ĐỀ CƯƠNG ôn tập TOÁN 10 học kỳ II 2018 mới nhất

28 156 0
  • Loading ...
1/28 trang

Thông tin tài liệu

Ngày đăng: 07/02/2018, 08:10

TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 Cơ sở Dạy học KHAI SÁNG.367 Thầy NGUYỄN TRUNG HIẾU Đơng Thạnh - Hóc Mơn –Tp.HCM  oOo 2017 - 2018 THPT PHÂN DẠNG CHUẨN Đề Cương NÂNG CAO ÔN TẬP ÔN TẬP TOÁN 10 - Học Kỳ II Họ Tên HS:………………………………………………………… LƯU HÀNH NỘI BỘ http://fb.me/khaisang367 _ _Trang -1- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TỐN 10 ĐỀ CƯƠNG ƠN TẬP - TỐN 10 - HỌC KỲ II A CÁC VẤN ĐỀ TRONG HỌCII I Đại số: Xét dấu nhị thức ,tam thức bậc hai; Giải phương trình, bất phương trình qui bậc nhất; bậc hai; phương trình có chứa căn, trị tuyệt đố, tìm điều kiện phươn- trình, bất phương trình có nghiệm, vơ nghiệm, có nghiệm thỏa mãn điều kiện Giải hệ bất phương trình bậc hai Biễu diễn miền nghiệm hệ bất phương trình bậc hai ẩn; ứng dụng vào toán tối ưu Tính tần số ;tần suất đặc trưng mẫu ;vẽ biểu đồ biễu diễn tần số ,tần suất (chủ yếu hình cột đường gấp khúc) Tính số trung bình, số trung vị, mốt, phương sai độ lệch chuẩn số liệu thống kê Tính giá trị lượng giác cung ,một biểu thức lượng giác Vận dụng công thức lượng giác vào toán rút gọn hay chứng minh đẳng thức lượng giác II Hình học: Viết phương trình đường thẳng (tham số ,tổng quát, tắc) Xét vị trí tương đối điểm đường thẳng ;đường thẳng đường thẳng Tính góc hai đường thẳng ;khoảng cách từ điểm đến đường thẳng Viết phương trình đường phân giác (trong ngồi) Viết phương trình đường tròn; Xác định yếu tố hình học đường tròn.viết phương trình tiếp tuyến đường tròn; biết tiếp tuyến qua điểm (trên hay ngồi đường tròn), song song, vng góc đường thẳng Viết phương trình tắc elíp; xác định yếu tố elíp Viết phương trình tắc hypebol; xác định yếu tố hypebol Viết phương trình tắc parabol; xác định yếu tố parabol Ba đường níc: khái niệm đường chuẩn, tính chất chung ba đường coníc http://fb.me/khaisang367 _ _Trang -2- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 B CƠ SỞ LÝ THUYẾT I Phần Đại số Bất phương trình hệ bất phương trình Các phép biến đởi bất phương trình: a) Phép cộng: Nếu f(x) xác định D thì P(x) < Q(x) ⇔ P(x) + f(x) < Q(x) + f(x) b) Phép nhân: * Nếu f(x) >0, ∀ x ∈ D thì P(x) < Q(x) ⇔ P(x).f(x) < Q(x).f(x) * Nếu f(x) Q(x).f(x) 2 c) Phép bình phương: Nếu P(x) ≥ và Q(x) ≥ 0, ∀ x ∈ D thì P(x) < Q(x) ⇔ P ( x) < Q ( x) Dấu nhị thức bậc Dấu nhị thức bậc nhất f(x) = ax + b b − x a –∞ +∞ f(x) (Trái dấu với hệ số a) (Cùng dấu với hệ số a) * Chú ý: Với a > ta có:  f ( x) ≤ −a f ( x) ≥ a ⇔  f ( x) ≤ a ⇔ −a ≤ f ( x ) ≤ a  f ( x) ≥ a Phương trình hệ bất phương trình bậc hai ẩn 2 a Biểu diễn hình học tập nghiệm của bất phương trình ax + by ≤ c (1) ( a + b ≠ ) Bước 1: Trong mp Oxy, vẽ đường thẳng ( ∆ ) : ax + by = c Bước 2: Lấy M o ( xo ; yo ) ∉ (∆ ) (thường lấy M o ≡ O ) Bước 3: Tính axo + byo và so sánh axo + byo và c Bước 4: Kết luận  Nếu axo + byo < c thì nửa mp bờ ( ∆ ) chứa Mo là miền nghiệm của ax + by ≤ c  Nếu axo + byo > c thì nửa mp bờ ( ∆ ) không chứa Mo là miền nghiệm của ax + by ≤ c b Bỏ bờ miền nghiệm của bpt (1) ta được miền nghiệm của bpt ax + by < c Miền nghiệm của các bpt ax + by ≥ c và ax + by > c được xác định tương tự c Biểu diễn hình học tập nghiệm của hệ bất phương trình bậc ẩn:  Với mỗi bất phương trình hệ, ta xác định miền nghiệm của nó và gạch bỏ miền còn lại  Sau làm lần lượt tất cả các bpt hệ một mp tọa độ, miền còn lại không bị gạch chính là miền nghiệm của hệ bpt đã cho Dấu tam thức bậc hai a Định lí dấu tam thức bậc hai: @, Định lí: f(x) = ax2 + bx + c, a ≠ a f ( α ) < Nếu có một số α cho thì: f(x)=0 cso hai nghiệm phân biệt x1 và x2 Số α nằm nghiệm x1 < α < x2 Hệ 1: Cho tam thức bậc hai f(x) = ax2 + bx + c, a ≠ 0, ∆ = b2 – 4ac * Nếu ∆ < thì f(x) dấu với hệ số a (a f(x)>0), ∀ x ∈ R −b * Nếu ∆ = thì f(x) dấu với hệ số a (a f(x)>0), ∀ x ≠ 2a * Nếu ∆ > thì f(x) dấu với hệ số a x < x1 x > x2; f(x) trái dấu với hệ số a x1 < x < x2.( Với x1, x2 là hai nghiệm của f(x) và x1< x2) http://fb.me/khaisang367 _ _Trang -3- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 Bảng xét dấu: f(x) = ax2 + bx + c, a ≠ 0, ∆ = b2– 4ac > x –∞ x1 x2 f(x (Cùng dấu với hệ số a) (Trái dấu với hệ số a) ) số a) Hệ 2: x < α < x2 ⇔ a f ( α ) < +   a f ( α ) >  α < x1 < x2 ⇔ ∆ > S x1  >α 2 + α   a f ( α ) >  x1 < x2 < α ⇔ ∆ > S  >α 2 + a f ( α ) > α ∉ [ x1 , x2 ] ⇔  ∆ > + Hệ 3:  a f ( α ) x1 < α < β < x2 ⇔   a f ( β ) +  a f ( α ) α < x1 < β < x2 ⇔   a f ( β ) +  a f ( α ) x1 < α < x2 < β ⇔   a f ( β ) + + α< S α= S +∞ (Cùng dấu với hệ x2 α α> S α < x1 < x2 < β ⇔  ∆ >  α < S < β  + b Dấu nghiệm số Cho f(x) = ax2 +bx +c, a ≠ a) ax2 +bx +c = có nghiệm ⇔ ∆ = b2– 4ac ≥ b) ax2 +bx +c = có nghiệm trái dấu ⇔ a.c < ∆ > ⇔  a.c > c) ax2 +bx +c = có nghiệm dấu http://fb.me/khaisang367 _ _Trang -4- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10  ∆ ≥  c   P = x1 x2 = > a  b  S = x1 + x2 = − >  a c) ax2 +bx +c = có các nghiệm dương ⇔   ∆ ≥  c   P = x1 x2 = > a  b  S = x1 + x2 = − <  a d) d) ax2 +bx +c = có các nghiệm âm ⇔  Chú ý: Dấu tam thức bậc hai luôn dâu với hệ số a ∆ < a > a <   i) ax2 +bx +c >0, ∀ x ⇔ ∆ < ii) ax2 +bx +c a <   ∆ ≤ 2 ⇔  ⇔ ∆ ≤ ≥ ∀ ≤ ∀ iii) ax +bx +c 0, x iv) ax +bx +c 0, x Bất phương trình bậc hai a Định nghĩa: Bất phương trình bậc là bpt có dạng f(x) > (Hoặc f(x) ≥ 0, f(x) < 0, f(x) ≤ 0), đó f(x) là một tam thức bậc hai ( f(x) = ax2 + bx + c, a ≠ ) b Cách giải: Để giải bất pt bậc hai, ta áp dụng định lí vầ dấu tam thức bậc hai Bước 1: Đặt vế trái f(x), xét dấu f(x) Bước 2: Dựa vào bảng xét dấu và chiều của bpt để kết luận nghiệm của bpt Thống kê Kiến thức cần nhớ i) Bảng phân bố tần suất ii) Biểu đồ iii) Số trung bình cộng, só trung vị, mốt iv) Phương sai độ lệch chuẩn Lượng giác I CÔNG THỨC LƯỢNG GIÁC Bảng giá trị lượng giác cung đặc biệt: π π π π Radia α n 0 0 Độ 30 45 60 900 sin α 2 cos α 2 tan α 3 ║ cot α ║ 3 http://fb.me/khaisang367 _ _Trang -5- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TỐN 10 Các cơng thức lượng giác bản: sin α + cos α = 1 π + tan α = , α ≠ + kπ , k ∈ ¢ cos α , α ≠ k π , k ∈ ¢ sin α π tan α cot α = 1, α ≠ k , k ∈ ¢ Các cơng thức liên hệ cung có liên quan đặc biệt: Cung đối nhau: cos ( −α ) = cos α sin ( −α ) = − sin α tan ( −α ) = − tan α cot ( −α ) = − cot α ; ; ; Cung bù nhau: cos ( π − α ) = − cos α sin ( π − α ) = sin α tan ( π − α ) = − tan α cot ( π − α ) = − cot α ; ; ; Cung phụ nhau: π  π  π  π  cos  − α ÷ = sin α sin  − α ÷ = cos α tan  − α ÷ = cot α cot  − α ÷ = tan α 2  2  2  2  ; ; ; Cung π : cos ( α + π ) = − cos α sin ( α + π ) = − sin α tan ( α + π ) = tan α cot ( α + π ) = cot α ; ; ; π Cung : π π   cos  α + ÷ = − sin α sin  α + ÷ = cos α 2 2   ; ; + cot α = a b c d e π  tan  α + ÷ = − cot α 2  ; Công thức cộng: π  cot  α + ÷ = − tan α 2  sin ( a + b ) = sin a cos b + cos a sin b cos ( a + b ) = cos a cos b − sin a sin b ; ; sin ( a − b ) = sin a cos b − cos a sin b cos ( a − b ) = cos a cos b + sin a sin b tan a + tan b tan a − tan b tan ( a − b ) = − tan a.tan b ; + tan a.tan b Công thức nhân đôi: sin 2a = 2sin a.cos a cos 2a = cos a − sin a = cos a − = − 2sin a tan a tan 2a = − tan a Ta có: − tan a tan a cos a = sin 2a = + tan a ; + tan a Công thức hạ bậc: + cos 2a − cos 2a − cos 2a cos a = sin a = tan a = 2 + cos 2a ; ; Cơng thức biến đổi tích thành tổng: ; ; tan ( a + b ) = http://fb.me/khaisang367 _ _Trang -6- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 cos a cos b = cos ( a − b ) + cos ( a + b )  sin a sin b =  cos ( a − b ) − cos ( a + b )  sin a cos b = sin ( a − b ) + sin ( a + b )  Cơng thức biến đổi tổng thành tích: u+v u −v u+v u−v cos u + cos v = cos cos cos u − cos v = −2 sin sin 2 ; 2 ; u +v u −v u+v u−v sin u + sin v = 2sin cos sin u − sin v = cos sin 2 ; 2 II PHƯƠNG TRÌNH LƯỢNG GIÁC Phương trình phương trình đặc biệt: a Dạng bản: u = v + k 2π sin u = sin v ⇔  ,k ∈¢ u = π − v + k 2π u = v + k 2π cos u = cos v ⇔  ,k ∈¢ u = −v + k 2π π   tan u = tan v ⇔ u = v + kπ , k ∈ ¢  v ≠ + kπ ÷   cot u = cot v ⇔ u = v + kπ , k ∈ ¢ ( v ≠ kπ ) b Các dạng đặc biệt: sin u = ⇔ u = kπ , k ∈ ¢ π π sin u = ⇔ u = + k 2π , k ∈ ¢ sin u = −1 ⇔ u = − + k 2π , k ∈ ¢ 2 π cos u = ⇔ u = + kπ , k ∈ ¢ cos u = ⇔ u = k 2π , k ∈ ¢ cos u = −1 ⇔ u = π + k 2π , k ∈ ¢ Phương trình bậc sin u cos u : a Là phương trình có dạng: a sin u + b cos u = c (1) với a ≠ và b ≠ 2 b Điều kiện có nghiệm: (1) có nghiệm ⇔ a + b ≥ c 2 c Cách giải: Chia hai vế cho a + b , sau đó dùng công thức cộng để đưa về phương trình bản 2 Phương trình dạng a sin u + b sin u cos u + c cos u = d Cách giải 1: • Xét cos u = có thỏa phương trình khơng • Khi cos u ≠ : Chia hai vế phương trình cho cos u ta đưa về dạng phương trình bậc hai (hoặc bậc nhất) tan u http://fb.me/khaisang367 _ _Trang -7- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TỐN 10 II Phần Hình học Các vấn đề hệ thức lượng tam giác a Các hệ thức lượng tam giác: Cho tam giác ABC có BC = a, AC = b, AB = c , trung tuyến AM = ma , BM = mb , CM = mc Định lý cosin: a2 = b2 + c2 – 2bc.cosA; b2 = a2 + c2 – 2ac.cosB; c2 = a2 + b2 – 2ab.cosC Hệ quả: b2 + c2 − a 2bc cosA = a + c2 − b2 2ac cosB = a + b2 − c2 2ab cosC = Định lý sin: a b c = = sin A sin B sin C = 2R (với R là bán kính đường tròn ngoại tiếp tam giác ABC ) b .Độ dài đường trung tuyến tam giác: ma = mb = b + c a 2(b + c ) − a − = 4 ; a + c b 2( a + c ) − b − = 4 http://fb.me/khaisang367 _ _Trang -8- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 b + a c 2(b + a ) − c 2 mc = − = 4 c Các cơng thức tính diện tích tam giác: 1 S = aha = bhb = chc abc S = 4R 1 S = ab.sinC = bc.sinA = ac.sinB S = pr p ( p − a )( p − b)( p − c) với p = (a + b + c) S= Phương trình đường thẳng * Để viết phương trình đường thẳng dạng tham số cần phải biết được: Toạ độ điểm vectơ phương * Để viết phương trình đường thẳng dạng tổng quát cần biết được: Toạ độ điểm vectơ pháp tuyến a Phương trình tham số đường thẳng ∆ :  x = x0 + tu1    y = y0 + tu với M ( x0 ; y )∈ ∆ và u = (u1 ; u ) là vectơ phương (VTCP) b Phương trình tổng quát đường thẳng ∆ : a(x – x0 ) + b(y – y ) = hay ax + by + c =  (với c = – a x0 – b y0 và a2 + b2 ≠ 0) đó M ( x0 ; y ) ∈ ∆ và n = ( a; b) là vectơ pháp tuyến (VTPT) x y + =1 Phương trình đường thẳng cắt hai trục tọa độ tại hai điểm A(a ; 0) và B(0 ; b) là: a b Phương trình đường thẳng qua điểm M ( x0 ; y ) có hệ số góc k có dạng : y – y = k (x – x0 ) c Khoảng cách từ điểm M ( x0 ; y ) đến đường thẳng ∆ : ax + by + c = ax0 + bx0 + c a + b2 được tính theo công thức : d(M; ∆) = d Vị trí tương đối hai đường thẳng : ∆1 = a1 x + b1 y + c1 = và ∆ = a x + b2 y + c2 =  a1 x + b1 y + c1 =0 a1 b1 ≠  ∆1 cắt ∆ ⇔ a2 b2 ; Tọa độ giao điểm của ∆1 và ∆ là nghiệm của hệ a2 x + b2 y + c2 =0 a1 b1 c1 a1 b1 c1 = ≠ = = ∆1 ⁄ ⁄ ∆ ⇔ a2 b2 c2 ; ∆1 ≡ ∆ ⇔ a2 b2 c2 (với a , b2 , c2 khác 0) Đường tròn a Phương trình đường tròn tâm I(a ; b) bán kính R có dạng : (x – a)2 + (y – b)2 = R2 (1) hay x2 + y2 – 2ax – 2by + c = (2) với c = a2 + b2 – R2 • Với điều kiện a2 + b2 – c > thì phương trình x2 + y2 – 2ax – 2by + c = là phương trình đường tròn tâm I(a ; b) bán kính R • Đường tròn (C) tâm I (a ; b) bán kính R tiếp xúc với đường thẳng ∆: αx + βy + γ = http://fb.me/khaisang367 _ _Trang -9- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 α a + β b + γ α2 +β2 và : d(I ; ∆) = =R  ∆ cắt ( C ) ⇔ d(I ; ∆) < R  ∆ không có điểm chung với ( C ) ⇔ d(I ; ∆) > R  ∆ tiếp xúc với ( C ) ⇔ d(I ; ∆) = R b Phương trình tiếp tuyến với đường tròn Dạng 1: Điểm A thuộc đường tròn Dạng 2: Điểm A không thuộc đường tròn Dạng 3: Biết phương trình tiếp tuyến của đường tròn vuông góc hay song song với đường thẳng nào đó Phương trình Elip a Trong mặt phẳng Oxy cho điểm F1(-c; 0), F2(c; 0) và F1F2 = 2a (a > c > 0, a = const) Elip (E) là tập hợp các điểm M : F1M + F2M = 2a Hay (E) = {M / F1M + F2 M = 2a} x2 y2 + =1 b b Phương trình tắc elip (E) là: a (a2 = b2 + c2) c Các thành phần elip (E) là:  Hai tiêu điểm : F1(-c; 0), F2(c; 0)  Bốn đỉnh : A1(-a; 0), A2(a; 0), B1(-b; 0), B2(b; 0)  Độ dài trục lớn: A1A2 = 2b  Độ dài trục nhỏ: B1B2 = 2b  Tiêu cự F1F2 = 2c d Hình dạng elip (E);  (E) có trục đối xứng là Ox, Oy và có tâm đối xứng là gốc tọa độ  Mọi điểm của (E) ngoại trừ đỉnh đều nằm hình chữ nhật có kích thức 2a và 2b giới hạn bởi các đường thẳng x = ± a, y = ± b Hình chữ nhật đó gọi là hình chữ nhật sở của elip C BÀI TẬP I Phần Đại số Bất phương trình hệ bất phương trình Bài 1: Tìm điều kiện của các phương trình sau đây: x+2 x+2 < x+2 + x3 ≥ 2 ( x − 3) x − x + a) b) Bài 2: Giải bất phương trình sau: 10 http://fb.me/khaisang367 _ _Trang -10- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 (2 x − 5)(3 − x) (2 x − 1)(3 − x) a) ≤ b) >0 x+2 x − 5x + x2 − x + > d ) < 1− x 2x2 − 5x + x2 − − 2x |1 − x | f) ≤ g ) 3x + 24 x + 22 ≥ x + x − x−2 c) Bài Giải hệ bất phương trình  ( x − 5)( x + 1) ≤0  − x + 3x + ≥  x2 a)  b)  ( x − 1)( x − 2) < −2  x2 − 4x < x −  Bài 4: Giải các bất phương trình sau: a) x2 + x +1 ≥ c) x2 – 2x +1 ≤ e) x2 – ( +1)x + > e) 2x −1 < x − 4x + h) | x − x + |> x + x + b) x2 – 2(1+ )x+3 +2 >0 d) x(x+5) ≤ 2(x2+2) f) –3x2 +7x – ≥ h) x2 – 3x +60 d) (3x2 –7x +4)(x2 +x +4) >0 Bài 6: Giải các bất phương trình sau: x2 + x + 10 − x − 2x > 2 a) + x b) x − − x c) x − x − x − 10 x + 3 2x − ≥0 + < < 2 d) x + x + e) x + x + x + f) x − x − x − x − 5x + x + 1 ≥ + − ≤0 x g) x + x + h) x x − x + 2) Giải các hệ bpt sau   6 x + < x +  x − x + 12 < 15 x − > x + a)  b)  c)  (9 − x )( x − 1) ≥  8x + < x + 3x + x − 10 ≥   Thống kê Bài 1: Cho bảng thống kê: Năng suất lúa hè thu (tạ/ha) năm 1998 của 31 tỉnh từ Nghệ An trở vào là: 30 30 25 25 35 45 40 40 35 45 35 25 45 30 30 30 40 30 25 45 45 35 35 30 40 40 40 35 35 35 35 a) Dấu hiệu điều tra là gì? Đơn vị điều tra? b) Hãy lập: o Bảng phân bố tần số o Bảng phân bố tần suất c) Dựa vào kết quả của câu b) Hãy nhận xét về xu hướng tập trung của các số liệu thống kê Bài 2: Đo khối lượng của 45 quả táo (khối lượng tính gram), người ta thu được mẫu số liệu sau: 86 86 86 86 87 87 88 88 88 89 89 89 89 90 90 90 90 90 90 91 14 http://fb.me/khaisang367 _ _Trang -14- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 92 92 92 92 92 92 93 93 93 93 93 93 93 93 93 94 94 94 94 95 96 96 96 97 97 a) Dấu hiệu điều tra là gì? Đơn vị điều tra? Hãy viết các giá trị khác mẫu số liệu b) Lập bảng phân bố số và tần suất ghép lớp gồm lớp với độ dài khoảng là 2: Lớp khoảng [86;88] lớp khoảng [89;91] Bài 3: Cho mẫu số liệu có bảng phân bố tần số và tần suất ghép lớp sau: Nhóm Khoảng Tần số(ni) Tần suất (fi) [86;88] 20% [89;91] 11 24.44% [92;94] 19 42.22% [95;97] 13.34% Tổng N = 45 100% a) Vẽ biểu đồ hình cột tần số b) Vẽ biểu đồ hình cột tần suất c) Vẽ biểu đồ đường gấp khúc tần số d) Vẽ biểu đồ hình quạt Bài 4: Đo độ dài một chi tiết máy (đơn vị độ dài là cm) ta thu được mẫu số liệu sau: 40.4 40.3 42.0 44.5 49.8 50.6 51.2 53.4 55.5 56.0 56.4 57.2 57.4 58.0 58.7 58.8 58.9 59.1 59.3 59.4 60.0 60.3 60.5 62.8 a) Tính số trung bình, số trung vị và mốt b) Lập bảng số ghép lớp gồm lớp với độ dài khoảng là 4: nhóm đầu tiên là [40;44) nhóm thứ hai là [44;48); Bài 5: Thành tích nhảy xa của 45 hs lớp 10D1 ở trường THPT Trần Quang Khải: 1) Lập bảng phân bố tần suất ghép lớp, với các lớp ở bảng bên 2) Vẽ biểu đồ tần số hình cột thể bảng bên Nhận xét về thành tích nhảy xa của 45 học sinh lớp 10D1 Lớp thành tích [2,2;2,4) [2,4;2,6) [2,6;2,8) [2,8;3,0) [3,0;3,2) [3,2;3,4) Cộng Tần số 12 11 45 Bài 6: Khối lượng của 85 lợn (của đàn lợn I) được xuất chuồng (ở trại nuôi lợn N) 1) Lập bảng phân bố tần suất ghép lớp, với các lớp ở bảng bên 2) Vẽ biểu đồ tần số hình cột thể bảng bên 3) Biết sau đó tháng, trai N cho xuất thêm hai đàn lợn, đó: Đàn lợn II có khối lượng TB là 78kg và phương sai 100 Đàn lợn III có khối lượng TB là 78kg và phương sai 110 Hãy so sánh khối lượng của lợn đàn II và III ở Lớp khối Tần số lượng [45;55) 10 [55;65) 20 [65;75) 35 [75;85) 15 [85;95) Cộng 85 Bài 7: Thống kê điểm toán của một lớp 10D1 được kết quả sau: Điểm 10 Tần số 3 13 15 http://fb.me/khaisang367 _ _Trang -15- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 Tìm mốt ?Tính số điểm trung bình, trung vị và độ lệch chuẩn? Bài 8: Sản lượng lúa( đơn vị tạ) của 40 thửa ruộng thí nghiệm có diện tích được trình bày bảng tần số sau đây: Sản lượng (x) 20 21 22 23 24 Tấn số (n) 11 10 N=40 a) Tìm sản lượng trung bình của 40 thửa ruộng b) Tìm phương sai và độ lệch chuẩn Bài Điều tra về chiều cao của 36 học sinh trung học phổ thông (Tính cm) được chọn ngẫu nhiên người điều tra viên thu được bảng phân bố tần số ghép lớp sau Lớp chiều cao Tần số [160; 162] [163; 165] [166; 168] [169; 171] 14 cộng N = 36 a Bổ sung vào bảng phân bố để được bảng phân bố tần số, tần suất ghép lớp b Tính giá trị trung bình và phương sai của mẫu số liệu (lấy gần chữ số thập phân) Bài 10: Tiến hành một cuộc thăm dò về số giờ tự học của học sinh lớp 10 ở nhà.Người điều tra chọn ngẫu nhiên 50 học sinh lớp 10 và đề nghị các em cho biết số giờ tự học ở nhà 10 ngày Mẫu số liệu được trình bày dạng bảng phân bố tần số ghép lớp sau Lớp Tần số [0; 10) [10; 20) [20; 30) [30; 40) [40; 50) [50; 60] 15 10 Cộng N = 50 a) Dấu hiệu ,Tập hợp ,kích thước điều tra ? b) Đây là điều tra mẫu hay điều tra toàn bộ ? c) Bổ sung cột tần suất để hình thành bảng phân bố tần số, tần suất ghép lớp d) Vẽ hai biểu đồ hình cột biễu diễn phân bố tần số, tần suất e) Tính phương sai của mẫu số liệu trên(Lấy gần chữ số thập phân) Bài 11 Cho bảng số liệu sau: Số tiền lãi thu được của mỡi tháng (Tính triệu đồng) của 22 tháng kinh doanh kể từ ngày bố cáo thành lập công ty cho đến của một công ty 12 13 12,5 14 15 16,5 17 12 13.5 14,5 19 12,5 16,5 17 14,5 13 13,5 15,5 18,5 17,5 19,5 20 a) Lập bảng phân bố tần số ,tần suất ghép lớp theo các lớp [12;14),[14;16),[16;18),[18;20] b) Vẽ biểu đồ đường gấp khúc tần số Bài 12 Chọn 23 học sinh và ghi cỡ giầy của các em ta được mẫu số liệu sau: 39 41 40 43 41 40 44 42 41 43 38 39 41 42 39 40 42 43 41 41 42 39 41 16 http://fb.me/khaisang367 _ _Trang -16- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 a Lập bảng phân bố tần số, tần suất b Tính số trung vị và số mốt của mẫu số liệu(lấy gần chữ số thập phân) Bài 13 Điểm kiểm tra môn Toán của học sinh lớp 10A ở trường X được cho ở bảng sau Điểm 10 Tần số 10 Tìm số trung bình, số trung vị và mốt.phương sai và độ lệch chuẩn Bài 14 Bạn Lan ghi lại số cuộc điện thoại nhận được mỗi ngày tuần 10 15 12 13 16 16 a Tính số trung bình, số trung vị, mốt, phương sai độ lệch chuẩn 10 [ ] [ ] [ ][ ] b Lâp bảng phân bố tần số ghép lớp với lớp sau: Bài 15: Số liệu sau ghi lại mức thu nhập hàng tháng làm theo sản phẩm của 20 công nhân một tổ sản xuất (đơn vị tính : trăm ngàn đồng ) Thu nhập 10 12 15 18 20 Tần số 1 Tính số trung bình , số trung vị, phương sai, độ lệch chuẩn (chính xác đến 0,01) Bài 16: Cho bảng phân bố tần số Điểm kiểm tra toán Cộn g Tần số 19 11 43 0;4 , 5;9 , 10,14 , 15,19 Bài 17: Chiều cao của 30 học sinh lớp 10 được liệt kê ở bảng sau (đơn vị cm): 145 158 161 152 152 167 150 160 165 155 155 164 147 170 173 159 162 156 148 148 158 155 149 152 152 150 160 150 163 171 a) Hãy lập bảng phân bố tần suất ghép lớp với các lớp là: [145; 155); [155; 165); [165; 175] b) Vẽ biểu đồ tần số, tần suất hình cột, đường gấp khúc tần suất c) Phương sai và độ lệch chuẩn Bài 18: Cho bảng phân bố tần số tiền thưởng (triệu đồng) cho cán bộ và nhân viên của một công ty Tiền thưởng Cộng Tần số 15 10 43 Tính phương sai, độ lệch chuẩn, tìm mốt và số trung vị của phân bố tần số đã cho Bài 19: Cho các số liệu thống kê được ghi bảng sau đây: 645 650 645 644 650 635 650 654 650 650 650 643 650 630 647 650 645 650 645 642 652 635 647 652 a Lập bảng phân bố tần số, tần suất lớp ghép với các lớp là: [ 645;650) , [ 650;655) [ 630;635) , [ 635;640) , [ 640;645) , b Tính phương sai của bảng số liệu c Vẽ biểu đồ hình cột tần số, tần suất Tính phương sai, độ lệch chuẩn và tìm mốt của bảng đã cho Lượng giác 2π 3π 3π 2π 3π ; ; 1; ; ; ; 10 16 Bài 1: Đổi các số đo góc sau độ: Bài 2: Đối các số đo góc sau rađian: 350; 12030’; 100; 150; 22030’; 2250 17 http://fb.me/khaisang367 _ _Trang -17- TT.KHAI SÁNG.367 – Thầy Nguyễn Trung Hiếu _TOÁN 10 Bài 3: Một cung tròn có bán kính 15cm Tìm độ dài các cung đường tròn đó có số đo: π a) 16 b) 250 c) 400 d) ¼ Bài 4: Trên đường tròn lượng giác, xác định các điểm M khác biết cung AM có các số đo: π 2π π π k k (k ∈ Z ) + k (k ∈ Z ) a) k π b) c) d) Bài 5: Tính giá trị các hám số lượng giác của các cung có số đo: 17π 15π − a) -6900 b) 4950 c) d) −3 Bài 6: a) Cho cosx = và 1800 < x < 2700 tính sinx, tanx, cotx 3π π
- Xem thêm -

Xem thêm: ĐỀ CƯƠNG ôn tập TOÁN 10 học kỳ II 2018 mới nhất , ĐỀ CƯƠNG ôn tập TOÁN 10 học kỳ II 2018 mới nhất , Bất phương trình bậc hai, c. Các công thức tính diện tích tam giác:, Phương trinh bậc hai & bất phương trình bậc hai, Bài 8: Cho ABC có 3 cạnh 9; 5; và 7. Tính các góc của tam giác ? Tính khoảng cách từ A đến BC

Mục lục

Xem thêm

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay