Đề thi tuyển sinh vào lớp 10 THPT môn Toán Sở GD&ĐT An Giang năm 2017 - 2018

1 16 0
  • Loading ...
1/1 trang

Thông tin tài liệu

Ngày đăng: 08/09/2017, 03:02

  TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1 2 1 2 1 2 .x x x x x x x x      (Do x 1 khác x 2 )     2 2 1 2 1 2 1 2 1 2 1 2 22 2 ( ) . ( 2 ) x x x x x x x x x x S S P S P              22 1(1 2 ) 1PP    (Vì S = 1) 0P 2 10m   (vô nghiệm) Do đó yêu cầu bài toán 1m   Cách khác Khi 0 ta có 12 1xx và 2 12 1 8 m xx   4 4 3 3 1 2 1 2 x x x x   33 1 1 2 2 .( 1) ( 1) 0x x x x     33 1 2 1 2 0x x x x    (thế 12 1xx   và 21 1xx   ) 22 1 2 1 2 ( ) 0x x x x   1 2 1 2 ( )( ) 0x x x x    (vì x 1 x 2  0) 12 xx (vì x 1 +x 2 =1  0) 1m   Câu 5 a) Ta có BAC MBC do cùng chắn cung BC Và BAC MIC do AB// MI Vậy BAC MIC , nên bốn điểm ICMB cùng nằm Trên đường tròn đường kính OM (vì 2 điểm B, C cùng nhìn OM dưới 1 góc vuông) b) Do 2 tam giác đồng www.VNMATH.com ĐỀ VÀ HƯỚNG DẪN GIẢI THI VÀO 10 PHÚ THỌ 18-6-2013 Câu 1 a) Tính A= 49162  b) Trong các hình sau : hình vuông; hình bình hành; hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau ĐS a) A=1 b)HV ; HCN ; HTC VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí SỞ GIÁO DỤC VÀ ĐÀO TẠO HẢI DƯƠNG KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC: 2016 - 2017 Môn thi: Toán Thời gian: 120 phút, không kể thời gian giao đề (Đề thi gồm 01 trang) Câu (2,0 điểm) Giải phương trình hệ phương trình sau: a) (x + 3)2 = 16 2x + y - =  b)  x y    Câu (2,0 điểm) 2 x x   x 2   : 1   a) Rút gọn biểu thức : A      x  x   với x ≥ 0; x ≠ x x  x      b) Tìm mđể phương trình: x2 - 5x + m - =0 có hai nghiệm phân biệt x1, x2 thỏa mãn x12 2x1x2 + 3x2 =1 Câu (2,0 điểm) a) Tìm a b biết đồ thị hàm số y = ax + b qua điểm A(-1; 5) song song với đường thẳng y = 3x + b) Một đội xe phải chuyên chở 36 hàng Trước làm việc, đội xe bổ sung thêm xe nên xe chở so với dự định Hỏi đội xe lúc đầu có xe? Biết số hàng trở tất xe có khối lượng Câu (3,0 điểm) Cho nửa đường tròn (O) đường kính AB Gọi C điểm cố định buộc đoạn thẳng OB (C khác B) Dựng đường thẳng d vuông góc với AB điểm C, cắt nửa đường tròn (0) điểm M Trên cung nhỏ MB lấy điểm N (N khác M B), tia AN cắt đường thẳng d điểm F, tia BN cắt đường thẳng d điểm E Đường thẳng AE cắt nửa đường tròn (O) điểm D (D khác A) a) Chứng minh: AD.AE = AC.AB b) Chứng minh: Ba điểm B, F, D thẳng hàng F tâm đường tròn nội tiếp tam giác CDN VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí c) Gọi I tâm đường tròn ngoại tiếp tam giác AEF Chứng minh điểm I nằm đường thẳng cố định điểm N di chuyển cung nhỏ MB Câu (1,0 điểm) Cho a, b, c ba thực dương thỏa mãn: abc = Tìm giá trị lớn biểu thức P  ab bc ca  5  5 a  b  ab b  c  bc c  a  ca Đáp án Đề thi tuyển sinh vào lớp 10 VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy      VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B                       Câu 4: a/ Phương trình (*) có nghiệm x = 1 2  2 2 4 1 0m    2 1m 1m   b/ ∆’ = 22 16 8 8 8(1 )mm    . Khi m = 1 thì ta có ∆’ = 0 tức là : 12 xx khi đó 4 4 3 3 1 2 1 2 x x x x   thỏa Điều kiện cần để phương trình sau có 2 nghiệm phân biệt là: 1 1 1m hay m    . Khi 1 1 1m hay m    ta có 4 4 3 3 1 2 1 2 x x x x          2 2 2 2 2 2 1 2 1 2 1 2 1 2 1 2 .x x x x x x x x x x             2 2 2 2 1 2 1 2 1 2 1 2 .x x x x x x x x      (Do x 1 khác x 2 )     2 2 1 2 1 2 1 2 1 2 1 2 22 2 ( ) . ( 2 ) x x x x x x x x x x S S P S P              22 1(1 2 ) 1PP    (Vì S = 1) 0P 2 10m   (vô nghiệm) Do đó yêu cầu bài toán 1m   Cách khác Khi 0 ta có 12 1xx và 2 12 1 8 m xx   4 4 3 3 1 2 1 2 x x x x   33 1 1 2 2 .( 1) ( 1) 0x x x x     33 1 2 1 2 0x x x x    (thế 12 1xx   và 21 1xx   ) 22 1 2 1 2 ( ) 0x x x x   1 2 1 2 ( )( ) 0x x x x    (vì x 1 x 2  0) 12 xx (vì x 1 +x 2 =1  0) 1m   Câu 5 a) Ta có BAC MBC do cùng chắn cung BC Và BAC MIC do AB// MI Vậy BAC MIC , nên bốn điểm ICMB cùng nằm Trên đường tròn đường kính OM (vì 2 điểm B, C cùng nhìn OM dưới 1 góc vuông) b) Do 2 tam giác đồng THCS NGUYỄN TẤT THÀNH HƯỚNG DẪN CHẤM KSCL SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT CHUYÊN NĂM HỌC: 2016 - 2017 Môn thi: Toán (chuyên) Ngày thi: 03/06/2016 Thời gian: 150 phút - không kể thời gian phát đề) (Đề thi có 01 trang) Đề thi thức Bài (2,0 điểm) Rút gọn biểu thức P   1 1   2 2016 2 Cho a nghiệm phương trình x2 - 3x + = Không tìm giá trị a, tính giá trị biểu thức Q  a2 a4  a2 1 Bài (2,0 điểm) 2 15  x 1   x 1  Giải phương trình   4    5  x2 x 4  x2 ( x  xy )( xy  y )  25 Giải hệ phương trình   x  xy  xy  y  3( y  y ) Bài (2,0 điểm) Cho x ≥ Tìm giá trị nhỏ biểu thức S  x  x   x  x  Hãy tính tất số nguyên tố cho 8p2 + 8p2 - số nguyên tố Bài (3,0 điểm) Cho hai đường tròn (O), (O') cắt hai điểm phân biệt A B Từ điểm E nằm tia đối tia AB, kẻ đến đường tròn (O') tiếp tuyến EC ED (C, D tiếp điểm phân biệt) Các đường thẳng AC AD theo thứ tự cắt đường tròn (O) hai điểm P Q (P Q khác A) Chứng minh hai tam giác BCP BDQ đồng dạng Chứng minh CA.DQ = CP.DA Chứng minh ba điểm C, D trung điểm I đoạn thẳng PQ thẳng hàng VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí Bài (1,0 điểm) Trong mặt phẳng cho 10 điểm đôi phân biệt cho điểm 10 điểm cho có điểm thẳng hàng Chứng minh ta bỏ điểm 10 điểm cho để điểm lại thuộc đường thẳng VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí   TP.HCM 13  2014  CHÍNH  MÔN: TOÁN Thời gian làm bài: 120 phút  1: (2  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0  xx b) 2 2 1 0  xx c) 4 3 4 0    xx d) 23 21        xy xy 2: (1,5  a) Vẽ đồ thị (P) của hàm số 2 yx và đường thẳng (D): 2  yx trên cùng một hệ trục toạ độ. b) Tìm toạ độ các giao điểm của (P) và (D) ở câu trên bằng phép tính.  3: (1,5  Thu gọn các biểu thức sau: 33 . 9 33         xx A x xx với 0x ; 9x     22 21 2 3 3 5 6 2 3 3 5 15 15        B 1,5  Cho phương trình 22 8 8 1 0   x x m (*) (x là ẩn số) a) Định m để phương trình (*) có nghiệm 1 2 x b) Định m để phương trình (*) có hai nghiệm 1 x , 2 x thỏa điều kiện: 4 4 3 3 1 2 1 2   x x x x  5: (3,5  Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I. a) Chứng minh rằng MBC BAC . Từ đó suy ra MBIC là tứ giác nội tiếp. b) Chứng minh rằng: FI.FM = FD.FE. c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng. d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất. BÀI GIẢI  Giải các phương trình và hệ phương trình sau: a) 2 5 6 0 25 24 1 5 1 5 1 23 22 xx x hay x              b) 2 2 1 0 ' 1 1 2 1 2 1 2 xx x hay x             c) Đặt u = x 2 0 pt thành : 2 3 4 0 1 4u u u hayu       (loại) (do a + b + c =0) Do đó pt 2 11xx     Cách khác pt 22 ( 1).( 4) 0xx    2 1 0 1xx      d) 2 3 (1) 2 1 (2) xy xy         2 3 (1) 5 5 (3) ((2) 2(1)) xy x       1 1 y x       1 1 x y      2: a) Đồ thị: Lưu ý: (P) đi qua O(0;0),     1;1 , 2;4 (D) đi qua     1;1 , 2;4 ,(0;2) b) PT hoành độ giao điểm của (P) và (D) là 2 2xx    2 20xx   12x hay x    (a+b+c=0) y(1) = 1, y(-2) = 4 Vậy toạ độ giao điểm của (P) và (D) là     2;4 , 1;1  3:Thu gọn các biểu thức sau Với x 0 và x  9 ta có :     3 3 9 3 . 9 3 . 3 x x x x A x xx            1 3x   22 22 2 21 ( 4 2 3 6 2 5) 3( 4 2 3 6 2 5) 15 15 2 21 ( 3 1 5 1) 3( 3 1 5 1) 15 15 2 15 ( 3 5) 15 15 60 2 B         SỞ GIÁO DỤC VÀ ĐÀO TẠO AN GIANG ĐỀ THI CHÍNH THỨC (Đề thi gồm 01 trang) KỲ THI TUYỂN SINH VÀO LỚP 10 Ngày: 07 - 06 - 2016 Môn: Toán Thời gian: 120 phút, không kể thời gian phát đề Câu (3,0 điểm) Giải phương trìn hệ phương trình sau đây: a 5x   b 3x2 + 8x + = x  y  x  c  x  y  Câu (1,5 điểm) Cho hàm số y = 2x +2 a, Vẽ đồ thị hàm số cho b, Tìm m để đồ thị hàm số y = mx+m+1 cắt đồ thị hàm số cho điểm trục tung Câu (1,5 điểm) Cho phương trình bậc hai 4x2 + 2(m+1)x + m = (m tham số) a Chứng minh phương trình cho có nghiệm với số m b Tìm m để nghiệm phương trình cho nghiệm phương trình mx2 + (m+1)x + = Câu (3,0 điểm) Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (0), đường cao AI, BK tam giác ABC cắt H (I thuộc BC, K thuộc AC BK cắt đường tròn (0) D E Chứng minh rằng: a Tứ giác CIHK tứ giác nội tiếp b Tam giác CDE cân c IK song song với DE Câu (1,0 điểm) Máy kéo nông nghiệp có hai bánh sau to hai bánh trước Khi bơm căng, bánh xe sau có đường kính 1,672 m bánh xe trước có đường kính 88 cm Hỏi xe chạy VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí đoạn đường thẳng, bánh xe sau lăn 10 vòng xe di chuyển mét bánh xe trước lăn vòng? VnDoc - Tải tài liệu, văn pháp luật, biểu mẫu miễn phí THCS NGUYỄN TẤT THÀNH HƯỚNG DẪN CHẤM KSCL TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2014 - 2015 MÔN THI: TOÁN HỌC Câu Nội dung Điể m Câu 1   22 7 2 30 7 11A      11 7 60 14 11       2 11 7 7 11      11 7 7 11   =   2 2 7 11 38 0,25 0,25 0,25 Điều kiện xác định của B: 0 4 x x                 2 1 2 ( 6) 2 2 : 2 22 x x x x x x x A x xx                  2 2 2 6 22 : 2 22 x x x x x x x x xx x xx                 4 8 2 . 4 22 xx xx    2 2 x x    0,25 0,25 0,25 Câu 2 Nếu 0xy  thì 17 2 1 1007 9 2011 9 490 (1) 1 2 9 1 490 3 1007 9 x yx y y yx x                               (phù hợp) 0,5 Nếu 0xy thì 17 2 1 1004 2011 9 (1) 0 12 1 1031 3 18 yx y xy yx x                      (loại) 0,5 Nếu 0xy  thì (1) 0xy (nhận). 0,25 KL: Hệ có đúng 2 nghiệm là (0;0) và 99 ; 490 1007    0,25 Nếu 0xy  thì 17 2 1 1007 9 2011 9 490 (1) 1 2 9 1 490 3 1007 9 x yx y y yx x                               (phù hợp) 0,5 Câu 3 Gọi thời gian làm một mình xong công việc của thứ nhất là x(h, x > 7,2 ) Thời gian người thứ hai làm một mình xong công việc là y (giờ, y > 7,2 ) Trong 1 giờ, người thứ nhất làm được 1 x (cv); người thứ hai làm được 1 y (cv) & cả hai làm được 5 36 (cv) => ta có hệ phương trình: 1 1 5 36 5 6 3 4 xy xy          Giải hệ được x = 12; y = 18 Vậy 0,5 0,25 0,5 0,25 Câu 4 a) Do 12 ,xx là hai nghiệm của phương trình đã cho nên theo định lí Viet ta có: 1 2 1 2 3 , 13 2 x x x x     Ta có 1 2 1 1 2 2 C x x x x x x    1 2 1 2 2x x x x     3 2 13 2        3 26 2    55 2  b) 12 12 1 27 2 . 27 yy yy            → y 1 và y 2 là nghiệm của pt: y 2 + 1 27 y - 2 27 = 0 0,25 0,25 0,25 1,0 0,5 Câu 5 0.25 Ta có tanB = AD BD ; tanC = AD DC  tanB.tanC = 2 . AD BD DC (1) Xét 2 tam giác vuông ADC và BDH có   DAC DBH vì cùng phụ với góc C nên ta có : AD BD ADC BDH DC DH     AD DH DBDC  2 . AD AD BD DC HD  (2) Từ (1) và (2)  tanB.tanC = AD HD . 0,5 0,25 0,25 0,25 K G H E D A B C Theo câu a.
- Xem thêm -

Xem thêm: Đề thi tuyển sinh vào lớp 10 THPT môn Toán Sở GD&ĐT An Giang năm 2017 - 2018, Đề thi tuyển sinh vào lớp 10 THPT môn Toán Sở GD&ĐT An Giang năm 2017 - 2018, Đề thi tuyển sinh vào lớp 10 THPT môn Toán Sở GD&ĐT An Giang năm 2017 - 2018

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay