Lecture 1 electric machinery fundamental

41 227 0
Lecture 1 electric machinery fundamental

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery A lecture for electric power machinery

Advanced Power Systems Dr Kar U of Windsor Dr Kar 271 Essex Hall Email: nkar@uwindsor.ca Office Hour: Thursday, 12:00-2:00 pm http://www.uwindsor.ca/users/n/nkar/88-514.nsf GA: TBA B20 Essex Hall Email: TBA & TBA Office Hour: - Course Text Book:      Electric Machinery Fundamentals by Stephen J Chapman, 4th Edition, McGraw-Hill, 2005 Electric Motor Drives – Modeling, Analysis and Control by R Krishnan Pren Hall Inc., NJ, 2001 Power Electronics – Converters, Applications and Design by N Mohan, J Wiley & Son Inc., NJ, 2003 Power System Stability and Control by P Kundur, McGraw Hill Inc., 1993 Research papers Grading Policy: Attendance Project Midterm Exam Final Exam (5%) (20%) (30%) (45%) Course Content  Working principles, construction, mathematical modeling, operating characteristics and control techniques for synchronous machines  Working principles, construction, mathematical modeling, operating characteristics and control techniques for induction motors  Introduction to power switching devices  Rectifiers and inverters  Variable frequency PWM-VSI drives for induction motors  Control of High Voltage Direct Current (HVDC) systems Exam Dates  Midterm Exam:  Final Exam: Term Projects Group 1: Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Project Title: Group 2: Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Project Title: Group 3: Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Student ( -@uwindsor.ca) Synchronous Machines  Construction  Working principles  Mathematical modeling  Operating characteristics CONSTRUCTION Salient-Pole Synchronous Generator Most hydraulic turbines have to turn at low speeds (between 50 and 300 r/min) A large number of poles are required on the rotor d-axis Nonuniform airgap N D ≈ 10 m q-axis Turbin e Hydro (water) Hydrogenerator S S N Salient-Pole Synchronous Generator Stator otor r e l o t-p Salien The Voltage Equations p (ψ d ) = vtd + Ra id +ψ q ω0 p (ψ kd1 ) = − Rkd1 ikd1 ω0 ( ) p ψ fd = v fd − R fd i fd ω0 ( ) p ψ q = vtq + Ra iq − ψ d ω0 ( ) p ψ kq1 = − Rkq1 ikq1 ω0 …………… (1) The Mechanical Equations dδ = ω − ω0 dt dω ω [Tm − Te ] = dt H where Te = ψ d I q −ψ q I d …………… (2) Linearized Form of the Machine Model ψ q0 • ∆ψ d = ∆vtd + Ra ∆id + ∆ψ q + ∆ω ω0 ω0 • ∆ψ kd = − Rkd ∆ikd ω0 • ∆ψ ω0 fd = ∆v fd − R fd ∆i fd • ψ ∆ψ q = ∆vtq + Ra ∆iq − ∆ψ d − d ∆ω ω0 ω0 • ∆ψ kq1 = − Rkq1 ∆ikq1 ω0 • ∆ δ = ∆ω ω ∆ω = [ ∆Tm − ∆Te ] 2H ∆Te = ψ d ∆I q + I q ∆ψ d −ψ q ∆I d − I d ∆ψ q …………… (3) Terminal Voltage The d- and q-axis components of the machine terminal voltage can be described by the following equations: vtd = Vt sin δ vtq = Vt cos δ ………………………….(4) where, Vt is the machine terminal voltage in per unit The linearized form of Vtd and Vtq are: ∆vtd = Vt cos δ ∗ ∆δ ∆vtq = −Vt sin δ ∗ ∆δ ……………………….…(5) Substituting ∆Vtd and ∆Vtq in the flux equations: ψ q0 • ∆ψ d = Vt cos δ • ∆δ + Ra ∆id + ∆ψ q + ∆ω ω0 ω0 • ∆ψ kd = − Rkd ∆ikd ω0 • ∆ψ ω0 fd = ∆v fd − R fd ∆i fd • ψ ∆ψ q = −Vt sin δ • ∆δ + Ra ∆iq − ∆ψ d − d ∆ω ω0 ω0 • ∆ψ kq1 = − Rkq1 ∆ikq1 ω0 • ∆ δ = ∆ω ω0 [ ∆Tm − ∆Te ] 2H ∆Te = ψ d ∆I q + I q ∆ψ d −ψ q ∆I d − I d ∆ψ q ∆ω = …… (6) Rearranging the flux equations in a matrix form:  • ……………… … (7) ∆ X  = [ S ][ ∆X ] + [ R ][ ∆I ] + [ B ][ ∆U ]   where,  •   ∆ψ d   •  kd  ∆ψ  ∆•ψ  fd    •  •  ∆ X  =  ∆ψ q     •   ∆ψ kq1   •   ∆δ   •   ∆ ω   ∆ψ d  ∆ψ   kd     ∆ψ fd  ∆ X  =  ∆ψ  q        ∆ψ kq1    ∆ δ    ∆ω     ∆Id      ∆ I kd1      ∆ I  =  ∆I fd        ∆ I q      ∆ I kq1  ∆v fd  [ ∆U ] =    ∆Tm  and… 0 0  0  [ S ] =  − ω0 0  0  − ω0 I q  2H − ω0 R fd     [ R] =       0 0 ω0 0 0 ω0 I d 2H 0 0 0 ω0Vt cos δ 0 − ω0Vt sin δ 0 0 0 0 ω0 Ra 0 0 − ω0 Rkd 0 0 ω0ψ q 0 ω0 Ra 0 − ω0ψ d 2H 2H 0  ψ q0     −ψ d             − ω0 Rkq1      0 ω0 0  [ B] =   0 0        ω0  2H  Flux Linkage Equations (from the d- and q-axis equivalent circuits)  ψ d  − ( X md + X l ) ψ   − X md  kd   ψ fd  =  − X md    ψ q    ψ kq1   X md X md X md X md ( X md + X fd ) 0 0 − ( X mq + X l ) 0 − X mq ( X md + X kd )   id   i    kd    i fd    X mq   iq  − ( X mq + X kq1 )  ikq1  Linearized flux linkage equations:  ∆ψ d  − ( X md + X l ) ∆ψ   − X md  kd    ∆ψ fd  =  − X md    ∆ ψ q     ∆ψ kq1   X md ( X md + X kd1 ) X md 0 X md X md ( X md + X fd ) 0 0 − ( X mq + X l ) − X mq   ∆id    ∆i    kd    ∆i fd    X mq ∆ i q   − ( X mq + X kq1 )   ∆ikq1  0 and thus,  ∆id  − ( X md + X l )  ∆i   − X md  kd1    ∆i fd  =  − X md     ∆iq    ∆ikq1    − ( X md + X l )  −X md  =  − X md    X md ( X md + X kd1 ) X md X md ( X md + X fd ) 0 − ( X mq + X l ) 0 − X mq X md ( X md + X kd1 )  ∆ψ d   ∆ψ   kd   ∆ψ fd  −1 = [ X reac ]  ∆ψ q   ∆ψ kq1     ∆δ   ∆ω  X md      X mq  − ( X mq + X kq1 )  −1  ∆ψ d   ∆ψ   kd   ∆ψ fd     ∆ψ q   ∆ψ kq1  X md 0 X md 0 0 0 X mq X md ( X md + X fd ) 0 − ( X mq + X l ) 0 − X mq − ( X mq + X kq1 ) ……………………………………… (8)  ∆ψ d  0 ∆ψ kd    0  ∆ψ fd     ∆ψ q    0  ∆ψ kq1    0  ∆δ   ∆ω   ∆ψ d  ∆ψ   ∆id   kd  ∆i   ∆ψ fd   kd  [ ∆I ] =  ∆i fd  = [ X reac ] −1  ∆ψ q  = [ X reac ] −1[ ∆X ]   ∆ i  ∆ψ kq1  q      ∆ikq1  ∆ δ    ∆ω  : from (8)  • ∆ X  = [ S ][ ∆X ] + [ R ][ ∆I ] + [ B ][ ∆U ]   = [ S ][ ∆X ] + [ R ][ X reac ] −1[ ∆X ] + [ B ][ ∆U ] [ ] = [ S ] + [ R ][ X reac ] −1 [ ∆X ] + [ B ][ ∆U ] : inserting (8) into (7) = [ A][ ∆X ] + [ B ][ ∆U ] where, [ A] = [[ S ] + [ R ][ X reac ] −1 ] ……… (9) : system state matrix System to be Studied Vt It Generator Infinite Bus System State Matrix and Eigen Values System State Matrix: [ A] = [[ S ] + [ R ][ X reac ] −1 ] Eigen Values: λ1 , λ2 = −σ ± jω jω λ1 θ λ2 σ Eigen Values o Eigen values are the roots of the characteristic equation  • ∆ X  = [ A][ ∆X ] + [ B ][ ∆U ]   o o Number of eigen values is equal to the order of the characteristic equation or number of state variables λ1t e Eigen values describe the system response ( ) to any disturbance Analyzing the Eigen Values of the System State Matrix o o o Compute the eigen values of the system state matrix, A The eigen values will give necessary information about the steady-state stability of the system Stable System: If the real parts of ALL the eigen values are negative Example: o λ1 , λ2 = −0.15 ± j 2.0 λ3 = −0.0005 A system with the above eigen values is on the verge of instability Machine Parameters Salient-pole synchronous generator 3kVA, 220V, 4-pole, 60 Hz and 1800 r/min Machine parameters Per unit values d-axis magnetizing reactance, Xmd 1.189 q-axis magnetizing reactance, Xmq 0.7164 Armature leakage reactance, Xl 0.100 Field circuit leakage reactance, Xfd 0.276 First d-axis damper circuit leakage reactance, Xkd1 0.181 First q-axis damper circuit leakage reactance, Xkq1 0.193 Armature winding resistance, Ra 0.0186 Field winding resistance, Rfd 0.0058 First d-axis damper winding resistance, Rkd1 0.062 First q-axis damper winding resistance, Rkq1 0.052 ... TBA & TBA Office Hour: - Course Text Book:      Electric Machinery Fundamentals by Stephen J Chapman, 4th Edition, McGraw-Hill, 2005 Electric Motor Drives – Modeling, Analysis and Control... generator Electrical Frequency Electrical frequency produced is locked or synchronized to the mechanical speed of rotation of a synchronous generator:     fe = nm P 120 where fe = electrical... computational convenience and for readily comparing the performance of a set of transformers or a set of electrical machines PU Value = Actual Quantity Base Quantity Where ‘actual quantity’ is a value

Ngày đăng: 20/10/2017, 15:30

Từ khóa liên quan

Mục lục

  • Slide 1

  • Slide 2

  • Slide 3

  • Course Content

  • Exam Dates

  • Slide 6

  • Synchronous Machines

  • Slide 8

  • Slide 9

  • Salient-Pole Synchronous Generator

  • Cylindrical-Rotor Synchronous Generator

  • Damper Windings

  • Operation Principle

  • Electrical Frequency

  • Direct & Quadrature Axes

  • PU System

  • Classical Model of Synchronous Generator

  • Phasor Diagram

  • Slide 19

  • Slide 20

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan