Chapter 02_Finite Sample Properties Of The OLS Estimator

15 46 0
Chapter 02_Finite Sample Properties Of The OLS Estimator

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator Chapter FINITE SAMPLE PROPERTIES OF THE OLS ESTIMATOR Y = X + ε • with ε ~ N [0, σ I ] rank(X) = k non-stochastic ε random → Y random • βˆ = ( X ′X ) −1 X ′Y ; βˆ is a statistics on a sample, βˆ is random because Y is random Being random: - βˆ has a probability distribution, called the sampling distribution - Repeatedly draw all possible random sample of size n calculate " βˆ " each time Let explore some statistical properties of the OLS estimator βˆ & build up its sampling distribution I UNBIASED: βˆ = ( X ′X ) −1 X ′Y = ( X ′X ) −1 X ′( Xβ + ε ) ′X ) −1 X ′X β + ( X ′X ) −1 X ′ε X = (  I = β + ( X ′X ) −1 X ′ε E( βˆ ) = E[ β + ( X ′X ) −1 X ′ε ] Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator = β + E[( X ′X ) −1 X ′ε ] E (ε ) = = β + ( X ′X ) −1 X ′ E ( βˆ ) = β ⇒ βˆ is an estimator of , it is a function of the random sample (the element of Y) Note: we talk about the sample → that means we talk about Y only Because X is a constant - fix matrix "Repeatedly draw all possible random samples of size n → draw Y" The least squares estimator is unbiased for (E(ε) = 0, X is non-stochastic) → ˆ ˆ E ( βˆ ))' ] (β VarCov( βˆ ) = E[( βˆ −  E ))( β −   β VarCov( βˆ ) βˆ − β = ( X ′X ) −1 X ′ε β = E [( βˆ − β )( βˆ − β )' ] = E[( X ′X ) −1 X ′ε )(( X ′X ) −1 X ′ε )' ] = E [( X ′X ) −1 X ′εε ' X ( X ′X ) −1 ] = ( X ′X ) −1 X ′E (εε ' ) X ( X ′X ) −1 = ( X ′X ) −1 X ′σ ε2 X ( X ′X ) −1 = σ ε2 ( X ′X ) −1 X ′X ( X ′X ) −1  I = σ ε2 ( X ′X ) −1 So: VarCov( βˆ ) = σ ε2 ( X ′X ) −1 For the model: ~ ~ ~ Yi = βˆ2 X i + βˆ3 X i + ei  βˆ2    βˆ3  βˆ =  σ ε ( X ′X ) −1 ~  ∑ X i23 = σ ε  − X~ X~  ∑ i i Nam T Hoang University of New England - Australia ∑ X ~X  ∑ X  ∑ X~ ~ ~ i2 i3 i2 i2 ~ X i23 − (∑ X~ i2 ~ X i3 ) University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator  βˆ  = VarCov    βˆ   3 σ ε2 ∑ X i23 ~ → Var ( βˆ ) = ∑X ~2 ~2 X i3 − i2 (∑ X~ i2 ~ X i3 ) σ ε2 / ∑ X i22 ~ ∑( X ~ ~ X i3 ) i2 = n2 ~2 ~ ∑ X i ∑ X i23 1− nn   r23 sample correlation between X i ; X i → Var ( βˆ ) = ∑X σ ε2 ~2 i2 (1 − r232 ) determined by: i σ ε2 ↑ → Var ( βˆ ) ↑ ii r232 ↑ → Var ( βˆ ) ↑ iii Variation in Xi2 iv n sample size ↑ → Var ( βˆ ) ↓ ∑X ~2 i2 ↑ → Var ( βˆ ) ↓ VarCov ( βˆ ) = σ ε2 ( X ′X ) −1 → we don't know σ ε2 → need an estimator for σ ε2 Define: σˆ ε2 = e' e n−k n: observations k: number of estimators e' e = ∑ ei2 = sum of squares • Show σˆ ε2 is an unbiased estimator e = Mε → e'e = ε'M'Mε=ε'Mε • Note: trace of a square matrix Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator n A is the sum of its principal diagonal elements (= n ×n ∑a i =1 ii ) Rules: A, B nxn matrix tr(A+B) = tr(A) + tr(B) tr(A.B) = tr(B.A) tr(λA) = λtr(A) Trace is a linear operation → sum of certain elements E ( e' e ) = E (ε ' Mε ) = E[tr (ε ' Mε )] = E[tr (εε ' M )] = trE (ε ' Mε ) = tr[σ ε2 I M )] = σ ε2 tr ( M ) = σ ε2 [tr ( I n ) − tr ( X ( X ' X ) −1 X ' )] = σ ε2 [n − tr ( X ( X ' X ) −1 X ')] = σ ε2 ( n − k )    I k ×k And: E ( e' e) σ ε2 ( n − k ) = σ ε2 = n−k n−k So: E (σˆ ε2 ) = σ ε2 → σˆ ε2 is an unbiased estimator of σ ε2 II LINEARITY: Any estimator that is a linear function of the random sample data is called a linear estimator Yi: random sample data ˆ β X ′X ) −1 X ′Y =  A Y  = (  k × n n ×1 k ×1 A where A is non-random: Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator  βˆ1   a11   a  βˆ2   21   =       βˆk  a k   a12 a 22  X k2  a1n  Y1   a n  Y2            a kn  Yn  → βˆ1 = a11Y1 + a12Y2 + + a1nYk → βˆ , OLS estimator is linear and unbiased for Because βˆ is a linear function of Y and Y is a linear function of ε, → if ε is normal then βˆ is normal So the sampling distribution of the OLS estimator of is: βˆ ~ N[ , σ ε2 ( X ′X ) −1 ] III EFFICIENCY: Suppose we have unbiased estimators, θˆ1 ; θˆ2 for θ Then we say θˆ1 is more efficient than θˆ2 if Var (θˆ1 ) ≤ Var (θˆ2 ) If θˆ1 ; θˆ2 are vectors unbiased estimators of θ , then θˆ1 is more efficient than θˆ2 if   k ×1 k ×1 k ×1 ∆ = [V (θˆ1 ) − V (θˆ2 )] is positive semi-definite IV GAUSS - MARKOV THEOREM: "Under the assumptions of the classical regression model, the least squares estimators of , βˆ = ( X ′X ) −1 X ′Y are the best linear unbiased estimators" (BLUE) Linear: in Y Best: Best for any alternative linear on unbiased estimators Var ( βˆ j ) ≤ Var (b j ) ∀j Proof: Let b is any other linear estimator of : Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator b =  A Y k ×1 Unbiased: k × n n ×1 E(b) = E(b) = E(AY) =E(AX + Aε) E(b) = AX + = AX = → AX =I Let A = (X'X)-1X' + C where C is any non-stochastic (k×n) matrix I = AX = [( X ' X ) −1 X '+C ] X = ( X ' X ) −1 X ' X + CX = CX =   I b = AY = [( X ' X ) −1 X '+C ][ Xβ + ε ] = ( X ' X ) −1 X ' X β + ( X ' X ) −1 X ' ε + CXβ + Cε I = β + ( X ' X ) −1 X ' ε + Cε VarCov(b) = E[(b − β )(b − β )' ] = E{[( X ' X ) −1 X ' ε + Cε ][( X ' X ) −1 X ' ε + Cε ]' } = E[( X ' X ) −1 X ' (εε ' ) X ( X ' X ) −1 + ( X ' X ) −1 (εε ' )C '+Cεε ' X ( X ' X ) −1 + Cεε ' C ' ] = σ ε2 ( X ' X ) −1 X ' X ( X ' X ) −1 + σ ε2 ( X ' X ) −1 X ' C '+σ ε2 CX ( X ' X ) −1 + σ ε2 CC ' I = σ ε2 ( X ' X ) −1 + σ ε2 CC '  VarCov ( βˆ ) The jth diagonal element: n Var (b j ) = Var ( βˆ j ) + σ ε2 ∑ c 2ji ≥ Var ( βˆ j ) ∀j = 1, k i =1 → Var (b j ) ≥ Var ( βˆ j ) ∀j = 1, k → βˆ j is the best linear unbiased estimator (BLUE) → βˆ j is efficient estimator (smallest variance) Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator V REVIEW: STATISTICAL INFERENCE: Linear function of normal random variables are also normal: u N( µ ) , Σ ~ n ×1 n × n n ×1 Z P u is normally distributed  =  → m × n n ×1 m ×1 E ( Z ) = E ( Pu ) = PE (u ) = Pµ VarCov( Z ) = E [( Z − E ( Z ))( Z − E ( Z ))' ] = E[( Pu − Pµ )( Pu − Pµ )' ] µ = P E[( u − )( u −µ )' ]P' = PΣP'  Σ Then Z N ( Pµ , PΣP' ) ~ Chi-squared distribution: If Z r×1 or Z ' Z ~ N (0, I ) then Z'Z has the Chi-squared distribution with r degree of freedom χ [2r ] Z'Z ~ r: number of these independent standard normal variables in the sum of squares: Theorem: If Z r×1 ~ N (0, I ) and A is idempotent with rank equal to r, then: n ×n ~ χ [2r ] i Z ' AZ ii r = tr ( A) = rank ( A) Eigenvalue - eigenvector problem: For a square matrix A , we can find n pairs of (λ j , c j ) such that: n ×n A c j = (λ j c j ) n ×n n ×1 1×1 n ×1 j = 1,2, , n 1×1 n ×1 Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator n ( ∑ c 2j = 1) normalizing: c j ' c j = j =1 The eigenvectors are orthogonal to each other: ci ' c j = (∀i ≠ j ) so c = [c1, c2, , cn] is an orthogonal matrix: ( c ' = c −1 ) c' c = I Eigenvalue - eigenvector problem: A c j = (λ j c j ) n ×n n ×1 cj'cj = Let: → j = 1,2, , n 1×1 n ×1 ci ' c j = C = [c1 c1 j    c2 j cj =       cnj  (∀i ≠ j ) c2  cn ] ⇒ c' c = I n ×n n ×n c' = c-1: orthogonal matrix: AC = A[c1 AC = [c1 Ac2  Acn ] = [c1λ1 c2  cn ] = [ Ac1 c2 c λ2  c n λn ] λ1   0 λ  0  = CΛ  cn ]         λn  0   Λ where Λ is a diagonal matrix: C ' AC = C ' CΛ = Λ and also Rank ( A) = Rank ( Λ ) = number of no-zero of λj's Note: C' AC = Λ → C ' −1 C ' ACC −1 = (C ' ) −1 ΛC −1 = CΛC ' Remember: A = CΛC ' and C' AC = Λ ; C'C = I, C' = C-1 Theorem: Let A be an idempotent matrix with rank = r and let Z r×1 Z ' AZ Nam T Hoang University of New England - Australia ~ ~ N (0, I ) then: χ [2r ] and rank ( A) = tr ( A) University of Economics - HCMC - Vietnam Advanced Econometrics Proof: C' AC = Λ , Chapter 2: Finite Sample Properties Of The OLS Estimator Z ~ r×1 N (0, I ) For A idempotent, λj = or Because: AC j = C j λ j → AAC j = AC j λ j = C j λ2j So: C j λ2j = C j λ j → C j (λ2j − λ j ) = → C j λ j (λ j − 1) = → λ j = or λ j = 1 0  Write: C' AC = Λ =    0 0 0 0     0 0       There must be r nonzero elements of Λ , because rank ( A) = r = rank ( Λ ) = tr ( Λ ) since all diagonal elements are or (Rule: tr(A.B) = tr(B.A)) Also tr ( Λ ) = tr ( ACC ' ) = tr ( A) so rank ( A) = tr ( A) = r u = C ) ' , Z n ×1 Z n×1 n × n n ×1 ~ N (0, I ) ' )C = C ' C = I E (uu ' ) = E (C ' ZZ ' C ) = C '  E ( ZZ I Contruct quadratic form: n u' Λu = Z ' C (C ' AC )C ' Z = Z ' AZ = ∑ ui2 ~ χ [2r ] i =1 So if Z ~ N (0, I ) and A is idempotent with rank equal to r, then n ×n Z ' AZ Extension: So if Z ~ N (0, σ I ) , then ~ Z ' AZ σ χ [2r ] ~ χ [2r ] Other distribution: Let Z be N(0,I) and let W be χ [r2 ] and let Z and W be independently distributed, then: Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator Z W ~ t[ r ] r has the t-distribution with r degree of freedom Let W be χ [r2 ] and let v be χ [s2 ] and W and v be independently distributed, then: W v r ~ Fsr s has the F-distribution with r (numerator) and s (denominator) degree of freedom VI TESTING HYPOTHESIS ON INDIVIDUAL COEFFICIENT: Y = X + ε • ε ~ N [0, σ I ] with Recall: βˆ ~ N[ , σ ε2 ( X ′X ) −1 ] So βˆ j ~ N[ j, σ ε2 [( X ′X ) −1 ]ij ] → βˆ j − β j σ ( X ' X ) −jj1 ~ N [0,1] but σ2, so this can't be used directly for constructing test or confidence intervals e' e = ε ' M ' Mε = ε ' Mε , M is idempotent with with rank(M) = its trace = n-k ε ~ N [0, σ I ] → ε / σ ~ N [0, I ] ( n ×1) ⇒ e' e σ = ε ' Mε σ2 ~ χ [2n − k ] βˆ j − β j So follow theorem: σ ( X ' X ) −jj1 ~ tn −k e' e σ2 ⇔ βˆ j − β j e' e ( X ' X ) −jj1 n k −  (n − k ) ~ tn −k σˆ Nam T Hoang University of New England - Australia 10 University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator ⇔ βˆ j − β j σˆ ( X ' X ) −jj1 ~ tn −k σˆ ( X ' X ) −jj1 = σˆ β2ˆ = standard error of βˆ j j Finally: βˆ j − β j σˆ β2ˆ ~ tn −k j This basic result enables us to test hypothesis about elements of and to construct confidence intervals for them (note that we need the assumption of normality of ε's) EX: yˆ i = 1.4 + 0.2 xi + 0.6 xi ( 0.7 ) 0.05 H0: =0 H1: >0 t= βˆ j − β j SE ( βˆi ) (1.4 ) = 0.2 − =4 0.05 tα (5%) = 1.74 d.o.f = n-k =17 tα (1%) = 2.567 t > tα → reject H0 EX: H0: = 1.5 H1: ≠ 1.5 ( or ≥ 1.5 or ≤ 1.5) t= βˆ j − β j SE ( βˆi ) = 1.4 − 1.5 = −0.1429 d.o.f = n-k =17 0.7 2.5% Nam T Hoang University of New England - Australia 2.5% 11 University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator t < tα / ⇒ cannot reject H0 at 5% VII CONFIDENCE INTERVALS: βˆi − β i SE ( βˆi ) Recall: ti = so Pr[ −tα / ≤ ti ≤ −tα / ] = − α Pr[ −tα / ≤ ~ tn −k βˆi − β i ≤ − tα / ] = − α SE ( βˆi ) Pr[ βˆi − tα / SE ( βˆi ) ≤ β i ≤ βˆi + tα / SE ( βˆi )] = − α • If we were to take a sample of size "n", construct this repeat many times then 100(1-α)% of such intervals would cover the true value of i • If we construct the interval once, there is no guarantee that the internal will cover the true i] • Type of errors: size & power of tests Type I: Reject H0 when it is true Type II: Accept H0 when it is false Assume: Prob(type I error) = α Prob(type II error) = If sample size is fixed: α↓ ⇒ ↑ call α: significant level or size of the test → Fix α and try to design the test so to minimize • Definition: The power of a test is 1- Power = - Pr(accept H0/H0 false) = Pr(reject H0/H0 false) Nam T Hoang University of New England - Australia 12 University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator • A test is "uniformly most powerful" if its power exceeds that of any other test (for the same choice of α) over all possible alternative hypothesis • A test is "consistent" if its power → as n →∞ for any false hypothesis • A test is unbiased of its power never falls below α VIII FAMILY OF F-TEST: For general linear restrictions, unrestricted model (U-model), original model H0: some restrictions on β These define the restricted model (R-model): k ×1 r Fdfu = ( ESS R − ESSU ) / r ESSU ) / dfu ESSR = error sum of squares from R-model: e′R e R ESSU = error sum of squares from U-model: eU′ eU r: number of restrictions in H0 dfu: degree of freedom in U-model = n-k ESSU σ = =  ESS R  σ   ESSU  σ eU′ eU σ = ε ′Mε σ2 ε′ ε M σ σ ~ ~ ~ χ [2n − k ] χ [2n − ( k − r )] → χ [2n − k ] ESS R σ − ESSU σ2 ~ χ [2r ] ( ESS R − ESSU ) / σ r ( ESS R − ESSU ) / r = ESSU ) /(n − k )σ ESSU ) /(n − k ) → ( ESS R − ESSU ) / r ESSU ) /(n − k ) Nam T Hoang University of New England - Australia ~ Fnr− k 13 University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator Case 1: Join significant of all slopes: β  β =  1 k ×1  β  k −1 H0: β = → r = k −1 ( k −1) ×1 U-model: Y = X β +ε → ESSU =e'e R-model: Yi = β1 + ε i → βˆ1 + Y → Yi = Y + ei k ×1 dfu = n-k n ESS R = ∑ (Yi − Y ) i =1 n → Fnk−−k1 = ( ∑ (Yi − Y ) − e' e) /(k − 1) i =1 e' e /(n − k ) = R /(k − 1) (1 − R ) /(n − k ) Case 2: k −r β  β =  1 k ×1 β  r H0: β = U-model: Y = Xβ + ε → ESSU = eU′ eU R-model: Y = X β +ε → ESSU = e′R e R r ×1 r ×1 ( k − r ) ×1 n ESS R = ∑ (Yi − Y ) i =1 → EX: Fnr− k = ( ESS R − ESSU ) / r ESSU ) /(n − k ) Translog of production function: log Y = β1 + β log K + β log L + β (log K ) / + β (log L) / + β (log K log L) + ε H : β = β = β = Cobb-Douglas restrictions n = 27 ESSU = 0.67993 r=3 ESSR = 0.85163 n - k = 21 Nam T Hoang University of New England - Australia 14 University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator → Fnr− k = 1.768 Critical value: F213 ,5% = 3.1 → Fnr− k < Critical value ⇒ So not reject H0 and conclude that are consistent with the Cobb-Douglas model Case 3: General restrictions  β1  β =  β   β  R β =C r × k k ×1 r ×1 Restrictions: β2 + β3 = r ×1 r ×1 r ×1 → [0 1]β = ( r = 1)    R If restrictions: β + β = ( r = 2)  β1 = 0 1  1  →  β =   1 0  0 Jarque - Beta statistics: H0: εi are normally distributed H1: εi are not normally distributed JB ~ χ 22 JB = SK2 +(Kur)2 Reject H0 for large JB Reject H0 if JB >7 (critical) or if p-value < 0.05 Nam T Hoang University of New England - Australia 15 University of Economics - HCMC - Vietnam ... Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator = β + E[( X ′X ) −1 X ′ε ] E (ε ) = = β + ( X ′X ) −1 X ′ E ( βˆ ) = β ⇒ βˆ is an estimator of , it is a function of the random sample. .. trace of a square matrix Nam T Hoang University of New England - Australia University of Economics - HCMC - Vietnam Advanced Econometrics Chapter 2: Finite Sample Properties Of The OLS Estimator. .. , OLS estimator is linear and unbiased for Because βˆ is a linear function of Y and Y is a linear function of ε, → if ε is normal then βˆ is normal So the sampling distribution of the OLS estimator

Ngày đăng: 09/12/2017, 08:36

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan