yGdyO2 –y/2

        • 4.4 DCC Model Lattice Parameter and Lns-Mössbauer Data Analysis

          • 4.4.1 DCC Model Lattice Parameter Data Analysis of Ce–Eu and Th–Eu

          • 4.4.2 Quantitative BL(Eu3+ — O)-Composition (y) Curves in Zr–Eu and Hf–Eu

          • 4.4.3 Model Extension Attempt from Macroscopic Lattice Parameter Side

        • 4.5 Conclusions

        • References

      • Chapter 5: Mössbauer and Magnetic Study of Neptunyl(+1) Complexes

        • 5.1 Introduction

        • 5.2 237Np Mössbauer Spectroscopy

        • 5.3 Magnetic Property of Neptunyl Monocation (NpO2+)

        • 5.4 Mössbauer and Magnetic Study of Neptunyl(+1) Complexes

          • 5.4.1 (NH4)[NpO2(O2CH)2] (1)

          • 5.4.2 [NpO2(O2CCH2OH)(H2O)] (2)

          • 5.4.3 [NpO2(O2CH)(H2O)] (3)

          • 5.4.4 [(NpO2)2((O2C)2C6H4)(H2O)3] · H2O

        • 5.5 Discussion

          • 5.5.1 237Np Mössbauer Relaxation Spectra

          • 5.5.2 Magnetic Susceptibility and Saturation Moment: Averaged Powder Magnetization for the Ground |jz = ±4) Doublet

        • 5.6 Conclusion

        • Acknowledgment

        • References

      • Chapter 6: Mössbauer Spectroscopy of 161Dy in Dysprosium Dicarboxylates

        • 6.1 Introduction

        • 6.2 Experimental Methods

        • 6.3 Results and Discussion

        • Acknowledgment

        • References

      • Chapter 7: Study of Exotic Uranium Compounds Using 238U Mössbauer Spectroscopy

        • 7.1 Introduction

        • 7.2 Determination of Nuclear g-Factor in the Excited State of 238U Nuclei

          • 7.2.1 Background of 238U Mössbauer Spectroscopy and Its Application to Magnetism in Uranium Compounds

          • 7.2.2 238U Mössbauer and 235U NMR Measurements of UO2 in the Antiferromagnetic State

          • 7.2.3 Determination of the Nuclear g-Factor in the First Excited State of 238U

        • 7.3 Application of 238U Mössbauer Spectroscopy to Heavy Fermion Superconductors

          • 7.3.1 Introduction of Uranium-Based Heavy Fermion Superconductors

          • 7.3.2 Magnetic Ordering and Paramagnetic Relaxation in Heavy Fermion Superconductors

          • 7.3.3 Summary of 238U Mössbauer Spectroscopy of Uranium-Based Heavy Fermion Superconductors

        • 7.4 Application to Two-Dimensional (2D) Fermi Surface System of Uranium Dipnictides

          • 7.4.1 Introduction of Uranium Dipnictides

          • 7.4.2 Hyperfine Interactions Correlated with the Magnetic Structures in Uranium Dipnictides

          • 7.4.3 Summary of 238U Mössbauer Spectroscopy of Uranium Dipnictides

        • 7.5 Summary

        • Acknowledgments

        • References

    • Part III: Spin Dynamics

      • Chapter 8: Reversible Spin-State Switching Involving a Structural Change

        • 8.1 Introduction

        • 8.2 Three Assembled Structures of Fe(NCX)2(bpa)2 (X = S, Se) and Their Structural Change by Desorption of Propanol Molecules [23]

        • 8.3 Occurrence of Spin-Crossover Phenomenon in Assembled Complexes Fe(NCX)2(bpa)2 (X = S, Se, BH3) by Enclathrating Guest Molecules [25–27]

        • 8.4 Reversible Structural Change of Host Framework of Fe(NCS)2(bpp)2 2 (Benzene) Triggered by Sorption of Benzene Molecules [29]

        • 8.5 Reversible Spin-State Switching Involving a Structural Change of Fe(NCX)2(bpp)2 2(Benzene) (X = Se, BH3) Triggered by Sorption of Benzene Molecules [30]

        • 8.6 Conclusions

        • References

      • Chapter 9: Spin-Crossover and Related Phenomena Coupled with Spin, Photon, and Charge

        • 9.1 Introduction

        • 9.2 Photoinduced Spin-Crossover Phenomena

          • 9.2.1 LIESST for Fe(II) Complexes

          • 9.2.2 LIESST for Fe(III) Complexes

          • 9.2.3 Recent Topics of Photoinduced Spin-Crossover Phenomena

        • 9.3 Charge Transfer Phase Transition

          • 9.3.1 Thermally Induced Charge Transfer Phase Transition

          • 9.3.2 Photoinduced Charge Transfer Phase Transition

        • 9.4 Spin Equilibrium and Succeeding Phenomena

          • 9.4.1 Rapid Spin Equilibrium in Solid State

          • 9.4.2 Concerted Phenomenon Coupled with Spin Equilibrium and Valence Fluctuation

        • References

      • Chapter 10: Spin Crossover in Iron(III) Porphyrins Involving the Intermediate-Spin State

        • 10.1 Introduction

        • 10.2 Methodology to Obtain Pure Intermediate-Spin Complexes

          • 10.2.1 Saddled Deformation

          • 10.2.2 Ruffled Deformation

          • 10.2.3 Core Modification

        • 10.3 Spin Crossover Involving the Intermediate-Spin State

          • 10.3.1 Spin Crossover Between S = 3/2 and S = 1/2

          • 10.3.2 Spin Crossover Between S = 3/2 and S = 5/2

        • 10.4 Spin-Crossover Triangle in Iron(III) Porphyrin Complexes

        • 10.5 Conclusions

        • Acknowledgments

        • References

      • Chapter 11: Tin(II) Lone Pair Stereoactivity: Influence on Structures and Properties and Mössbauer Spectroscopic Properties

        • 11.1 Introduction

        • 11.2 Experimental Aspects

          • 11.2.1 Sample Preparation

        • 11.3 Crystal Structures

          • 11.3.1 The Fluorite-Type Structure: A Typically Ionic Structure

          • 11.3.2 Tin(II) Fluoride: Covalent Bonding and Polymeric Structure

          • 11.3.3 The α-PbSnF4 Structure: The Unexpected Combination of Ionic Bonding and Covalent Bonding

          • 11.3.4 The PbClF-Type Structure: An Ionic Structure and a Tetragonal Distortion of the Fluorite Type

        • 11.4 Tin Electronic Structure and Mössbauer Spectroscopy

          • 11.4.1 Tin Electronic Structure, Bonding Type, and Coordination

          • 11.4.2 Using Mössbauer Spectroscopy to Probe the Tin Electronic Structure and Bonding Mode

        • 11.5 Application to the Structural Determination of α-SnF2

          • 11.5.1 History

          • 11.5.2 Using 119Sn Mössbauer Spectroscopy to Determine that the Tin Positions Used by Bergerhoff Were Incorrect

        • 11.6 Application to the Structural Determination of the Highly Layered Structures of α-PbSnF4 and BaSnF4

          • 11.6.1 History

          • 11.6.2 Unit Cell of MSnF4 and Relationships with the Fluorite-Type MF2

          • 11.6.3 Mössbauer Spectroscopy, Bonding Type, Crystal Symmetry, and Preferred Orientation

          • 11.6.4 Combining All the Results: The α-PbSnF4 Structural Type

        • 11.7 Application to the Structural Study of Disordered Phases

          • 11.7.1 Disordered Fluoride Phases

          • 11.7.2 Disordered Chloride Fluoride Phases

        • 11.8 Lone Pair Stereoactivity and Material Properties

        • 11.9 Conclusions

        • Acknowledgments

        • References

    • Part IV: Biological Applications

      • Chapter 12: Synchrotron Radiation-Based Nuclear Resonant Scattering: Applications to Bioinorganic Chemistry

        • 12.1 Introduction

        • 12.2 Technical Background

          • 12.2.1 Theoretical Aspects of NFS

          • 12.2.2 Theoretical Aspects of SRPAC

          • 12.2.3 Experimental Aspects of NFS and SRPAC

        • 12.3 Applications in Bioinorganic Chemistry

          • 12.3.1 Nuclear Forward Scattering

          • 12.3.2 SRPAC

        • 12.4 Summary and Prospects

        • Acknowledgments

        • References

      • Chapter 13: Mössbauer Spectroscopy in Biological and Biomedical Research

        • 13.1 Introduction

        • 13.2 Microorganisms-Related Studies

        • 13.3 Plants

        • 13.4 Enzymes

        • 13.5 Hemoglobin

        • 13.6 Ferritin and Hemosiderin

        • 13.7 Tissues

        • 13.8 Pharmaceutical Products

        • 13.9 Conclusions

        • Acknowledgments

        • References

      • Chapter 14: Controlled Spontaneous Decay of Mössbauer Nuclei (Theory and Experiments)

        • 14.1 Introduction to the Problem of Controlled Spontaneous Gamma Decay

        • 14.2 The Theory of Controlled Radiative Gamma Decay

          • 14.2.1 General Consideration

        • 14.3 Controlled Spontaneous Gamma Decay of Excited Nucleus in the System of Mutually Uncorrelated Modes of Electromagnetic Vacuum

          • 14.3.1 Spontaneous Gamma Decay in the Case of Free Space

          • 14.3.2 Spontaneous Gamma Decay of Excited Nuclei in the Case of Screen Presence

        • 14.4 Spontaneous Gamma Decay in the System of Synchronized Modes of Electromagnetic Vacuum

        • 14.5 Experimental Study of the Phenomenon of Controlled Gamma Decay of Mössbauer Nuclei

          • 14.5.1 Investigation of the Phenomenon of Controlled Gamma Decay by Analysis of Deformation of Mössbauer Gamma Spectrum

        • 14.6 Experimental Study of the Phenomenon of Controlled Gamma Decay by Investigation of Space Anisotropy and Self-Focusing of Mössbauer Radiation

        • 14.7 Direct Experimental Observation and Study of the Process of Controlled Radioactive and Excited Nuclei Radiative Gamma Decay by the Delayed Gamma–Gamma Coincidence Method

        • 14.8 Conclusions

        • References

      • Chapter 15: Nature’s Strategy for Oxidizing Tryptophan: EPR and Mössbauer Characterization of the Unusual High-Valent Heme Fe Intermediates

        • 15.1 Two Oxidizing Equivalents Stored at a Ferric Heme

        • 15.2 Oxidation of L-Tryptophan by Heme-Based Enzymes

        • 15.3 The Chemical Reaction Catalyzed by MauG

        • 15.4 A High-Valent Bis-Fe(IV) Intermediate in MauG

        • 15.5 A High-Valent Fe Intermediate of Tryptophan 2,3-Dioxygenase

        • 15.6 Concluding Remarks

        • References

      • Chapter 16: Iron in Neurodegeneration

        • 16.1 Introduction

        • 16.2 Neurodegeneration and Oxidative Stress

        • 16.3 Mössbauer Studies of Healthy Brain Tissue

        • 16.4 Properties of Ferritin and Hemosiderin Present in Healthy Brain Tissue

        • 16.5 Concentration of Iron Present in Healthy and Diseased Brain Tissue: Labile Iron

        • 16.6 Asymmetry of the Mössbauer Spectra of Healthy and Diseased Brain Tissue

        • 16.7 Conclusion: The Possible Role of Iron in Neurodegeneration

        • References

      • Chapter 17: Emission (57Co) Mössbauer Spectroscopy: Biology-Related Applications, Potentials, and Prospects

        • 17.1 Introduction

        • 17.2 Methodology

        • 17.3 Microbiological Applications

        • 17.4 Enzymological Applications

          • 17.4.1 Choosing a Test Object

          • 17.4.2 Prerequisites for Using the 57Co EMS Technique

          • 17.4.3 Experimental 57Co EMS Studies

          • 17.4.4 Two-Metal-Ion Catalysis: Competitive Metal Binding at the Active Centers

          • 17.4.5 Possibilities of 57Co Substitution for Other Cations in Metalloproteins

        • 17.5 Conclusions and Outlook

        • Acknowledgments

        • References

    • Part V: Iron Oxides

      • Chapter 18: Mössbauer Spectroscopy in Study of Nanocrystalline Iron Oxides from Thermal Processes

        • 18.1 Introduction

        • 18.2 Polymorphs of Iron(III) Oxide, Their Crystal Structures, Magnetic Properties, and Polymorphous Phase Transformations

          • 18.2.1 α-Fe2O3

          • 18.2.2 β-Fe2O3

          • 18.2.3 γ-Fe2O3

          • 18.2.4 ε-Fe2O3

          • 18.2.5 Amorphous Fe2O3

        • 18.3 Use of 57Fe Mössbauer Spectroscopy in Monitoring Solid-State Reaction Mechanisms Toward Iron Oxides

          • 18.3.1 Thermal Decomposition of Ammonium Ferrocyanide—A Valence Change Mechanism

          • 18.3.2 Thermal Decomposition of Prussian Blue in Air

          • 18.3.3 Thermal Conversion of Fe2(SO4)3 in Air—Polymorphous Exhibition of Fe2O3

          • 18.3.4 Nanocrystalline Fe2O3 Catalyst from FeC2O4 2H2O

        • 18.4 Various Mössbauer Spectroscopy Techniques in Study of Applications Related to Nanocrystalline Iron Oxides

          • 18.4.1 57Fe Transmission Mössbauer Spectroscopy at Various Temperatures

          • 18.4.2 In-Field 57Fe Transmission Mössbauer Spectroscopy

          • 18.4.3 In Situ High-Temperature 57Fe Transmission Mössbauer Spectroscopy

          • 18.4.4 57Fe Conversion Electron and Conversion X-Ray Mössbauer Spectroscopy

        • 18.5 Conclusions

        • Acknowledgments

        • References

      • Chapter 19: Transmission and Emission 57Fe Mössbauer Studies on Perovskites and Related Oxide Systems

        • 19.1 Introduction

        • 19.2 Study of High-TC Superconductors

          • 19.2.1 Study of 57Co-Doped YBa2Cu3O7–δ

          • 19.2.2 Study of 57Co-Doped Y1 xPrxBa2Cu3O7–δ

        • 19.3 Study of Strontium Ferrate and Its Substituted Analogues

          • 19.3.1 Study of Sr0.95Ca0.05Co0.5Fe0.5O3–δ and Sr0.5Ca0.5Co0.5Fe0.5O3–δ

        • 19.4 Pursuing Colossal Magnetoresistance in Doped Lanthanum Cobaltates

          • 19.4.1 Emission Mössbauer Study of La0.8Sr0.2CoO3–δ Perovskites

          • 19.4.2 Emission and Transmission Mössbauer Study of Iron-Doped La0.8Sr0.2FeyCo1–yO3–δ Perovskites

        • References

      • Chapter 20: Enhancing the Possibilities of 57Fe Mössbauer Spectrometry to Study the Inherent Properties of Rust Layers

        • 20.1 Introduction

        • 20.2 Mössbauer Characterization of Some Iron Phases Presented in the Rust Layers

          • 20.2.1 Akaganeite

          • 20.2.2 Goethite

          • 20.2.3 Magnetite/Maghemite

        • 20.3 Determining Inherent Properties of Rust Layers by Mössbauer Spectrometry

          • 20.3.1 Rust Layers in Steels Submitted to Total Immersion Tests

          • 20.3.2 Rust Layers in Steels Submitted to Dry–Wet Cycles

          • 20.3.3 Rust Layers in Steels Submitted to Outdoor Tests

        • 20.4 Final Remarks

        • Acknowledgments

        • References

      • Chapter 21: Application of Mössbauer Spectroscopy to Nanomagnetics

        • 21.1 Introduction

        • 21.2 Spinel Ferrites

          • 21.2.1 Microstructure Determination

          • 21.2.2 Elucidation of Bulk Magnetic Properties in Nanoferrites Using In-Field Mössbauer Spectroscopy

          • 21.2.3 Core–Shell Effect on the Magnetic Properties in Superparamagnetic Nanosystems

        • 21.3 Nanosized Fe–Al Alloys Synthesized by High-Energy Ball Milling

          • 21.3.1 Nanosized Al–1 at% Fe

        • 21.4 Magnetic Thin Films/Multilayer Systems: 57Fe/AI MLS

          • 21.4.1 Structural Characterization

          • 21.4.2 DC Magnetization Studies

          • 21.4.3 Mössbauer (CEMS) Study

        • 21.5 Conclusions

        • Acknowledgments

        • References

      • Chapter 22: Mössbauer Spectroscopy and Surface Analysis

        • 22.1 Introduction

        • 22.2 The Physical Basis: How and Why Electrons Appear in Mössbauer Spectroscopy

        • 22.3 Increasing Surface Sensitivity in Electron Mössbauer Spectroscopy

        • 22.4 The Practical Way: Experimental Low-Energy Electron Mössbauer Spectroscopy

        • 22.5 Mössbauer Surface Imaging Techniques

        • 22.6 Recent Surface Mössbauer Studies in an “Ancient” Material: Fe3O4

        • Acknowledgment

        • References

      • Chapter 23: 57Fe Mössbauer Spectroscopy in the Investigation of the Precipitation of Iron Oxides

        • 23.1 Introduction

        • 23.2 Complexation of Iron Ions by Hydrolysis

        • 23.3 Precipitation of Iron Oxides by Hydrolysis Reactions

        • 23.4 Precipitation of Iron Oxides from Dense β-FeOOH Suspensions

        • 23.5 Precipitation and Properties of Some Other Iron Oxides

          • 23.5.1 Ferrihydrite

          • 23.5.2 Lepidocrocite (γ-FeOOH)

          • 23.5.3 Magnetite (Fe3O4) and Maghemite (γ-Fe2O3)

        • 23.6 Influence of Cations on the Precipitation of Iron Oxides

          • 23.6.1 Goethite

          • 23.6.2 Hematite

          • 23.6.3 Magnetite and Maghemite

        • Acknowledgment

        • References

      • Chapter 24: Ferrates(IV, V, and VI): Mössbauer Spectroscopy Characterization

        • 24.1 Introduction

        • 24.2 Spectroscopic Characterization

        • 24.3 Mössbauer Spectroscopy Characterization

          • 24.3.1 Ferryl(IV) Ion

          • 24.3.2 Ferrates(IV, V, and VI)

          • 24.3.3 Case Studies

        • Acknowledgments

        • References

      • Chapter 25: Characterization of Dilute Iron-Doped Yttrium Aluminum Garnets by Mössbauer Spectrometry

        • 25.1 Introduction

        • 25.2 Sample Preparations by the Sol–Gel Method

        • 25.3 X-Ray Diffraction and EXAFS Analysis

        • 25.4 Magnetic Properties

        • 25.5 Mössbauer Analysis of YAG Doped with Dilute Iron

        • 25.6 Microdischarge Treatment of Iron-Doped YAG

        • 25.7 Conclusions

        • Acknowledgments

        • References

    • Part VI: Industrial Applications

      • Chapter 26: Some Mössbauer Studies of Fe–As-Based High-Temperature Superconductors

        • 26.1 Introduction

        • 26.2 Experimental Procedure

        • 26.3 Where Do the Injected Electrons Go?

        • 26.4 New Electron-Rich Species in Ni-Doped Single Crystals: Is It Superconducting?

        • 26.5 Can O2 Play an Important Role?

        • Acknowledgment

        • References

      • Chapter 27: Mössbauer Study of New Electrically Conductive Oxide Glass

        • 27.1 Introduction

          • 27.1.1 Electrically Conductive Oxide Glass

          • 27.1.2 Cathode Active Material for Lithium-Ion Battery (LIB)

        • 27.2 Structural Relaxation of Electrically Conductive Vanadate Glass

          • 27.2.1 Increase in the Electrically Conductivity of Vanadate Glass

          • 27.2.2 Cathode Active Material for Li-Ion Battery (LIB)

        • 27.3 Summary

        • Acknowledgments

        • References

      • Chapter 28: Applications of Mössbauer Spectroscopy in the Study of Lithium Battery Materials

        • 28.1 Introduction

        • 28.2 Cathode Materials for Li-Ion Batteries

          • 28.2.1 Layered Intercalation Electrodes

          • 28.2.2 Phosphate Electrodes with Olivine Structure

          • 28.2.3 Insertion Silicate Electrodes

        • 28.3 Anode Materials for Li-Ion Batteries

          • 28.3.1 Conversion Oxides

          • 28.3.2 Tin Alloys and Intermetallic Compounds

          • 28.3.3 Antimony Alloys and Intermetallic Compounds

        • 28.4 Conclusions

        • Acknowledgments

        • References

      • Chapter 29: Mössbauer Spectroscopic Investigations of Novel Bimetal Catalysts for Preferential CO Oxidation in H2

        • 29.1 Introduction

        • 29.2 Experimental Section

          • 29.2.1 Catalyst Preparation

          • 29.2.2 Catalytic Activity Test

          • 29.2.3 Mössbauer Spectra Characterization

        • 29.3 Results and Discussion

          • 29.3.1 PtFe Alloy Nanoparticles Catalyst

          • 29.3.2 Ir–Fe/SiO2 Catalyst

        • 29.4 Conclusions

        • Acknowledgments

        • References

      • Chapter 30: The Use of Mössbauer Spectroscopy in Coal Research: Is It Relevant or Not?

        • 30.1 Introduction

        • 30.2 Experimental Procedures

          • 30.2.1 Mössbauer Spectroscopy

          • 30.2.2 SEM Analyses

          • 30.2.3 XRD Analyses

          • 30.2.4 Samples and Sample Preparation

        • 30.3 Results and Discussion

          • 30.3.1 Mössbauer Analyses of the As-Mined Samples

          • 30.3.2 Weathering of Coal

          • 30.3.3 Corrosion of Mild Steel Due to the Presence of Compacted Fine Coal

          • 30.3.4 Coal Combustion

          • 30.3.5 Coal Gasification and Resultant Products

        • 30.4 Conclusions

        • Acknowledgments

        • References

    • Part VII: Environmental Applications

      • Chapter 31: Water Purification and Characterization of Recycled Iron-Silicate Glass

        • 31.1 Introduction

          • 31.1.1 Water-Purifying Ability of Recycled Iron Silicate Glass

          • 31.1.2 Iron Silicate Glass Prepared by Recycling Coal Ash

        • 31.2 Properties and Structure of Recycled Silicate Glasses

          • 31.2.1 Water-Purifying Ability of Recycled Silicate Glasses

          • 31.2.2 Electromagnetic Property of Recycled Silicate Glasses

        • 31.3 Summary

          • 31.3.1 Water-Purifying Ability of Recycled Silicate Glasses

          • 31.3.2 Electromagnetic Property of Recycled Silicate Glasses

        • References

      • Chapter 32: Mössbauer Spectroscopy in the Study of Laterite Mineral Processing

        • 32.1 Introduction

        • 32.2 Conventional Processing

        • 32.3 Microwave Processing

        • References

    • Index

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan