Luận án tiến sĩ nghiên cứu mô hình hóa và mô phỏng cấu trúc nano xốp zno

159 405 0
Luận án tiến sĩ nghiên cứu mô hình hóa và mô phỏng cấu trúc nano xốp zno

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

B GIO DC V O TO TRNG I HC BCH KHOA H NI NGUYN TH THO NGHIấN CU Mễ HèNH HểA V Mễ PHNG CU TRC NANO XP ZnO LUN N TIN S VT Lí H Ni - 2017 B GIO DC V O TO TRNG I HC BCH KHOA H NI NGUYN TH THO NGHIấN CU Mễ HèNH HểA V Mễ PHNG CU TRC NANO XP ZnO Chuyờn ngnh: Vt lý lý thuyt v vt lý toỏn s: 62440103 LUN N TIN S VT Lí NGI HNG DN KHOA HC: PGS TS V Ngc Tc H Ni - 2017 LI CAM OAN Tụi xin cam oan õy l cụng trỡnh nghiờn cu ca riờng tụi, c thc hin di s hng dn ca PGS TS V Ngc Tc Cỏc kt qu nờu lun ỏn l trung thc v cha tng c khỏc cụng b H Ni, ngy thỏng Giỏo viờn hng dn nm Tỏc gi lun ỏn PGS TS V Ngc Tc Nguyn Th Tho i LI CM N u tiờn, tụi xin t lũng cm n sõu sc ti ngi thy ca tụi - PGS.TS V Ngc Tc Trong quỏ trỡnh lm vic thc hin lun ỏn, tụi ó nhn c s hng dn tn tỡnh ca Thy Thy ó ng viờn, khớch l tụi vt qua khú khn cụng vic, cng nh t cỏc nghiờn cu cú tớnh thi s cao v to hng nghiờn cu tụi theo ui ti lun ỏn Tip theo tụi xin cm n s chõn thnh giỳp , úng gúp ý kin v mt khoa hc cng nh s ng viờn tinh thn, to mi iu kin thun li ca cỏc ng nghip, cỏc Thy cụ vin Vt lý k thut v Vin o to sau i hc, Trng i hc Bỏch Khoa H Ni v c quan ch qun ca tụi Trng i hc Hng c Cui cựng, tụi xin cm n s ng viờn, to iu kin tt nht ca Gia ỡnh tụi, c bit l b m, chng v cỏc tụi tụi cú th trung nghiờn cu v hon thnh lun ỏn ny H Ni, ngy thỏng nm Tỏc gi lun ỏn Nguyn Th Tho ii MC LC LI CAM OAN i LI CM N ii MC LC iii DANH MC CC Kí HIU V CH VIT TT vi DANH MC CC BIU BNG ix DANH MC CC HèNH V TH x M U xiv CHNG 1: TNG QUAN V VT LIU V CC CU TRC NANO BN DN THP CHIU 1.1 Tng quan v vt liu v cu trỳc nano bỏn dn thp chiu 1.1.1 nh ngha vt liu nano 1.1.2 Phõn loi vt liu nano 1.1.3 Ch to vt liu nano 1.2 Tng quan v cỏc vt liu nghiờn cu 12 1.2.1 S lc v vt liu bỏn dn 12 1.2.2 Phõn loi vt liu bỏn dn theo cu trỳc nguyờn t 13 1.2.3 Vt liu ụxit km (ZnO) 13 1.2.3.1 c im cu trỳc v cỏc thuc tớnh: 14 1.2.3.2 ng dng tim nng 18 1.3 Cu trỳc nano xp 23 1.3.1 Phõn loi nano xp 23 1.3.2 Zeolite - Nano xp vụ c 26 1.3.3 Khung kim loi hu c - MOF 27 1.3.4 Siờu vt liu 28 1.3.5 Cỏc tinh th Fullerite 31 1.3.6 Cỏc khoỏng sột nanoclay 32 1.4 Kt lun 34 CHNG 2: C S Lí THUYT PHIM HM MT V GN NG LIấN KT CHT DA TRấN DFT 35 2.1 Phng trỡnh Schrửdinger c lp thi gian 35 2.2 Gn ỳng Born-Oppenheimer 36 2.3 Lý thuyt phim hm mt DFT 38 iii 2.3.1 Cỏc nh lý Hửhenberg-Kohn 39 2.3.2 Phng trỡnh Kohn-Sham 40 2.3.3 Th hiu dng Kohn-Sham 42 2.3.4 Phim hm trao i tng quan 42 2.3.4.1 Gn ỳng mt cc b 43 2.3.4.2 Gn ỳng Gradient tng quỏt 44 2.3.5 Phng phỏp trng t hp 45 2.4 Phng phỏp phim hm mt kt hp gn ỳng liờn kt cht t hp in tớch SCC-DFTB 47 2.4.1 Mụ hỡnh gn ỳng liờn kt cht 47 2.4.2 Phng phỏp SCC-DFTB 48 2.4.2.1 Sp xp li cụng thc nng lng tng Kohn-Sham 49 2.4.2.2 Cỏc gn ỳng SCC-DFTB 50 2.5 Kt lun 54 CHNG 3: NGHIấN CU CC CU TRC NANO XP MT THP BNG PHNG PHP TIP CN T DI LấN 56 3.1 Phng phỏp d oỏn cu trỳc bng cỏch tip cn t di lờn 56 3.2 Tớnh toỏn chi tit 65 3.2.1 Nng lng liờn kt, bn vng ca cu trỳc 65 3.2.2 Cu trỳc vựng nng lng ca in t [29] 68 3.2.3 Cỏc thụng s cu trỳc 71 3.3 Kt lun 74 CHNG 4: NGHIấN CU CC CU TRC NANO XP KấNH RNG DNG LC GIC BNG PHNG PHP TIP CN T TRấN XUNG 76 4.1 Phng phỏp thit k cu trỳc bng phng phỏp t trờn xung 76 4.2 Chi tit tớnh toỏn 78 4.2.1 Nng lng dao ng t 81 4.2.2 Tớnh mt trng thỏi phonon bng lý thuyt DFT 83 4.3 Cỏc cu trỳc nano xp kờnh rng dng lc giỏc 84 4.3.1 Mụ t v cỏch phõn loi cu trỳc 84 4.3.2 Nng lng liờn kt, bn vng ca pha v phng trỡnh trng thỏi 87 4.3.3 Cu trỳc vựng in t 89 4.3.4 Kt qu v tho lun 94 4.4 Kt lun 101 iv CHNG 5: NGHIấN CU CC CU TRC NANO XP KấNH RNG DNG TAM GIC V THOI BNG PHNG PHP TIP CN T TRấN XUNG 102 5.1 Thit k cỏc cu trỳc nano xp kờnh rng dng thoi v tam giỏc 102 5.2 Chi tit tớnh toỏn 105 5.3 ỏnh giỏ bn vng ca cu trỳc 106 5.4 Mụ phng nh nhiu x tia X 109 5.5 Tớnh cht c hc ca cỏc cu trỳc 111 5.6 Tớnh cht in t 114 5.7 Kt lun 123 KT LUN V KIN NGH 124 TI LIU THAM KHO 126 DANH MC CC CễNG TRèNH CễNG B CA LUN N 138 v DANH MC CC Kí HIU V CH VIT TT KH &CN: Khoa hc v cụng ngh KH: Khoa hc CN: Cụng ngh KHVL: Khoa hc vt liu TD: Thớ d WZ: Wurtzite ZB: Zincblende 0D: dimension 1D: dimention 2D: dimension 3D: dimension HW: Half Wall SW: Single Wall 1.5W: 1.5 Wall DW: Double Wall 2.5W: 2.5 Wall TW: Triple Wall 3.5W: 3.5 Wall QW: Quadruple Wall CMS: Computational Materials Science MD: Molecular Dynamics DFT: Density Functional Theory TB: Tight-Binding DFTB: Density Functional based Tight-Binding SCF: Self- Sonsistent Field SCC-DFTB: Self Consistent Charge Density Functional based Tight-Binding TDDFTB: Time Dependent Density Functional based Tight-Binding VASP: The Vienna Ab initio Simulation Package SIESTA: Spanish Initiative for Electronic Simulations with Thousands of Atoms VESTA: Visualization System of Electronic and Structural Analysic XRD: X Ray Diffraction vi LDA: Local Density Approximation GEA: Geradient Expansion Approximation GGA: Gneralized Gradient Approximation PBE: Perdew-Burke-Ernzerhof PBESol: Perdew-Burke-Ernzerhof Solid HSE: Heyd-Scuseria-Ernzerhof STO: Slater Type Orbitals SK: Slater Koster HF: Hatree Fock BM: Bulk Modulus XC: Exchange Corelational DOS: Densities Of States PDOS: Projected Densities Of States MOF: Metal Organic Framework HOMO: Hightest Occupied Molecular Orbital LUMO: Lowest Unoccupied Molecular Orbital CBM: Conduction Band Minimum VBM: Valence Band Maximum TEM: Transmission Electron Microscopy SEM: Scanning Electron Microscope AFM: Atomic Force Microscope NEMS: Nano Electric Mechanical System MEMS Micro Electronic Mechanical System CMOS: Complementary Metal-Oxide-Semiconductor CVD: Chemical Vapour Deposition PVD: Physical Vapor Deposition MC: Micromechanical Cleavage RNA: Ribo Nucleic Acid DNA: Deoxyribo Nucleic Acid NP: Nano Particle NP-DNA : Nano Particle - DeoxyriboNucleic Acid UV: Ultra Violet IR: Infra Red ITO: Indium Tin Oxide vii FET: Field Effect Transistor TTET: Transparent Thin Film Transistors LED: Light Emitting Diode OLED: Organic LightEmiting Diode LCD: Liquid Crystal Display MR: Member Ring IZA: International Zeolite Association viii KT LUN V KIN NGH Trong lun ỏn ny chỳng tụi ó thit k, d oỏn lý thuyt mt s lng ln cu trỳc bng c hai cỏch tip cn t di lờn v t trờn xung, cú th kt lun li bn im chớnh nh sau: 1/ Bng cỏch tip cn t di lờn, xut phỏt t cỏc cm nguyờn t "ma thut" ZnkOk (k = 9,12,16), chỳng tụi ó d oỏn v kh nng tn ti ba ng c viờn mi rt ỏng quan tõm cho cỏc pha a hỡnh nano xp tinh th dng lng rng t vt liu ZnO So sỏnh, kim nghim trờn cựng phng phỏp tớnh toỏn vi by pha a hỡnh ó c xut thi gian gn õy bi Carrasco et al [PRL 99, 235502], Demiroglu et.al [Nanoscale (2014),6, 11181], Spoponza et al [PRB (2015) 91, 075126], Zagorac et al [RSC Adv.(2015), 5, 25929], phõn tớch ca chỳng tụi ó cho thy, ba pha a hỡnh c chỳng tụi d oỏn ny cú th tn ti dng cu trỳc tun hon tinh th m khụng b phỏ v cu hỡnh Chỳng khỏc bit hon ton v sỏnh ngang bn vng vi by cu trỳc tham chiu ó xut 2/ Bng cỏch tip cn t trờn xung, chỳng tụi d oỏn lý thuyt v mt h cu trỳc tinh th nano xp ZnO dng kờnh rng lc giỏc vi hng lot kớch thc hc rng v dy vỏch hc khỏc Da trờn 44 i din ca h cu trỳc kờnh rng lc giỏc c thit k vi tớnh i xng tng t pha WZ, phõn tớch ca chỳng tụi v cu trỳc, tớnh cht c, nhit v in t cho thy cỏc kờnh rng cú th tn ti cỏc cu trỳc tun hon m khụng lm sp cu trỳc v chỳng cú kh nng iu chnh c tớnh chng hn nh module - i lng phn ỏnh cng ca cu trỳc xp hay rng vựng cm theo cỏc tham s nh kớch thc kờnh rng, b dy vỏch rng v phõn b hỡnh dng c bit chỳng tụi ó a c s ph thuc khụng tuyn tớnh ca module vo xp vi xu th gim nhanh ri tin ti bóo hũa xp gim Chỳng tụi cng ch l vi mc ớch to cỏc nano xp kờnh rng lc giỏc thỡ dy vỏch xp l ba lp ụ lc giỏc s l ti u cho vic tip cn gn n ng chun vng v cng-trờn-t trng ca vt liu 3/ Bng cỏch tip cn t trờn xung chỳng tụi m rng nghiờn cu d oỏn/thit k thờm ba h cỏc cu trỳc kờnh rng dng thoi v hai h tam giỏc (vi tng cng 75 cu trỳc) Phõn tớch ca chỳng tụi cho thy nhiu tớnh cht vt lý quan trng ca cỏc cỏc h a hỡnh nh t s b mt-th tớch, xp, module v cu trỳc vựng nng lng ca in t, cú th c iu chnh bi mt b cỏc tham s cu hỡnh nh nh hỡnh dng, kớch thc, dng topo (hỡnh hc v nhúm i xng) ca hc rng v dy ca vỏch rng c bit chỳng tụi ch l, mc dự khỏc nhau, nhng mi dng topo ca nano xp kờnh rng ny 124 li cú cựng mt quy lut bin i v cng theo xp Chỳng tụi gi ú quy lut topo tng quan v quy lut ny li khỏc vi cỏc dng topo khỏc 4/ So sỏnh cỏc dng topo hỡnh hc ca bn h nano xp kờnh rng cho thy vi cựng xp h kờnh rng lc giỏc (hay t ong) l cú cng ln nht, tip sau ú l cỏc h tam giỏc (B), thoi (A) v tam giỏc (C) Kt qu ny cng cho phộp dn dt vic ch to cỏc nano xp trờn thc nghim thụng qua d oỏn, thit k trc cỏc c tớnh cu trỳc ca nú Do xp ph thuc vo mt b tham s cu hỡnh kờnh xp nờn s cú thờm mt s linh hot thit k bng cỏch cõn i vic thay i cỏc tham s ny cú cỏc c tớnh c may o cho cỏc ng dng thc t Cui cựng cỏc a hỡnh nano xp c chỳng tụi d oỏn u n nh nhit ng, nng lng v cú tim nng ng dng ln tng lai Cỏc kt qu nghiờn cu m chỳng tụi ó cụng b hy vng s úng gúp vo vic kin thc chung v vt lý, KHVL ca mt loi vt liu mi y trin vng ng dng cỏc lnh vc cụng ngh cao tng lai V hng phỏt trin tip theo: Cỏc nghiờn cu ca chỳng tụi cho thy phng phỏp d oỏn, thit k cu trỳc s dng lý thuyt DFTB l kh thi thc t nhiu khớa cnh Th nht, nú hiu qu v mt tớnh toỏn, ũi hi thi lng tớnh toỏn ớt hn so vi cỏc phng phỏp d bỏo cu trỳc hon ton ab initio Th hai, nh tớnh tng ng v mt cu trỳc, t nhng a hỡnh ZnO ny chỳng ta cú th liờn tng ỏp dng n nhng vt liu bỏn dn khỏc cựng nhúm bỏn dn nh phõn II-VI, chng hn nh ZnS, CdSe, CdTe l nhng cht m pha a hỡnh tinh th khỏc ca chỳng cú th c tỡm thy v cng cú giỏ tr ng dng cao 125 TI LIU THAM KHO TING VIT [1] Gúc kin thc v bỏn dn - Semiconductor - web-site cụng ty Sao [http:// redstarvietnam.com/goc-kien-thuc.html?page=4] [2] Nguyn Huyn Tng (2008) giỏo trỡnh C hc lng t, NXB Khoa hc K thut [3] V Ngc Tc Thuyt minh T Nafosted 2015-2017 (MS: 103.01-2014-25) TING ANH [4] A A Sokol, M R Farrow, J Buckeridge, A J Logsdail, C R A Catlow, D O Scanlonab and S M Woodley (2014) Double bubbles: a new structural motif for enhanced electronhole separation in solids Phys Chem Chem Phys 16, 21098 [5] A Bakin, A El-Shaer, A.C Mofor, M Al-Suleiman, E Schlenker, E A Waag (2007) MgO-ZnO Quantum Wells Embedded in ZnO Nanopillars: Towards Realisation of Nano-LEDs Phys Stat Sol (C) (1), 158161 [6] A Che Mofor, A El-Shaer, A Bakin, A Waag, H Ahlers, U Siegner, S Sievers, M Albrecht, W Schoch, et al (2005) Magnetic property investigations on Mndoped ZnO Layers on sapphire Appl Phys Lett 87 (6), 062501 [7] A Grbic, G.V Eleftheriades (2004) Overcoming the Diffraction Limit with a Planar Left-handed Transmission-line Lens Phys Rev Lett 92 (11), 117403 [8] A Hernandez Battez, R Gonzalez, J Viesca, J Fernandez, J Diazfernandez, A MacHado, R Chou, J Riba (2008) CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants Wear 265 (3-4), 422-428 [9] A Koodziejczak - Radzimsk , T Jesionowski (2014) Zinc OxideFrom Synthesis to Application Materials (4), 2833-2881 [10] A Martijn Zwijnenburg, F Illas and S T Bromley (2010) Apparent Scarcity of Low-Density Polymorphs of Inorganic Solids Phys Rev Lett 104 (17), 175503 [11] A Togo, F Oba, and I Tanaka (2008) First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures Phys Rev B 78 (13), 134106 [12] Amir Handelman, Peter Beker, Nadav Amdursky and Gil Rosenman (2012) Physics and engineering of peptidesupramolecular nanostructures Phys Chem Chem Phys 14 (18), 6391 126 [13] Bilbao Crystallographic Server [http://www.cryst.ehu.es/] [14] C Dey, T Kundu, BP Biswal, A Mallick, R Banerjee (2013) Crystalline metalorganic frameworks (MOFs): synthesis, structure and function Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 70 (1), 3-10 [15] C F Klingshirn, A Waag, A Hoffmann, J Geurts (2010) Zinc Oxide: From Fundamental Properties Towards Novel Applications Springer [16] C H Bennett (1976) Efficient estimation of free energy differences from Monte Carlo data J Comp Phys 22 (2), 245-268 [17] C Klingshirn (2007) ZnO: Material, Physics and Applications Chem Phys Chem 8(6), 782803 [18] C L Fu and K M Ho (1983) First-principles calculation of the equilibrium ground-state properties of transition metals: Applications to Nb and Mo Phys Rev B 28, 5480 [19] C Lee and X Gonze (1995) Ab initio calculation of the thermodynamic properties and atomic temperature factors of SiO2 -quartz and stishovite Phys Rev B 51, 8610 [20] D Alfe (2009) PHON: A program to calculate phonons using the small displacement method Computer Physics Communications 180 (12), 2622-2633 [21] D M Ceperley, B J Alder (1980) Ground State of the Electron Gas by a Stochastic Method Phys Rev Lett 45(7), 566 [22] D Zagorac, J C Schửn, J Zagorac and M Jansen (2015) Theoretical investigations of novel zinc oxide polytypes and in-depth study of their electronic properties RSC Adv 5, 25929-25935 [23] E Winston Kock (2009) First Demonstration of a Working Invisibility Cloak Office of News & Communications Duke University [24] F D Murnaghan (1944) The Compressibility of Media under Extreme Pressures Proceedings of the National Academy of Sciences of the United States of America, 30 (9), 244-247 [25] F Porter (1991) Zinc Handbook: Properties, Processing, and Use in Design CRC Press [26] Ferrộ Borrull Jossep, Josep Pallarốs, Gerard Macớas and Lluis F Marsal (2014) Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications Materials, (7), 5225-5253 127 [27] Francesco Bonaccorso, Antonio Lombardo, Tawfique Hasan, Zhipei Sun, Luigi Colombo, C Andrea Ferrari (2012) Production and processing of graphene and 2d crystals Materialstoday 15 (12), 564-589 [28] Fred John Harding (2007) Breast Cancer: Cause Prevention Cure Tekline Publishing [29] From Wikipedia, the free encyclopedia - Accessible surface area [https://en wikipedia.org/wiki/Accessible_surface_area] [30] From Wikipedia, the free encyclopedia - Birch - Murnaghan equation of state [https: //en.wikipedia.org/wiki/Birch-Murnaghan_equation_of_state] [31] From Wikipedia, the free encyclopedia - Electronic band structure [https://en wikipedia.org/wiki/Electronic_band_structure] [33] From Wikipedia, the free encyclopedia - Zeolite [https://en.wikipedia.org/wiki /Zeolite] [33] From Wikipedia, the free encyclopedia - Zinc oxide [https://en.wikipedia.org /wiki/Zinc_oxide] [34] G J Ackland (2002) Calculation of free energies from ab initio calculation Journal of Physics: Condensed Matter 14 (11), 2975 [35] G Konstantatos and E H Sargent (2010) Review: Nanostructured materials for photon detection Nature Nanotechnology 5, 391 - 400 [36] G Kresse and J Furthmỹller (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set J Comput Mater Sci (1), 15-50 [37] G Kresse and J Furthmỹller (1996) Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set Phys Rev B 54, 11169 [38] G Kresse (1993) Ab intio molecular dynamic fur flussige metalle (Ph.D.thesis), Tech-nische Universitat Wien [39] G Kresse, J Hafner (1993) Ab initio molecular dynamics for liquid metals Phys Rev B 47, 558 [40] Gary Meek (2008) New Small-scale Generator Produces Alternating Current By Stretching Zinc Oxide Wires Science Daily November 10 [41] Guomin Hua, Ye Zhang, Junxi Zhang, Lide Zhang (2008) Fabrication of ZnO nanowire arrays by cycle growth in surfactantless aqueous solution and their applications on dye-sensitized solar cells Materials Letters 62 (25), 4109-4111 128 [42] H D Tran, M Amsler, S Botti, M A L Marques, and S Goedecker (2014) Firstprinciples predicted low-energy structures of NaSc(BH4)4 J Chem Phys 140, 124708 [43] H Kuhn, H D Fửrsterling, and D H Waldeck (2009) Principles of Physical Chemistry, ed (John Wiley & Sons, Hoboken, NJ, USA) [44] H Sharma, V Sharma, and T D Huan (2015) Evaluation of crystal free energy with lattice dynamics Phys Chem Chem Phys 17, 18146 [45] H T Wang, B S Kang, F Ren, L C Tien, P WSadik, D PNorton, S J Pearton, Lin, Jenshan (2005) Hydrogen-selective sensing at room temperature with ZnO nanorods Appl Phys Lett 86 (24), 243503 [46] Humberto Terrones and Mauricio Terrones (2003) Curved nanostructured materials New Journal of Physics, 5(1), 126 [47] Ilker Demiroglu, Sergio Tosoni, Francesc Illasa and T.Stefan Bromley (2014) Bandgap engineering through nanoporosity Nanoscale, 6(2), 1181-1187 [48] J Bauer, A Schroer, R Schwaiger and O Kraft (2016) Approaching theoretical strength in glassy carbon nanolattices Nature Materials, 15, 438-443 [49] J C.Slater (1930) Atomic Shielding Constants Phys Rev 36, 57 [50] Javier Carrasco, Francesc Illas, and Stefan T Bromley (2007) Ultralow-Density Nanocage-Based Metal-Oxide Polymorphs Phys Rev Lett 99, 235502 [51] Jawaid, Mohammad, Qaiss, Abou el Kacem, Bouhfid, Rachid (2016) Nanoclay Reinforced Polymer Composites - Nanocomposites and Bionanocomposites Springer [52] Jian-Hong Lee, Yi-Wen Chung, Min-Hsiung Hon, Ing-Chi Leu (2009) Densitycontrolled growth and field emission property of aligned ZnO nanorod arrays Appl Phys A, 97(2), 403408 [53] J H Lee, J P Singer, and E L Thomas (2012) Micro/Nanostructured Mechanical Metamaterials Adv Mater 24(36), 4782-4810 [54] J Heyd, G E Scuseria, and M M Ernzerhof (2006) Hybrid functionals based on a screened Coulomb potential J Chem Phys 124(21), 219906 [55] J L G.Fierro (2006) Metal Oxides: Chemistry & Applications CRC Press [56] J M Soler, E Artacho, J D Gale, A Garcớa, J Junquera, P Ordejún, and D SỏnchezPortal (2002) The SIESTA method for ab initio order-N materials simulation J Phys Condens Matter 14, 2745-2779 129 [57] J P Perdew, A Zunger (1981) Self-interaction correction to densityfunctional approximations for many-electron systems Phys Rev B 23, 5048- 5079 [58] J P Perdew, K Burke, and M Ernzerhof (1996) Generalized Gradient Approximation Made Simple Phys Rev Lett 77, 3865 [59] J Paier, M Marsman, K Hummer, G Kress (2006) Screened hybrid density functionals applied to solids J Chem Phys 124 (15), 154709 [60] J R Nelson, R J Needs, and C J Pickard (2015) Calcium peroxide from ambient to high pressures Phys Chem Chem Phys 17(10), 6889-6895 [61] Jens Bauer, Stefan Hengsbach, Iwiza Tesari, Ruth Schwaiger, v Oliver Kraft (2014) High-strength cellular ceramic composites with3D microarchitecture PNAS 111 (7), 2453-2458 [62] John P Perdew, Adrienn Ruzsinszky, Gỏbor I Csonka, Oleg A Vydrov, Gustavo E Scuseria, Lucian A Constantin, Xiaolan Zhou, and Kieron Burke (2008) Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces Phys Rev Lett 100, 136406 [63] K Elen, et al (2009) Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter Nanotechnology, 20 (5), 055608 [64] K Jimura and S Hayashi (2012) Reorientational Motion of BH4 Ions in Alkali Borohydrides MBH4 (M = Li, Na, K) as Studied by Solid-State NMR J Phys Chem C, 116 (7), 48834891 [65] K Parlinski, Z Q Li and Y Kawazoe (1997) First-Principles Determination of the Soft Mode in Cubic ZrO2 Phys Rev Lett 78 (21), 4063 [66] K S Novoselov v A K Geim (2004) Electric field effect in atomically thin carbon films Science 306, 666 [69] K S Novoselov, V I Falko, L Colombo, P R Gellert, M G Schwab & K Kim (2004) A roadmap for graphenne Nature 490, 192200 [68] KIT On-line press release 014/2014 [http://www.kit.edu/kit/english/pi_2014 _14594.php] [69] Keim Brandon (2008) Piezoelectric Nanowires Turn Fabric Into Power Source Wired News [70] L C.Tien, P W Sadik, D P Norton, L F Voss, S J Pearton, et al (2005) Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods Appl Phys Lett 87 (22), 222106 130 [71] Linked in slide share hosting service for lecture's notes, presentation - Mesoporous materials [https://www.slideshare.net/VijayMarakatti/mesoporous-materials] [72] Lukas Schmidt - Mende, L Judith MacManus - Driscoll (2007) ZnOnanostructures, defects, and devices Materials Today 10 (5), 4048 [73] L E Greene, M Law, D H Tan, M Montano, J Goldberger, G Somorjai, P Yang (2005) General Route to Vertical ZnO Nanowire Arrays Using Textured ZnO Seeds Nano Letters (7), 12311236 [74] L Sponza, J Goniakowski, and C Noguera (2015) Structural, electronic, and spectral properties of six ZnO bulk polymorphs Phys Rev B 91(7), 075126 [75] Lin Wang, Bingbing Liu, Hui Li, Wenge Yang, Yang Ding (2012) Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks Science 337(6096), 825-828 [76] Lorenzo Mino, Giovanni Agostini, Elisa Borfecchia, Diego Gianolio, Andrea Piovano, Erik Gallo, and Carlo Lamberti (2013) Low dimensional systems investigated by X-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases J Phys D Appl Phys 46(42), 423001 [77] Magnus Willander (2014) Zinc Oxide Nanostructures Advance and Applications Pan Stanford Publisher [78] Marius Millot, Ramon Tena-Zaera, Vicente Munoz-Sanjose, Jean-Marc Broto and Jesus Gonzalez (2010) Anharmonic effects in ZnO optical phonons probed by Raman spectroscopy Applied Physics Letters 96(15), 152103 [79] M A Zwijnenburg and S T Bromley (2011) Structure direction in zinc oxide and related materials bycation substitution: an analogy with zeolites J Mater Chem 21(39), 15255-15261 [80] M Born and K Huang (1954) Dynamical Theory of Crystal Lattices 1st ed Oxford University Press, Oxford, UK [81] M Born, R Oppenheimer (1927) Zur Quantentheorie der Molekeln Annalen der physick 389(20), 457-484 [82] M Elstner, D Porezag, G Jungnickel, J Elsner, M Haugk, Th Frauenheim, S Suha, G Seifert (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties Phys Rev B 58(11), 7260 [83] M.G Kanatzidis (2007) Beyond Silica: Nonoxidic Mesostructured Advanced Materials 19 (9), 1165-1181 131 Materials [84] M Law, J Goldberger, P Yang (2004) Semiconductor Nanowires and Nanotubes Annual Review of Material Research 34, 83122 [85] M Lorenz, M S Ramachandra Rao, T Venkatesan, E Fortunato, P Barquinha, R Branquinho, D Salgueiro, R Martins, E Carlos, A Liu, F K Shan, M Grundmann, H Boschker, J Mukherjee, M Priyadarshini (2016) Topical Review: The 2016 oxide electronic materials and oxide interfaces roadmap J Phys D: Appl Phys 49, 433001 [86] M L Curri, R Comparelli, M Striccolia and A Agostiano (2010) Emerging methods for fabricating functional structures by patterning and assembling engineered nanocrystals Phys Chem Chem Phys 12(37), 1119711207 [87] N H Moreira, G Dolgonos, B Aradi, A L da Rosa, and Th Frauenheim (2009) Toward an Accurate Density-Functional Tight-Binding Description of ZincContaining Compounds J Chem Theory Comput 5(3), 605-614 [88] N.W Ashcroft, N.D Mermin (1976) Solid State Physics Publishing by Holt, Rinehart and Winston [89] Oficial web-site of the Density Functional based Tight Binding (DFTB) community [https://www.dftb.org] [90] Oficial web-site of the Vienna Ab initio Simulation Package (VASP) community [https://www.vasp.at/] [91] Oh Byeong-Yun, Jeong Min-Chang, Moon Tae-Hyoung, Seo Dae-Shik (2006) Transparent conductive Al-doped ZnO films for liquid crystal displays J Appl Phys 99 (12), 124505 [92] P Giannozzi, S Baroni, N Bonini, M Calandra, R Car, C Cavazzoni, D Ceresoli, G L Chiarotti, M Cococcioni, I Dabo, A D Corso, S d Gironcoli, S Fabris, G Fratesi, R Gebauer, U Gerstmann, C Gougoussis, A Kokalj, M Lazzeri, L Martin-Samos, N Marzari, F Mauri, R Mazzarello, S Paolini, A Pasquarello, L Paulatto, C Sbraccia, S Scandolo, G Sclauzero, A P Seitsonen, A Smogunov, P Umari, and R M Wentzcovitch (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials J Phys.: Condens Matter 21, 395502 [93] P Hohenber, W.Kohn (1964) Inhomogeneous Electron Gas Phys Rev 136, B864 132 [94] P T Ford and R E Richards (1995) Proton magnetic resonance spectra of crystalline borohydrides of sodium, potassium and rubidium Discuss Faraday Soc.19, 230-238 [95] P Wagner, R.Helbig (1974) Hall effect and anisotropy of the mobility of the electrons in ZnO Journal of Physics and Chemistry of Solids 35(3), 327335 [96] Peng Guo, Jiho Shin, A G Greenaway, J G Min, J Su, H J Choi, L Liu, P A Cox,S B Hong, P A Wright & X Zou (2015) A Zeolite Family with Expanding Structural Complexity and Embedded Isoreticular Structures Nature 524(7563), 74-78 [97] R G Parr, W Yang (1989) Density Functional Theory of Atoms and Molecules Oxford University Press, New York [98] R K Pathria and P D Beale (2011) Statistical Mechanics (3rd Edition) Academic Press, MA, USA [99] R L Cowan (2001) BWR water chemistry delicate balance Nuclear Energy 40(4), 245-252 [100] R M Martin (2004) Electronic Structure: Basic Theory and Practical Method Cambridge University Press [101] R Maria Lukatskaya, Bruce Dunn & Yury Gogotsi (2016) Multidimensional materials and device architectures for future hybrid energy storage Nature Communications 7, 12647 [102] R P Feynman (1939) Forces in Molecules Phys Rev 56(4), 340 [103] R Sanchez-Pescador, JT Brown, M Roberts, MS.Urdea (1988) The nucleotide sequence of the tetracycline resistance determinant tetM from Ureaplasma urealyticum Nucleic Acids Research 16 (3), 1216-1217 [104] R V Lapshin (2016) STM observation of a box-shaped graphene nanostructure appeared after mechanical cleavage of pyrolytic graphite Appl Surf Sci 360 B, 451-460 [105] Revolvy knowledge database - Zinc oxide [https://www.revolvy.com/main/index php?s=Zinc%20oxide&item_type=topic] [106] Roadmap at 2015 on Nanotechnology application in the sectors of: Materiasl, Health & medical, energy [http://ec.europa.eu/research/industrial_technologie/ pdf/ec] [107] Robert Rỹger, Erik van Lenthe, Thomas Heine, and Lucas Visscher (2016) Tight-binding approximations to time-dependent density functional theory - A fast 133 approach for the calculation of electronically excited states J Chem Phys 144, 184103 [108] Ruren Xu, Wenqin Pang, Jihong Yu, Qisheng Huo, Jiesheng Chen (2007) Chemistry of Zeolites and Related PorousMaterials: Synthesis and Structure John Wiley & Sons (Asia), Singapore [109] Scott M Woodley and Richard Catlow (2008) Crystal structure prediction from first principles Nature Materials 7, 937 946 [110] Stefano Baroni, Stefano de Gironcoli, Andrea Dal Corso and Paolo Giannozzi (2001) Phonons and related crystal properties from density-functional perturbation theory Rev Mod Phys 73(2), 515 [111] Sunandan Baruah and Joydeep Dutta (2009) Hydrothermal growth of ZnO nanostructures Sci Technol Adv Mater 10(1), 013001 [112] S M Woodley and R Catlow (2008) Crystal structure prediction from first principles Nature Materials 7, 937-946 [113] Sagadevan Suresh (2013) Semiconductor Nanomaterials, Methods and Applications A Review Nanoscience and Nanotechnology 3(3), 62-74 [114] S Singh, P Thiyagarajan, K M Kant, D Anita, S Thirupathiah, N Rama, B Tiwari, M Kottaisamy, M S R Rao (2007) Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano J Phys D: Appl Phys 40, 63126327 [115] Takeshi Ohgaki, Naoki Ohashi, Shigeaki Sugimura, Haruki Ryoken, Isao Sakaguchi, Yutaka Adachi, Hajime Haneda (2008) Positive Hall coefficients obtained from contact misplacement on evident n-type ZnO films and crystals Journal of Materials Research 23(9), 22932295 [116] Tanja van Mourik, Michael Bỹhl and Marie-Pierre Gaigeot (2014) Density functional tight binding Phil Trans R Soc A 372, 20120483 [117] The Semiconductor-information web-site [http://www.semiconductors.co.uk/propiivi5410.htm] [118] Tran Doan Huan, Vinit Sharma, George A Rossetti, Rampi Ramprasad (2014) Pathways towards ferroelectricity in hafnia Phys Rev B 90(6), 064111 [119] Tran Doan Huan, Vu Ngoc Tuoc, Nam Ba Le, Nguyen Viet Minh and Lilia M Woods (2016) High-pressure phases of Mg2Si from first principles Phys Rev B93(9), 094109 134 [120] Tran Doan Huan, Vu Ngoc Tuoc, Nguyen Viet Minh (2016) Layered structures of organic/inorganic hybrid halide perovskites Phys Rev B 93(9), 094105 [121] Tran Doan Huan (2015) Evaluation of crystal free energy with lattice dynamics arXiv: 1506.09189 [cond-mat.mtrl-sci] [122] T Koschny, M Kafesaki, E N Economou, and C M Soukoulis (2004) Effective Medium Theory of Left-Handed Materials Phys Rev Lett 93(10), 107402 [123] T S Gates, G M Odegard, S J V Frankland, T C Clancy (2005) Computational materials: Multi-scale modeling and simulation of nanostructured materials Composites Science and Technology 65(15-16), 2416-2434 [124] Thomas Frauenheim, Gotthard Seifert, Marcus Elstner, Thomas Niehaus, Christof Kửhler, Marc Amkreutz, Michael Carlo and Sỏndor Suhai (2002) Sternberg, Zoltỏn Hajnal, Aldo Di Atomistic simulations of complex materials: ground-state and excited-state properties J Phys Cond Matt 14(11), 3015-3047 [125] ĩ ệzgỹr, I Ya Alivov, C Liu, A Teke, M A Reshchikov, S Doan, V Avrutin, S-J Cho, H Morkoỗ (2005) A comprehensive review of ZnO materials and devices J Appl Phys 98(4), 041301 [126] U Rửssler (ed) (1999) Landolt-Bửrnstein, New Series, Group III Vol 17B, 22, 41B Springer, Heidelberg [127] V.N.Tuoc, T.D.Huan and L.T.H.Lien (2014) Impact of Surface on the d0 Ferromagnetism of Lithium-Doped Zinc Oxide Nanowires IEEE Transactions on Magnetics 50(6), 317-326 [128] VESTA is a 3D visualization program for structural models, volumetric data such as electron/nuclear densities, and crystal morphologies [http://jp- minerals.org/vesta/en/] [129] Vijaykumar Marakatti (2013) Mesoporous materials PPISR, Bangalore [130] Vikrant Thakur, Dhruva Chaudhary (2014) Metamaterials: A Leading Edge of Science and Technology International Journal of Computer Applications 98(9) [131] W Martienssen (ed.) and U Rửssler (2011) Landolt-Bửrnstein, Numerical Data and Functional Relationships in Science and Technology New Series Group III, Vol 44, Semiconductors, Subvolume D, New Data and Updates for IV-IV, III-V, IIVI, I-VII Compounds, their Mixed Crystals and Diluted Magnetic Semiconductors Zinc oxide (ZnO) elastic moduli and compliances, bulk modulus, compressibility and related parameters Springer Heidelberg 135 [132] W J Roth, P Nachtigall, R E Morris, P S Wheatley, V R Seymour, S E Ashbrook, P.Chlubnỏ, L Grajciar, M Polozij, A Zukal, O, Shvets & J Cejka (2013) A family of zeolites with controlled pore size prepared using a top-down method Nature Chemistry 5(7), 628-633 [133] W Koch, M.C Holthausen (2001) A Chemists Guide to Density Functional Theory 2nd Ed, Willey-VCH, Weinheim, [134] W Kohn and L J Sham (1965) Self-consistent equations including exchange and correlation effects Phys Rev 140(4A), A1133-A1138 [135] Wan-Yu Wu, Chun-Ching Yeh, Jyh-Ming Ting (2009) Effects of Seed Layer Characteristics on the Synthesis of ZnO Nanowires Journal of the American Ceramic Society 92 (11), 2718-2723 [136] Wei Lu, Charles M Lieber (2006) Semiconductor nanowires J Phys D: Appl Phys 39 [137] X Gonze, B Amadon, P.M Anglade, J.M Beuken, F Bottin, P Boulanger, F Bruneval, D Caliste, R Caracas, M Cụtộ, T Deutsch, L Genovese, Ph Ghosez, M Giantomassi, S Goedecker, D.R Hamann, P Hermet, F Jollet, G Jomard, S Leroux, M Mancini, et al (2009) ABINIT: First-principles approach to material and nanosystem properties Computer Physics Communications 180(12), 25822615 [138] X Wang, J Song and Z L Wang (2007) Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices J Mater Chem 17, 711 720 [139] X Zhao, M C Nguyen, C.Z Wang, and K.M Ho (2014) Exploring the Structural Complexity of Intermetallic Compounds by an Adaptive Genetic Algorithm Phys Rev Lett 112(4), 045502 [140] Y Alexey Ganin, Yasuhiro Takabayashi, Z Yaroslav Khimyak, Serena Margadonna, Anna Tamai, J Matthew Rosseinsky & Kosmas Prassides (2008) Bulk superconductivity at 38K in a molecular system Nature Materials 7, 367-371 [141] Y B Li, Y Bando, D Golberg (2004) ZnO nanoneedles with tip surface perturbations: Excellent field emitters Appl Phys Lett 84(18), 3603 [142] Y Qin, X Wang, Z L.Wang (2008) Microfibre-nanowire hybrid structure for energy scavenging Nature 451 (7180), 809813 [143] Y R Ryu, T S Lee, H W White (2003) Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition Appl Phys Lett 83(1), 87 136 [144] Yongliang Yong, Bin Song and Pimo He (2011) Growth Pattern and Electronic Properties of Cluster-Assembled Material Based on Zn12O12: A Density-Functional Study J Phys Chem C, 115(14), 64556461 [145] Y.W Heo, L C Tien, Y Kwon, D P Norton, S J Pearton, B S Kang, F Ren (2004) Depletion-mode ZnO nanowire field-effect transistor Appl Phys Lett 85(12), 2274 [146] Ye Tian, Yugang Zhang, Tong Wang, Huolin L Xin, Huilin Li and Oleg Gang (2016) Lattice engineering through nanoparticle - DNA frameworks Nature Materials 15, 654661 [147] Yongliang Yong, Xiaohong Li, Xiping Hao, Jingxiao Cao and Tongwei Li (2014) Theoretical prediction of low-density nanoporous frameworks of zinc sulfide based on ZnnSn (n = 12, 16) nanocaged clusters RSC Adv., 2014, 4, 37333-37341 [148] Zhifeng Liu, Xinqiang Wang, Jiangtao Cai, Gaobin Liu, Ping Zhou, Kan Wang, and Hengjiang Zhu (2013) From the ZnO Hollow Cage Clusters to ZnO Nanoporous Phases: A First-Principles Bottom-Up Prediction J Phys Chem C, 117(34), 17633-17643 [149] Z Q Zheng, J D Yao, B Wang, G WYang (2015) Light-controlling, flexible and transparent ethanol gas sensor based on ZnO nanoparticles for wearable devices Scientific Reports 5, 11070 [150] Zhen Xu, Min Yin, Jing Sun, Guqiao Ding, Linfeng Lu, Paichun Chang, Xiaoyuan Chen and Dongdong Li (2016) 3D periodic multiscale TiO2 architecture: a platform decorated with graphene quantum dots for enhanced photoelectrochemical water splitting Nanotechnology 27(11), 115401 [151] Zhi Li, Rong Yu, Jinglu Huang, Yusheng Shi, Diyang Zhang, Xiaoyan Zhong, Dingsheng Wang, Yuen Wu & Yadong Li (2015) Platinumnickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving Nature Communications 6, 8248 [152] Zhong Lin Wang (2004) Features: Nanostructures of zinc oxide Materials Today 7(6), 2633 137 DANH MC CC CễNG TRèNH CễNG B CA LUN N Vu Ngoc Tuoc, Tran Doan Huan, Nguyen Viet Minh, Nguyen Thi Thao (2016) Density functional theory based tight binding study on theoretical prediction of low-density nanoporous phases ZnO semiconductor materials Journal of Physics: Conference Series 726 012022, doi:10.1088/17426596/726/1/012022 Vu Ngoc Tuoc, Tran Doan Huan, Nguyen Thi Thao, and Le Manh Tuan (2016) Theoretical prediction of low-density hexagonal ZnO hollow structures Journal of Applied Physics 120, 142105; doi: 10.1063/1.4961716 Nguyen Thi Thao and Vu Ngoc Tuoc (2016) Theoretical Prediction of ZnO Nanoporous Allotropes with Triangular Hollow VNU Journal of Science: Mathematics Physics, Vol 32, No (2016) 1-10 Vu Ngoc Tuoc, Tran Doan Huan, Nguyen Thi Thao (2017) Computational predictions of zinc oxide hollow structures Physica B: Physics of Condensed Matter xxx (2017) xxx-xxx Received 15 December 2016; Received in revised form 23 December 2016; Accepted March 2017, View online March 2017: http://dx.doi.org/10.1016/j.physb.2017.03.003 138 ... tài nghiên cứu luận án chỗ: luận án nghiên cứu thiết kế, dự đoán cấu trúc nano xốp từ vật liệu bán dẫn II-VI chủ yếu ZnO phương pháp mô hình hóa mô máy tính Về thực chất “thí nghiệm ảo” tiến. .. DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THỊ THẢO NGHIÊN CỨU MÔ HÌNH HÓA VÀ MÔ PHỎNG CẤU TRÚC NANO XỐP ZnO Chuyên ngành: Vật lý lý thuyết vật lý toán Mã số: 62440103 LUẬN ÁN TIẾN SĨ... hướng nghiên cứu mới, với điều kiện tiếp cận triển khai Việt nam mà không đòi hỏi sở vật chất tốn trình bày mà chọn đề tài luận án là: “NGHIÊN CỨU MÔ HÌNH HÓA VÀ MÔ PHỎNG CẤU TRÚC NANO XỐP ZnO

Ngày đăng: 17/08/2017, 15:54

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan