Đề cương môn giải tích 1 – MI1112 GT1 2017

11 41 0
  • Loading ...
1/11 trang

Thông tin tài liệu

Ngày đăng: 08/09/2017, 22:22

Trường Đại học Bách Khoa Hà Nội Viện Toán ứng dụng Tin học ĐỀ CƯƠNG BÀI TẬP GIẢI TÍCH I - TỪ K62 Nhóm ngành Mã số : MI 1112 1) Kiểm tra kỳ hệ số 0.3: Tự luận, 60 phút Nội dung: Chương 1, đến hết mục 1.8, Các định lý hàm khả vi ứng dụng 2) Thi cuối kỳ hệ số 0.7: Tự luận, 90 phút Chương Phép tính vi phân hàm biến số 1.1-1.3 Dãy số, hàm số Tìm tập xác định hàm số a) y = d) y = arccos (sin x) log(tan x) 2x b) y = arcsin 1+x √ x c) y = sin πx e) y = arcsin(sin x) f) y = sin(arcsin x) Chứng minh đẳng thức sau a) sinh(−x) = − sinh x, b) cosh(−x) = − cosh(x), c) cosh2 x − sinh2 x = 1, d) sinh(x + y) = sinh x cosh y + cosh x sinh y, e) cosh(x + y) = cosh x cosh y + sinh x sinh y, f) sinh 2x = sinh x cosh x, g) cosh 2x = cosh2 x + sinh2 x Tìm miền giá trị hàm số a) y = lg (1 − cos x) c) y = arctan(sin x) b) y = arcsin lg d) y = arctan(ex ) x 10 Tìm f (x) biết a) f x+ x = x2 + x2 b) f x 1+x = x2 Tìm hàm ngược hàm số a) y = 2x + b) y = 1−x 1+x c) y = x (e − e−x ) Xét tính chẵn lẻ hàm số a) f (x) = ax + a−x (a > 0) b) f (x) = ln x + √ c) f (x) = sin x + cos x d) f (x) = arcsin x + x2 Chứng minh hàm số f (x) xác định khoảng đối xứng (−a, a), (a > 0) biểu diễn dạng tổng hàm số chẵn với hàm số lẻ Xét tính tuần hoàn tìm chu kỳ hàm số sau (nếu có) a) f (x) = A cos λx + B sin λx d) f (x) = cos2 x b) f (x) = sin(x2 ) √ e) f (x) = cos x + cos x 1 c) f (x) = sin x + sin 2x + sin 3x √ f) f (x) = sin x + sin x 1.4-1.5 Giới hạn hàm số Tìm giới hạn x100 − 2x + a) lim 50 x→1 x − 2x + (xn − an ) − nan−1 (x − a) , b) lim x→a (x − a)2 n ∈ N 10 Tìm giới hạn a) lim x→+∞ b) lim x→+∞ x+ √ √ x+ √ √ m √ + αx − n + βx c) lim x→0 x √ √ m + αx n + βx − d) lim x→0 x x x+1 x3 + x2 − − x 11 Tìm giới hạn √ √ cos x − cos x c) lim x→0 sin2 x − cos x cos 2x cos 3x d) lim x→0 − cos x sin x − sin a a) lim x→a x−a √ √ b) lim sin x + − sin x x→+∞ 12 Tìm giới hạn x2 − a) lim x→∞ x2 + √ b) lim+ (cos x) x c) lim [sin (ln (x + 1)) − sin (ln x)] x−1 x+1 x→∞ √ √ d) lim n2 ( n x − n+1 x) , x > n→∞ x→0 13 Khi x → 0+ cặp VCB sau có tương đương không? α(x) = x+ √ x β(x) = esin x − cos x 1.6 Hàm số liên tục 14 Tìm a để hàm số liên tục x =    − cos x , x = 0, x2 a) f (x) =  a, x = b) g(x) =   ax2 + bx + 1, x ≥ 0,  a cos x + b sin x, x < 15 Điểm x = điểm gián đoạn loại hàm số a) y = − 2cot x b) y = sin x1 ex + eax − ebx , x (a = b) c) y = 1.7 Đạo hàm vi phân 16 Tìm đạo hàm hàm số    − x, x < 1,     f (x) = (1 − x)(2 − x), ≤ x ≤ 2,      x − 2, x > 17 Với điều kiện hàm số   xn sin , x = 0, x f (x) =  0, x = (n ∈ Z) a) Liên tục x = b) Khả vi x = c) Có đạo hàm liên tục x = 18 Chứng minh hàm số f (x) = |x − a|ϕ(x), ϕ(x) hàm số liên tục ϕ(a) = 0, không khả vi điểm x = a 19 Tìm vi phân hàm số x arctan , (a = 0) a a x b) y = arcsin , (a = 0) a x−a ln , (a = 0) 2a x+a √ d) y = ln x + x2 + a a) y = c) y = 20 Tìm a) d d(x2 ) sin x x b) d(sin x) d(cos x) c) d x3 − 2x6 − x9 d(x3 ) 21 Tính gần giá trị biểu thức a) log 11 b) − 0.02 + 0.02 22 Tìm đạo hàm cấp cao hàm số x2 , tính y (8) 1−x 1+x , tính y (100) b) y = √ 1−x c) y = a) y = x2 , tính y (8) 1−x d) y = x2 sin x, tính y (50) 23 Tính đạo hàm cấp n hàm số x x2 − 1 b) y = x − 3x + c) y = √ a) y = x 1+x d) y = eax sin(bx + c) 1.8 Các định lý hàm khả vi ứng dụng 24 Chứng minh phương trình xn + px + q = với n nguyên dương có nghiệm thực n chẵn, nghiệm thực n lẻ f (b) − f (a) f ′ (c) 25 Giải thích công thức Cauchy dạng = ′ không g(b) − g(a) g (c) áp dụng hàm số f (x) = x2 , g(x) = x3 , −1 ≤ x ≤ 26.Chứng minh bất đẳng thức a) |sin x − sin y| ≤ |x − y| b) a a−b a−b < ln < , < b < a a b b 27 Tìm giới hạn a) lim x+ b) lim x − x − ln x x→+∞ x→1 x+ √ x− √ e) lim tan x x→1 πx ln(2 − x) f) lim − atan2 x x sin x x→0 c) lim x→∞ e x − cos x1 1− 1− tan π2 x g) lim− x→1 ln(1 − x) x2 ex sin x − x(1 + x) d) lim x→0 x3 h) lim (1 − cos x)tan x x→0 28 Xác định a, b cho biểu thức sau có giới hạn hữu hạn x → a b 1 − − − f (x) = sin3 x x3 x2 x 29 Cho f hàm số thực khả vi [a, b] có đạo hàm f ′′ (x) (a, b) Chứng minh với x ∈ (a, b) tìm điểm c ∈ (a, b) cho (x − a)(x − b) ′′ f (b) − f (a) (x − a) = f (c) b−a 30 Khảo sát tính đơn điệu hàm số f (x) − f (a) − b) y = arctan x − x a) y = x3 + x 31 Chứng minh bất đẳng thức a) 2x arctan x ≥ ln + x2 với x ∈ R x2 ≤ ln(1 + x) ≤ x với x ≥ b) x − 32 Tìm cực trị hàm số 3x2 + 4x + a) y = x +x+1 c) y = b) y = x − ln(1 + x) d) y = x + (x − 2) (1 − x)(x − 2)2 1.9 Giới thiệu loại đường cong 34 Khảo sát hàm số 2t − t2 e)  y= t 1+t   x = 2t − t2 f)  y = 3t − t3 − x2 a) y = + x4 b) y = √   x= x3 − x2 − x + x4 + c) y = x +1 g) r = a + b cos ϕ, (0 < a ≤ b) x−2 d) y = √ x2 + h) r = √ a , (a > 0) cos 3ϕ Chương Phép tính tích phân hàm biến số 2.1 Tích phân bất định Tính tích phân a) b) c) d) √ x xdx e) xdx (x + 2)(x + 5) |x2 − 3x + 2|dx f) dx x x2 + xdx dx (x + a)2 (x + b)2 g) sin x sin(x + y)dx h) + sin x dx sin2 x e) dx (x2 + 2x + 5)2 f) sinn−1 x sin(n + 1)xdx g) e−2x cos 3xdx h) arcsin2 xdx 1− x2 √ (x2 − 1) 3/2 Tính tích phân a) arctan xdx b) √ c) d) x+2 dx x2 − 5x + xdx x2 + x + √ x −x2 + 3x − 2dx √ Lập công thức truy hồi tính In a) In = xn ex dx b) In = dx cosn x 2.2 Tích phân xác định Tính đạo hàm a) d y t2 e dt dx x b) d dy y et dt x dt d x √ c) dx x2 + t4 Dùng định nghĩa cách tính tích phân xác định, tìm giới hạn a) lim n→∞ 1 1 , (α, β > 0) + + + ··· + nα nα + β nα + 2β nα + (n − 1)β n→∞ n b) lim 1+ + n 1+ + ··· + n 1+ n n Tính giới hạn sin x √ a) lim+ x→0 x tan tdt tan x √ b) lim x→+∞ sin tdt (arctan t)2 dt √ x2 + Tính tích phân sau e a) e e b) |ln x| (x + 1) dx d) (x ln x)2 dx e) sin2 x cos x (1 + tan2 x) arcsin 3π/2 c) dx x dx 1+x π/2 dx + cos x cosn x cos nxdx f) Chứng minh f (x) liên tục [0, 1] π/2 a) π π/2 f (sin x)dx = b) f (cos x)dx π xf (sin x)dx = 0 π f (sin x)dx Cho f (x), g(x) hai hàm số khả tích [a, b] Khi f (x), g (x) f (x).g(x) khả tích [a, b] Chứng minh bất đẳng thức (với a < b) b f (x)g(x)dx a b ≤ b f (x)dx a g (x)dx a (Bất đẳng thức Cauchy-Schwartz) 2.3 Tích phân suy rộng 10 Xét hội tụ tính (trong trường hợp hội tụ) tích phân sau a) c) x xe dx −∞ −∞ b) +∞ +∞ d) cos xdx 0 dx (x2 + 1)2 dx x(1 − x) 11 Xét hội tụ tích phân sau a) b) c) dx tan x − x √ xdx sin e x−1 √ xdx √ − x4 12 Nếu +∞ Xét ví dụ d) +∞ ln (1 e) +∞ f) +∞ √ + x) dx x dx x + x3 x2 dx x4 − x2 + f (x)dx hội tụ có suy f (x) → x → +∞ không? +∞ sin x2 dx 13 Cho hàm f (x) liên tục [a, +∞) lim f (x) = A = Hỏi x→+∞ +∞ f (x)dx có hội tụ không a 2.4 Ứng dụng tích phân xác định 14 Tính diện tích hình phẳng giới hạn a) Đường parabol y = x2 + đường thẳng x − y + = b) Parabol bậc ba y = x3 đường y = x, y = 2x, (x ≥ 0) c) Đường tròn x2 + y = 2x parabol y = x, (y ≤ x) d) Đường y = x2 − x4 15 Tính thể tích vật thể phần chung hai hình trụ x2 + y ≤ a2 y + z ≤ a2 , (a > 0) 16 Tìm thể tích vật thể giới hạn mặt paraboloit z = − y , mặt 10 phẳng tọa độ x = 0, z = mặt phẳng x = a (a = 0) 17 Tính thể tích khối tròn xoay tạo nên quay hình giới hạn đường y = 2x − x2 y = a) Quanh trục 0x vòng b) Quanh trục 0y vòng 18.Tính độ dài đường cong ex + a) y = ln x x biến thiên từ đến e −1    x = a cos t + ln tan t π π t biến thiên từ đến b)   y = a sin t (a > 0) 19 Tính diện tích mặt tròn xoay tạo nên quay đường sau a) y = sin x, ≤ x ≤ π quay quanh trục 0x b) y = (1 − x)3 , ≤ x ≤ quay quanh trục 0x 11 ... x→+∞ x 1 x+ √ x− √ e) lim tan x x 1 πx ln(2 − x) f) lim − atan2 x x sin x x→0 c) lim x→∞ e x − cos x1 1 1 tan π2 x g) lim− x 1 ln (1 − x) x2 ex sin x − x (1 + x) d) lim x→0 x3 h) lim (1 − cos... x9 d(x3 ) 21 Tính gần giá trị biểu thức a) log 11 b) − 0.02 + 0.02 22 Tìm đạo hàm cấp cao hàm số x2 , tính y (8) 1 x 1+ x , tính y (10 0) b) y = √ 1 x c) y = a) y = x2 , tính y (8) 1 x d) y =... trường hợp hội tụ) tích phân sau a) c) x xe dx −∞ −∞ b) +∞ +∞ d) cos xdx 0 dx (x2 + 1) 2 dx x (1 − x) 11 Xét hội tụ tích phân sau a) b) c) dx tan x − x √ xdx sin e x 1 √ xdx √ − x4 12 Nếu +∞ Xét ví
- Xem thêm -

Xem thêm: Đề cương môn giải tích 1 – MI1112 GT1 2017 , Đề cương môn giải tích 1 – MI1112 GT1 2017 , Đề cương môn giải tích 1 – MI1112 GT1 2017

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay