BẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONG

947 256 0
BẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONG

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONGBẢNG TÍNH KẾT CẤU CẦU DỰ ÁN CAO LANH VAM CONG

MINISTRY OF TRANSPORT Cuu Long Corporation for Investment, Development and Project Management of Infrastructure (Cuulong CIPM) Central Mekong Delta Region Connectivity Project (CMDCP) Detailed Design, Procurement and Implementation Support Services TA 7822-VIE Contract No.: 720A/CIPM-HDKT Joint Venture: FINAL REPORT, DETAILED DESIGN (ROAD) Volume III(e) – Appendix F1-2C This Final Report is revised and updated in accordance with the Decisions no 314/QD-BGTVT dated on 31 January 2013, 325/QD-BGTVT dated on 01 February 2013 and 340/QD-BGTVT dated on 04 January 2013 of Ministry of Transport Joint Venture: CDM Smith, Inc., WSP Finland Limited & Yooshin Engineering Corporation 170N No Trang Long St., Ward 12, Binh Thanh Dist., HCMC Tel: (08) 3516 4584 Fax: (08) 3516 4586 22 February, 2013 Joint Venture CDM Smith, Inc., WSP Finland Limited & Yooshin Engineering Corporation Central Mekong Delta Region Connectivity Project (CMDCP) Detailed Design, Procurement and Implementation Support Services TA 7822-VIE Contract No.: 720A/CIPM-HDKT FINAL REPORT, DETAILED DESIGN (ROAD) Volume III(e) – Appendix F1-2C This Final Report is revised and updated in accordance with the Decisions no 314/QD-BGTVT dated on 31 January 2013, 340/QD-BGTVT dated on 04 January 2013 and 325/QD-BGTVT dated on 01 February 2013 of Ministry of Transport Name Position Ngo Van Cung Bridge Engineer Doan Vinh Khiem Bridge Engineer Atte Mikkonen Bridge Engineer Reviewed by Esko Järvenpää Senior Bridge Engineer Approved by Brian Barwick Project Manager Prepared by Project Manager Brian Barwick 22 February, 2013 Signature Volume Volume I Volume II Volume III(a) Volume III(b) Volume III(c) Volume III(d) Volume III(e) Volume III(f) Volume IV Volume V Volume VI Volume VII Volume VIII Volume IX(a) Volume IX(b) Volume IX(c) Volume IX(d) Volume IX(e) Volume IX(f) Volume X Volume XI Volume XII(a) – Part 1/2 Volume XII(a) – Part 2/2 Volume XII(b) Volume XII(c) – Part 1/2 Volume XII(c) – Part 2/2 Volume XII(d) – Part 1/2 Volume XII(d) – Part 2/2 Volume XII(e) – Part 1/2 Volume XII(e) – Part 2/2 Volume XII(f) Contents Report Appendix A: Design Criteria Appendix B: Geotechnical Information Appendix C: Materials Summary Appendix D1: Hydrology/Hydraulic Design Report Appendix D2: Desk Study of Rivers Appendix E: Climate Change Considerations Appendix F1-1A: Bridge Design Calculations, CW1A Appendix F1-1C: Bridge Design Calculations, CW1C Appendix F1-2A: Bridge Design Calculations, CW2A Appendix F1-2B: Bridge Design Calculations, CW2B Appendix F1-2C: Bridge Design Calculations, CW2C Appendix F1-3B: Bridge Design Calculations, CW3B Appendix F2: Transitions at Bridge Abutments, Calculations Appendix F3: Soil Parameters for Ground Treatment Appendix F4: Ground Treatment and Embankment Calculations Appendix F5: Culvert Design Calculations Appendix F6: Road Alignment Data Appendix F7: Pavement Design Calculations Appendix F8: Toll Building Design Calculations Appendix F9: Lighting and Electrical Design Calculations Appendix G1: Resettlement Plan, Dong Thap Province Appendix G2: Resettlement Plan, Can Tho City Appendix H: Social Action Plan Appendix I: HIV/AIDS and Human Trafficking Prevention Program Appendix J1: Environmental Impact Assessment (EIA) Appendix J2: Environmental Management Plan (EMP) Appendix K-1A: Cost Estimate, CW1A Appendix K-1C: Cost Estimate, CW1C Appendix K-2A: Cost Estimate, CW2A Appendix K-2B: Cost Estimate, CW2B Appendix K-2C: Cost Estimate, CW2C Appendix K-3B: Cost Estimate, CW3B Appendix L: Bidding Document Appendix M: Specification Appendix N-1A: Drawings, CW1A – Part 1/2 Appendix N-1A: Drawings, CW1A – Part 2/2 Appendix N-1C: Drawings, CW1C Appendix N-2A: Drawings, CW2A – Part 1/2 Appendix N-2A: Drawings, CW2A – Part 2/2 Appendix N-2B: Drawings, CW2B – Part 1/2 Appendix N-2B: Drawings, CW2B – Part 2/2 Appendix N-2C: Drawings, CW2C – Part 1/2 Appendix N-2C: Drawings, CW2C – Part 2/2 Appendix N-3B: Drawings, CW3B CONTENTS SONG LAP VO BRIDGE RACH LAP VO BRIDGE KENH RANH BRIDGE RACH ONG HANH BRIDGE RACH XEP CUT BRIDGE BOX CULVERT Km20+235 SONG LAP VO BRIDGE SUPER T GIRDER mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts = = 1.00 kNm 8.59 kNm Mu Pb = 660.68 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 146.29 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 0.85≤12.00 Mpa 4.90≤123.98 Mpa fs≤ fsa, OK 1.88≤123.98 Mpa Shear Capacity Design factor moment Mu = 11.27 kNm Distance from extreme compression fiber to neutral axis c ϕv bv = 23.57 mm = 0.90 = 1000 mm dv = 315 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide 111 kN Ultimate longitudinal force of Section Nu = 315.47 kN Assumption angle of inclination = 43.0 = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv o 0.10 Mpa 0.0034 OK 0.0025 mm 43.0 o 235.98 ≤ 502.4 kN = 1.72 = 25 kN = 246 kN = 2364 kN The nominal resistance Vn = 272 kN The shear capacity Vr = 245 kN The shear factor Check shear: Vu = 29.07 kN Vu≤Vr, OK 29.07≤244.70 kN Date CALCULATION SHEET VII.7 CHECK Section Check axial compression with flexure REBAR CONCRETE ABUTMENT 7-7 eu e's A'sf's c h ds Asfs db Initial Data es b, bw b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D20 A's = - D20 As = 1256 mm2 1256 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 2512 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse = 17500 N/mm 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu 328.3 11.0 208.74 18.96 240.1 7.6 196.40 25.88 240.1 7.6 196.40 25.88 328.3 11.0 208.74 18.96 328.3 240.1 11.0 7.6 208.74 196.40 18.96 25.88 Check service stress Interval of c Delta c = 0.20 mm hth fc = 500.00 mm = 0.86 Mpa The stress in compression steel centroid f's = 4.98 Mpa The stress in tensile steel centroid fs = 2.05 Mpa Depth from extreme compression edge to the centroid The stress in extreme compression fiber Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts = = 1.00 kNm 7.63 kNm Mu Pb = 660.68 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 146.29 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 0.86≤12.00 Mpa 4.98≤123.98 Mpa fs≤ fsa, OK 2.05≤123.98 Mpa Shear Capacity Design factor moment Mu = 11.01 kNm Distance from extreme compression fiber to neutral axis c ϕv bv = 23.57 mm = 0.90 = 1000 mm dv = 315 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide 111 kN Ultimate longitudinal force of Section Nu = 328.33 kN Assumption angle of inclination = 43.0 = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv o 0.04 Mpa 0.0014 OK 0.0025 mm 43.0 o 222.07 ≤ 502.4 kN = 1.72 = 25 kN = 246 kN = 2364 kN The nominal resistance Vn = 272 kN The shear capacity Vr = 245 kN The shear factor Check shear: Vu = 12.17 kN Vu≤Vr, OK 12.17≤244.70 kN Date CALCULATION SHEET VII.8 CHECK Section Check axial compression with flexure REBAR CONCRETE ABUTMENT 8-8 εu ε's A'sf's c h ds Asfs db εs b, bw Initial Data b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D20 A's = - D20 As = 1256 mm2 1256 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 2512 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse = 17500 N/mm 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu 341.2 11.8 210.54 249.4 10.2 197.69 17.83 19.36 305.3 7.9 205.52 25.95 285.3 14.1 202.71 14.38 285.3 305.3 14.1 7.9 202.71 205.52 14.38 25.95 Check service stress Interval of c Delta c = 0.20 mm hth fc = 505.60 mm = 0.89 Mpa The stress in compression steel centroid f's = 5.16 Mpa The stress in tensile steel centroid fs = 2.16 Mpa Depth from extreme compression edge to the centroid The stress in extreme compression fiber Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts = = 1.00 kNm 7.55 kNm Mu Pb = 660.68 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 146.29 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 0.89≤12.00 Mpa 5.16≤123.98 Mpa fs≤ fsa, OK 2.16≤123.98 Mpa Shear Capacity Design factor moment Mu = Distance from extreme compression fiber to neutral axis c ϕv bv = = 0.90 = 1000 mm dv = 315 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide 7.92 kNm 23.57 mm 111 kN Ultimate longitudinal force of Section Nu = 305.33 kN Assumption angle of inclination = 43.0 = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv o 0.05 Mpa 0.0017 OK 0.0025 mm 43.0 o 200.82 ≤ 502.4 kN = 1.72 = 25 kN = 246 kN = 2364 kN The nominal resistance Vn = 272 kN The shear capacity Vr = 245 kN The shear factor Check shear: Vu = 14.20 kN Vu≤Vr, OK 14.20≤244.70 kN Date CALCULATION SHEET REBAR CONCRETE ABUTMENT 9-9 VII.9 CHECK Section Check axial compression with flexure εu ε's A'sf's c h ds Asfs db εs b, bw Initial Data b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D16 A's = - D16 As = 804 mm2 804 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 1608 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse = 17500 N/mm 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu 3.3 5.1 92.93 18.11 0.7 5.8 92.38 15.82 2.8 6.2 92.81 15.02 1.2 4.8 92.49 19.31 0.7 3.3 5.8 5.1 92.38 92.93 15.82 18.11 Check service stress Interval of c Delta c = 0.20 mm hth fc = 59.40 mm = 0.58 Mpa The stress in compression steel centroid f's =- 1.04 Mpa The stress in tensile steel centroid fs =- 17.65 Mpa Depth from extreme compression edge to the centroid The stress in extreme compression fiber Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts = = 1.00 kNm 4.74 kNm Mu Pb = 701.31 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 137.36 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 0.58≤12.00 Mpa -1.04≤123.98 Mpa fs≤ fsa, OK 17.65≤123.98 Mpa Shear Capacity Design factor moment Mu = Distance from extreme compression fiber to neutral axis c ϕv bv = = 0.90 = 1000 mm dv = 319 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide 5.84 kNm 15.09 mm 112 kN Ultimate longitudinal force of Section Nu = 0.65 kN Assumption angle of inclination = 43.0 = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv o 0.02 Mpa 0.0007 OK 0.0027 mm 43.0 o 14.45 ≤ 321.6 kN = 1.72 = 26 kN = 249 kN = 2390 kN The nominal resistance Vn = 275 kN The shear capacity Vr = 247 kN The shear factor Check shear: Vu = 6.32 kN Vu≤Vr, OK 6.32≤247.45 kN Date CALCULATION SHEET REBAR CONCRETE ABUTMENT 10-10 VII.10 CHECK Section Check axial compression with flexure eu e's A'sf's c h ds Asfs db es b, bw Initial Data b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D16 A's = - D16 As = 804 mm2 804 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 1608 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm = 17500 N/mm Delta c = 0.20 mm hth fc = 1.00 mm =- 0.00 Mpa The stress in compression steel centroid f's = 0.08 Mpa The stress in tensile steel centroid fs = 0.33 Mpa Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu 0.5 0.1 92.35 1539.15 0.3 0.0 92.31 2307.65 0.5 0.1 92.35 1539.12 0.3 0.0 92.31 2307.71 0.5 0.3 0.1 0.0 92.35 92.31 1539.15 2307.65 Check service stress Interval of c Depth from extreme compression edge to the centroid The stress in extreme compression fiber Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts Mu Pb = =- 1.00 kNm 0.03 kNm = 701.31 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 137.36 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 0.00≤12.00 Mpa 0.08≤123.98 Mpa fs≤ fsa, OK 0.33≤123.98 Mpa Shear Capacity Design factor moment Mu = Distance from extreme compression fiber to neutral axis c ϕv bv = = 0.90 = 1000 mm dv = 319 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide 0.06 kNm 15.09 mm 112 kN Ultimate longitudinal force of Section Nu = 0.52 kN Assumption angle of inclination = 43.0 = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv o 0.01 Mpa 0.0003 OK 0.0027 mm 43.0 o −10.71 ≤ 321.6 kN = 1.72 = 26 kN = 249 kN = 2390 kN The nominal resistance Vn = 275 kN The shear capacity Vr = 247 kN The shear factor Check shear: Vu = 2.18 kN Vu≤Vr, OK 2.18≤247.45 kN Date CALCULATION SHEET REBAR CONCRETE ABUTMENT 11-11 VII.11 CHECK Section Check axial compression with flexure eu e's A'sf's c h ds Asfs db Initial Data es b, bw b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D20 A's = - D20 As = 1256 mm2 1256 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 2512 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm = Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse 17500 N/mm 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu -14.3 16.4 140.24 -25.6 14.1 138.46 8.55 9.79 -19.2 12.8 139.47 10.90 -20.7 17.8 139.24 7.84 -19.2 -20.7 12.8 17.8 139.47 139.24 10.90 7.84 Check service stress Interval of c Delta c = 0.20 mm hth fc = 59.60 mm = 1.23 Mpa The stress in compression steel centroid f's =- 2.17 Mpa The stress in tensile steel centroid fs =- 37.36 Mpa Depth from extreme compression edge to the centroid The stress in extreme compression fiber Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts Mu Pb = 1.00 kNm = 12.01 kNm = 660.68 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 146.29 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 1.23≤12.00 Mpa -2.17≤123.98 Mpa fs≤ fsa, OK 37.36≤123.98 Mpa Shear Capacity Design factor moment Mu = 17.75 kNm Distance from extreme compression fiber to neutral axis c ϕv bv = 23.57 mm = 0.90 = 1000 mm dv = 315 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide Ultimate longitudinal force of Section Nu =- Assumption angle of inclination = = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv 116 kN 20.67 kN 43.0 o 0.02 Mpa 0.0008 OK 0.0018 mm 42.3 o 45.25 ≤ 502.4 kN = 1.80 = 26 kN = 258 kN = 2364 kN The nominal resistance Vn = 284 kN The shear capacity Vr = 256 kN The shear factor Check shear: Vu = 6.96 kN Vu≤Vr, OK 6.96≤255.86 kN Date CALCULATION SHEET REBAR CONCRETE ABUTMENT 12-12 VII.12 CHECK Section Check axial compression with flexure eu e's A'sf's c h ds Asfs db Initial Data es b, bw b, bw = Total Depth of Section h = 400 mm Depth from to Steel Centroid = 325 mm Effective Cover to Steel Centroid d d's = 75 mm Effective Cover to Steel Centroid ds = 75 mm Steel Strength fy = 400 MPa Modulus of Elasticity Es = 200000 MPa Concrete Strength f'c = 30 MPa Modulus of Elasticity Ec = 29440 MPa - D20 A's = - D20 As = 1256 mm2 1256 mm2 Total area of reinforcement in column cross section Ast = Area of gross section The type of stirrup Ag = type β1 = Effective Width of Section = Nos and Dia_ of rebar on top = Nos and Dia_ of rebar on bottom Rectangular Stress Block Factor Applied specification 2512 mm2 400000 mm2 Tie 0.84 ACI 318-08 Interaction Diagram Crack width parameter 1000 mm = Z 10000 Mu,Pu 8000 Mn,Pn 6000 Mr,Pr 4000 Mnse,Pnse 17500 N/mm 2000 -1000 -500 Comb 500 1000 -2000 Applied load combination Pu (kN) Mu (kNm) Mn (kNm) FS=Mn/Mu -14.3 48.3 140.24 2.90 -25.6 48.7 138.46 2.84 -20.7 55.8 139.24 2.49 -19.2 41.2 139.47 3.39 -19.2 -20.7 41.2 55.8 139.47 139.24 3.39 2.49 Check service stress Interval of c Delta c = 0.20 mm = 65.00 mm The stress in extreme compression fiber hth fc = 3.81 Mpa The stress in compression steel centroid f's =- 3.99 Mpa The stress in tensile steel centroid fs =- 103.64 Mpa Depth from extreme compression edge to the centroid Service Stress mT The tolerance of moment check The moment factor in the service limit state Balance axial load strength Pb=Cc+C's-Ts Mu Pb = 1.00 kNm = 37.32 kNm = 660.68 kN Balance moment strength Mb=Cc(0.5h-0.5a)+C's(0.5h-d')+T(d-0.5h) Mb = 146.29 kNm The distance cb=0.003/(0.003+ey)d cb = 128.93 mm fsa The stress in tensile steel centroid to check cracking Check service stress: fc≤0.4f'c, OK f's≤ fsa, OK = - 123.98 Mpa 3.81≤12.00 Mpa -3.99≤123.98 Mpa fs≤ fsa, OK 103.64≤123.98 Mpa Shear Capacity Design factor moment Mu = 55.84 kNm Distance from extreme compression fiber to neutral axis c ϕv bv = 23.57 mm = 0.90 = 1000 mm dv = 315 mm Av = 113 mm2 600 mm Resistance Factor Effect web width Effect shear depth Nos and Diameter of bars = - D12 → Shear Reinforcement Spacing s = Vu > 0.5 ϕv Vc = Check regions requiring transverse reinforcement Transverse reinforcement needn't provide Ultimate longitudinal force of Section Nu =- Assumption angle of inclination = = Rating of shear stress in concrete and fc θ v v/fc Caculate strain in the reinforcement ex = θ = Caculate shear stress in concrete Choose angle of inclination Check longidudinal reinforcement accorrding to Equ.5.8.3.5-1 (Mu/dvϕ+0.5Nu/ϕ) + (Vu/ϕv-0.5Vs)cotgθ ≤ Asfy ⇔ Factor The shear resistance of transverse Reinforcement β Vs The shear resistance of concrete Vc 0.25 fc bv dv 113 kN 20.67 kN 43.0 o 0.20 Mpa 0.0066 OK 0.0019 mm 42.7 o 239.54 ≤ 502.4 kN = 1.75 = 26 kN = 251 kN = 2364 kN The nominal resistance Vn = 277 kN The shear capacity Vr = 249 kN The shear factor Check shear: Vu = 56.56 kN Vu≤Vr, OK 56.56≤249.23 kN CALCULATION SHEET Date REBAR CONCRETE ABUTMENT VIII CALCULATE WING WALL 8.1 Dimension L' L A' PS E H-L h2 A H L/2 H' B E h1 L/2 C L/2 D L/2 P1 P2 L 8.2 • Formular: Moment for 1m width of wing wall: P1 = g (H-L+Hs) Ka = 11.7 P2 = g (H+Hs) Ka = 15.0 • Moment for 1m wall (KN.m) • Calculated Moment (Strength I) (KN.m) • Calculated Moment (Service) (KN.m) Check section of wing wall A' 1.9 2.9 1.9 A 1.9 2.9 1.9 B 0.5 0.8 0.5 Symbol L L' H H' γ Ka Hs H's h1 h2 Ps P's P' P" Units m m m m KN/m3 m m m m KN/m2 KN/m2 KN/m2 KN/m2 Value 0.585 6.330 2.7 2.7 18 0.308 0.000 0.000 0.4 2.3 0.000 0.000 2.19 14.76 C 0.7 1.1 0.7 D 2.8 4.1 2.8 E 37.15 55.7 37.2 Data Compressive strength of concrete f'c ( MPa ) = Modulus of rupture fr (Mpa) = Yield strength of stell fsy (MPa) = Thickness of wing wall D ( mm ) = Width for calculating b ( mm ) = Number of tension rebar type (main rebars) Diameter of tension rebar type (mm) Number of tension rebar type (main rebars) Diameter of tension rebar type (mm) Cover - from edge to center of rebar (mm) ds Area of tension rebars Ast ( mm2 ) = Distance from center of tension rabars to compressive face (mm) = Calculating Stress block factor β1 = Distance from neutral axis to compressive face: c(mm)= a= Factored flexural resistance φMn ( kNm ) = Calculated moment Mu(kN.m) = Check Cracking Moment Factor Ultmate moment 1.2Mcr 1.33Mu Mr ≥ Check Check cracking Modular Ratio Reinforcement Ratio Value k [k = -ρ•n +sqrt((ρ•n)2+2•ρ•n)] Value j [j = - k/3] The Tensile Stress in Reinf at Service 240 Check Stress in Reinforcement ≤ 0.6fy = • Depth of concrete from tension fiber to center of bar • Area of Concrete around a Bar • Crack Width Parameter Check Crack Width n ρ k j fs Ac Z fsa fs ≤ fsa 30 3.45 400 376 1000 18 30 3.45 400 376 1000 18 30 3.45 400 376 1000 18 30 3.45 400 376 1000 18 30 3.45 400 376 1000 18 30 3.45 400 376 1000 18 18 75 75 75 75 75 75 1527 1527 1527 1527 1527 3054 300.877 300.877 300.877 300.877 300.877 300.877 0.836 28.66 24.36 158.7 2.9 OK 0.836 28.66 24.36 158.7 2.9 OK 0.836 28.66 24.36 158.7 0.8 OK 0.836 28.66 24.36 158.7 1.1 OK 0.836 28.66 24.36 158.7 4.1 OK 0.836 57.32 48.72 304.0 55.7 OK 52.78 3.80 52.78 3.87 52.78 1.00 52.78 1.43 52.78 5.52 57.52 74.12 OK OK OK OK OK OK 0.0041 0.212 0.929 0.0041 0.212 0.929 0.0041 0.212 0.929 0.0041 0.212 0.929 0.0041 0.212 0.929 0.0081 0.285 0.905 4.5 4.5 1.2 1.7 6.5 44.7 OK 75 OK 75 OK 75 OK 75 OK 75 OK 75 19666.67 19666.7 19666.7 19666.7 19666.7 19666.7 17500 17500 17500 17500 17500 17500 153.7 153.7 153.7 153.7 153.7 153.7 OK OK OK OK OK OK CALCULATION SHEET Date REBAR CONCRETE UNDER PASS CULVERT IX CHECK SHALLOW FOUNDATION 9.1 Data • Width of foundation • Length of foundation • Existing elevation • Elevation of footing bottom • Elevation of bottom of cohesive layer B= L= EL1 = EL2 = EL3 = The effect stress of load on footing bottom No Load combination Service Strength I-1(Nmax) Strength I-2(Nmax) V (z) (kN) 12214.6 15576.8 14233.0 5.7 23.4 1.14 0.00 -8.00 Type of soil Mxo (kN.m) 234.5 410.4 7870.4 9.2 Bearing resistance of soil Case: Bearing layer is clay Myo (kN.m) 3564.4 6237.8 5661.9 m m m m m => => Bo = Lo = Soil ex (m) 0.29 0.40 0.40 5.7 m 23.4 m Clay ey B'=Bo-2ex L'=Lo-2ey (m) (m) (m) 0.02 5.12 23.36 0.03 4.90 23.35 0.55 4.90 22.29 qult = c.Ncm + g.Df.Nqm • Number of cohesive layer under footing • Undrained shear strength Layer Layer • Density of clay • Distance from footing bottom to top of layer • Embedment depth taken to footing bottom • Length of foundation • Modified bearing capacity factors σ (MPa) 0.102 0.136 0.130 σ max (MPa) 0.102 0.136 0.130 (10.6.3.1.2b) n c1 c2 k = c1/c2 γ Hs2 Df = = = = = = = 0.0415 0.0725 0.572 1.62 8.00 1.14 Mpa Mpa (Su) (Su) Soft Stiff T/m3 m m Nc, Ncm, Nqm If bearing layer overlies stiffer soil k.N*c.(N*c + bm - 1).A Ncm=Nm = B.C - (k.N*c + bm - 1).(N*c + 1) A = (k + 1).N*c2 + (1+k.bm).N*c.bm - B = k.(k+1).N*c + k + bm - C = (N*c + bm).N*c + bm - Nqm = 1,0 Combination Strength I-1(Nmax) Strength I-2(Nmax) Combination Strength I-1(Nmax) Strength I-2(Nmax) V KN 12214.6 12214.6 H KN 844.9 844.9 σ max MPa 0.136 0.130 σ MPa 0.136 0.130 B' m 4.90 4.90 L' m 23.35 22.29 γ KN/m3 16.20 16.20 Su Mpa 0.042 0.042 H/V B'/L' 0.07 0.07 0.21 0.22 Df m 1.140 1.140 qult MPa 0.229 0.235 Df/B Nc Ncm 0.23 0.23 5.0 5.0 0.60 0.60 ϕ qult MPa 0.138 0.141 ϕ 5.1 5.2 Check OK OK Nqm 1.0 1.0 ... 22 February, 2013 Signature Volume Volume I Volume II Volume III(a) Volume III(b) Volume III(c) Volume III(d) Volume III(e) Volume III(f) Volume IV Volume V Volume VI Volume VII Volume VIII Volume. .. Volume IX(a) Volume IX(b) Volume IX(c) Volume IX(d) Volume IX(e) Volume IX(f) Volume X Volume XI Volume XII(a) – Part 1/2 Volume XII(a) – Part 2/2 Volume XII(b) Volume XII(c) – Part 1/2 Volume XII(c)... 7 82 2- VIE Contract No.: 720A/CIPM-HDKT FINAL REPORT, DETAILED DESIGN (ROAD) Volume III(e) – Appendix F 1-2 C This Final Report is revised and updated in accordance with the Decisions no 314/QD-BGTVT

Ngày đăng: 22/12/2017, 11:02

Từ khóa liên quan

Mục lục

  • Blank Page

  • Blank Page

  • Blank Page

  • Blank Page

  • Blank Page

  • Blank Page

Tài liệu cùng người dùng

Tài liệu liên quan