macromolecular self assembly

275 340 0
 macromolecular self assembly

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

MACROMOLECULAR SELF-ASSEMBLY Edited by LAURENT BILLON OLEG BORISOV Copyright © 2016 by John Wiley & Sons, Inc All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com Library of Congress Cataloging-in-Publication Data: Names: Billon, Laurent, 1968- editor | Borisov, Oleg, editor Title: Macromolecular self-assembly / edited by Laurent Billon, Oleg Borisov Description: Hoboken, New Jersey : John Wiley & Sons, Inc., [2016] | Includes bibliographical references and index Identifiers: LCCN 2016015704 (print) | LCCN 2016021455 (ebook) | ISBN 9781118887127 (cloth) | ISBN 9781118887844 (pdf) | ISBN 9781118887974 (epub) Subjects: LCSH: Biopolymers | Macromolecules | Self-assembly (Chemistry) Classification: LCC TP248.65.P62 M325 2016 (print) | LCC TP248.65.P62 (ebook) | DDC 572–dc23 LC record available at https://lccn.loc.gov/2016015704 Set in 10/12pt, TimesLTStd by SPi Global, Chennai, India Printed in the United States of America 10 CONTENTS List of Contributors vii Preface xi A Supramolecular Approach to Macromolecular Self-Assembly: Cyclodextrin Host/Guest Complexes Bernhard V K J Schmidt and Christopher Barner-Kowollik 1.1 Introduction, 1.2 Synthetic Approaches to Host/Guest Functionalized Building Blocks, 1.2.1 CD Functionalization, 1.2.2 Suitable Guest Groups, 1.3 Supramolecular CD Self-Assemblies, 1.3.1 Linear Polymers, 1.3.2 Branched Polymers, 12 1.3.3 Cyclic Polymer Architectures, 17 1.4 Higher Order Assemblies of CD-Based Polymer Architectures Toward Nanostructures, 17 1.4.1 Micelles/Core-Shell Particles, 17 1.4.2 Vesicles, 19 1.4.3 Nanotubes and Fibers, 20 1.4.4 Nanoparticles and Hybrid Materials, 21 1.4.5 Planar Surface Modification, 22 1.5 Applications, 23 1.6 Conclusion and Outlook, 26 References, 26 iii iv CONTENTS Polymerization-Induced Self-Assembly: The Contribution of Controlled Radical Polymerization to The Formation of Self-Stabilized Polymer Particles of Various Morphologies 33 Muriel Lansalot, Jutta Rieger, and Franck D’Agosto 2.1 Introduction, 33 2.2 Preliminary Comments Underlying Controlled Radical Polymerization, 36 2.2.1 Introduction, 36 2.2.2 Major Methods Based on a Reversible Termination Mechanism, 37 2.2.3 Major Methods Based on a Reversible Transfer Mechanism, 39 2.3 Pisa Via CRP Based on Reversible Termination, 40 2.3.1 PISA Using NMP, 40 2.3.2 Using ATRP, 46 2.4 Pisa Via CRP Based on Reversible Transfer, 48 2.4.1 Using RAFT in Emulsion Polymerization, 48 2.4.2 Using RAFT in Dispersion Polymerization, 61 2.4.3 Using TERP, 70 2.5 Concluding Remarks, 71 Acknowledgments, 73 Abbreviations, 73 References, 75 Amphiphilic Gradient Copolymers: Synthesis and Self-Assembly in Aqueous Solution 83 Elise Deniau-Lejeune, Olga Borisova, Petr Štˇepánek, Laurent Billon, and Oleg Borisov 3.1 Introduction, 83 3.2 Synthetic Strategies for The Preparation of Gradient Copolymers, 86 3.2.1 Preparation of Gradient Copolymers by Controlled Radical Copolymerization, 87 3.2.2 Preparation of Block-Gradient Copolymers Using Controlled Radical Polymerization, 106 3.3 Self-Assembly, 110 3.3.1 Gradient Copolymers, 110 3.3.2 Diblock-Gradient Copolymers, 111 3.3.3 Triblock-Gradient Copolymers, 113 3.4 Conclusion and Outlook, 114 Abbreviations, 115 References, 117 Electrostatically Assembled Complex Macromolecular Architectures Based on Star-Like Polyionic Species 125 Dmitry V Pergushov and Felix A Plamper 4.1 Introduction, 125 v CONTENTS 4.2 Core-Corona Co-Assemblies of Homopolyelectrolyte Stars Complexed with Linear Polyions, 127 4.3 Core-Shell-Corona Co-Assemblies of Star-Like Micelles of Ionic Amphiphilic Diblock Copolymers Complexed with Linear Polyions, 130 4.4 Vesicular Co-Assemblies of Bis-Hydrophilic Miktoarm Stars Complexed with Linear Polyions, 133 4.5 Conclusions, 137 Acknowledgment, 137 References, 137 Solution Properties of Associating Polymers 141 Olga Philippova 5.1 Introduction, 141 5.2 Structures of Associating Polyelectrolytes, 142 5.3 Associating Polyelectrolytes in Dilute Solutions, 142 5.3.1 Intramolecular Association, 145 5.3.2 Intermolecular Association, 147 5.4 Associating Polyelectrolytes in Semidilute Solutions, 151 5.5 Conclusions, 155 References, 155 Macromolecular Decoration of Nanoparticles for Guiding Self-Assembly in 2D and 3D 159 Christian Kuttner, Munish Chanana, Matthias Karg, and Andreas Fery 6.1 Introduction, 159 6.2 Guiding Assembly by Decoration with Artificial Macromolecules, 160 6.2.1 Decoration of Nanoparticles, 161 6.2.2 Distance Control in 2D and 3D, 166 6.2.3 Breaking the Symmetry, 171 6.3 Guiding Assembly by Decoration with Biomacromolecules, 173 6.3.1 DNA-Assisted Assembly, 173 6.3.2 Protein-Assisted Assembly, 177 6.4 Application of Assemblies, 181 6.5 Conclusions and Outlook, 183 References, 184 Self-Assembly of Biohybrid Polymers Dawid Kedracki, Jancy Nixon Abraham, Enora Prado, and Corinne Nardin 7.1 Introduction, 193 7.1.1 Amphiphiles, 194 7.1.2 Packing Parameter and Interfacial Tension, 195 7.1.3 Interaction Forces in Self-Assembly, 196 193 vi CONTENTS 7.2 Self-Assembly of Biohybrid Polymers, 198 7.2.1 Polymer-DNA Hybrids, 198 7.2.2 Polypeptide Block Copolymers, 204 7.2.3 Block Copolypeptides, 205 7.3 Self-Assembly Driven Nucleation Polymerization, 207 7.3.1 Polymer-DNA Hybrids, 209 7.3.2 Polymer-Peptide Hybrids, 209 7.3.3 DNA-Peptide Hybrids, 212 7.4 Self-Assembly Driven by Electrostatic Interactions, 213 7.4.1 DNA/Polymer Bio-IPECs, 216 7.4.2 DNA/Copolymer Bio-IPECs, 216 7.5 Conclusion, 218 References, 219 Biomedical Application of Block Copolymers 231 Martin Hrubý, Sergey K Filippov, and Petr Štˇepánek 8.1 8.2 8.3 8.4 Index Introduction, 231 Diblock and Triblock Copolymers, 234 Graft and Statistical Copolymers, 240 Concluding Remarks, 245 Acknowledgment, 245 References, 245 251 LIST OF CONTRIBUTORS Jancy Nixon Abraham, University of Geneva, Sciences II, Department of inorganic and analytical chemistry, quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland Christopher Barner-Kowollik, Preparative Macromolecular Chemistry, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr 18, 76128 Karlsruhe, Germany and Institut für Biologische Grenzflächen, Karlsruhe Institut of Technology (KIT), Hermann-von-HelmholtzPlatz 1, 76344 Eggenstein-Leopoldshafen, Germany Laurent Billon, Institut des Sciences Analytiqueset de Physico-Chimie pour l’Environnement et les MatériauxIPREM, CNRS - UMR 5254, Université de Pau & Pays de l’Adour, 64053 Pau, France Olga Borisova, Department of Polymer Science, Moscow State University, Leninskie Gory, Moscow 119191, Russia Oleg Borisov, Institut des Sciences Analytiqueset de Physico-Chimie pour l’Environnement et les MatériauxIPREM, CNRS - UMR 5254, Université de Pau & Pays de l’Adour, 64053 Pau, France Munish Chanana, ETH Zürich, Institute of Building Materials, Stefano-FransciniPlatz 3, 8093 Zürich, Switzerland, University of Bayreuth, Physical Chemistry II, Universitätsstrasse 30, 95440 Bayreuth, Germany Franck D’Agosto, Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 69616 Villeurbanne, France vii viii LIST OF CONTRIBUTORS Elise Deniau-Lejeune, Institut des Sciences Analytiqueset de Physico-Chimie pour l’Environnement et les MatériauxIPREM, CNRS - UMR 5254, Université de Pau & Pays de l’Adour, 64053 Pau, France Andreas Fery, Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, Physical Chemistry of Polymeric Materials and Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Hohe Strasse 6, 01069 Dresden, Germany, University of Bayreuth, Physical Chemistry II, Universitätsstrasse 30, 95440 Bayreuth, Germany Sergey K Filippov, Institute of Macromolecular Chemistry AS CR, Prague, Czech Republic Martin Hrubý, Institute of Macromolecular Chemistry AS CR, Prague, Czech Republic Matthias Karg, Heinrich Heine University Düsseldorf, Physical Chemistry I, Universitätsstrasse 1, 40225 Düsseldorf, Germany, University of Bayreuth, Physical Chemistry I, Universitätsstrasse 30, 95440 Bayreuth, Germany Dawid Kedracki, University of Geneva, Sciences II, Department of inorganic and analytical chemistry, quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland Christian Kuttner, Leibniz-Institut für Polymerforschung Dresden e.V., Institute of Physical Chemistry and Polymer Physics, Technische Universität Dresden, Cluster of Excellence Centre for Advancing Electronics Dresden (cfaed), Hohe Strasse 6, 01069 Dresden, Germany, University of Bayreuth, Physical Chemistry II, Universitätsstrasse 30, 95440 Bayreuth, Germany Muriel Lansalot, Université de Lyon, Univ Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), LCPP group, 69616 Villeurbanne, France Corinne Nardin, University of Geneva, Sciences II, Department of inorganic and analytical chemistry, quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland Dmitry V Pergushov, Department of Chemistry, M.V Lomonosov Moscow State University Leninskie Gory 1/3, 119991 Moscow, Russia Olga Philippova, Physics Department, Moscow State University, 119991 Moscow, Russia Felix A Plamper, Institute of Physical Chemistry II, RWTH Aachen University Landoltweg 2, 52056 Aachen, Germany Enora Prado, University of Geneva, Sciences II, Department of inorganic and analytical chemistry, quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland Jutta Rieger, UPMC Univ Paris 6, Sorbonne Universités and CNRS, Laboratoire de Chimie des Polymères, UMR 7610, rue Galilée, 94200 Ivry, France REFERENCES 245 have demonstrated that the nanoparticles are fully biocompatible and nontoxic, making them useful for biomedical applications Their porosity enables water to be entrapped, which is responsible for their pronounced stability and relatively fast degradation as followed by size exclusion chromatography (SEC) The polymeric nanoparticles could be loaded with the hydrophobic model drug paclitaxel (PTX) with an encapsulation efficiency of ∼95% and drug loading content of 6–7% The drug encapsulation and release modifies the inner structure of the nanoparticles, which holds a large amount of entrapped water in the drug-free condition PTX encapsulation leads to replacement of the entrapped water by the hydrophobic model drug and to shrinking of the nanoparticles, due to favorable drug–polymer hydrophobic interactions Cell viability experiments demonstrated that the nanoparticles are biocompatible and nontoxic, making them potentially useful for applications in nanomedicine 8.4 CONCLUDING REMARKS Block copolymers forming supramolecular assemblies of the micellar or polymerosomal type in aqueous media represent materials that are extremely useful for the construction of drug delivery systems especially for cancer applications The micellar and polymerosomal formulations suppress unwanted physicochemical properties of the encapsulated drugs, modify biodistribution of the drugs toward targeted delivery into tissues of interest, and allow triggered release of the active cargo ACKNOWLEDGMENT The work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Project POLYMAT LO1507 REFERENCES Lazzari, M.; Lin, G.; Lecommandoux, S Block Copolymers in Nanoscience 2006, Wiley-VCH, Weinheim Hamley, I W Block Copolymers in Solution: Fundamentals and Applications 2005, Wiley, Chichester Aseyev, V.; Tenhu, H.; Winnik, F M Non-ionic Thermoresponsive Polymers in Water Adv Polym Sci 2011, 242, 29–89 Li, G H.; Yang, P P.; Gao, Z S.; Zku, Y Q Synthesis and Micellar Behavior of Poly(acrylic acid-b-styrene) Block Copolymers Colloid Polym Sci 2012, 290, 1825–1831 Bhattacharjee, S.; Ershov, D.; Fytianos, K.; van der Gucht, J.;Alink, G M.; Rietjens, I M C M.; Marcelis, A T M.; Zuilhof, H Cytotoxicity and Cellular Uptake of Tri-block Copolymer Nanoparticles with Different Size and Surface Characteristics Part Fibre Toxicol 2012, 9, Article Number 11 246 BIOMEDICAL APPLICATION OF BLOCK COPOLYMERS http://en.wikipedia.org/wiki/Poloxamer_407 Flory, P J Principles of Polymer Chemistry, Cornell University Press,1953 Tuzar, Z.; Kratochvil, P Micelles of Block and Graft Copolymers in Solutions Surf Colloid Sci 1993, 15, 1–83 Cammas-Marion, S.; Okano, T.; Kataoka, K Functional and Site-Specific Macromolecular Micelles as High Potential Drug Carriers Colloids Surf B-Biointerfaces 1999, 16, 207–215 10 Vladkova, T.; Krasteva, N.; Kostadinova, A.; Altankov, G Preparation of PEG-coated Surfaces and a Study for Their Interaction with Living Cells J Biomater Sci-Polym Ed 1999, 10, 609–620 11 Kramarenko, E.; Yu.; Potemkin, I I.; Khokhlov, A R.; Winkler, R G.; Reineker, P Surface Micellar Nanopattern Formation of Adsorbed Diblock Copolymer System Macromolecules 1999, 32, 3495–3501 12 Maeda, H.; Wu, J.;Sawa, T.; Matsumura, Y.; Hori, K Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review J Control Release 2000, 1–2, 271–284 13 Stockhofe, K.; Postema, J M.; Schieferstein, H.; Ross, T L Radiolabeling of Nanoparticles and Polymers for PET Imaging Pharmaceuticals 2014, 7, 392-418 14 Greish, K Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting Methods Mol Biol 2010, 624, 25–37 doi: 10.1007/978-1-60761-609-2_3 15 Sushant, S Kulthe; Yogesh M Choudhari; Nazma N Inamdar; Vishnukant Mourya Polymeric Micelles: Authoritative Aspects for Drug Delivery Des Monomers Polym 2012, 15, 465–521 16 Lund, R.; Willner, L.; Richter, D Kinetics of Block Copolymer Micelles Studied by Small-Angle Scattering Methods Adv Polym Sci 2013,259, 51–158 17 Patist, A.; Kanicky, J R.; Shukla, P K.; Shah, D O Importance of Micellar Kinetics in Relation to Technological Processes J Colloid Interface Sci 2002, 245, 1–15 18 Chen, B.; Jerger, K.; Frechet, J M J.; Szoka, F C The Influence of Polymer Topology on Pharmacokinetics: Differences between Cyclic and Linear PEGylatedPoly(acrylic acid) Comb Polymers J Control Release 2009,140, 203–209 19 Wang, Y L.; Ye, F R.; Jeong, E K.; Sun, Y.; Parker, D L.; Lu, Z R Noninvasive Visualization of Pharmacokinetics, Biodistribution and Tumor Targeting of Poly N-(2-hydroxypropyl)methacrylamide in Mice Using Contrast Enhanced MRI Pharm Res 2007, 24, 1208–1216 20 Yang, Y.; Pan, D Y.; Luo, K.; Li, L.; Gu, Z W Biodegradable and Amphiphilic Block Copolymer–Doxorubicin Conjugate as Polymeric Nanoscale Drug Delivery Vehicle for Breast Cancer Therapy Biomaterials 2013, 34, 8430–8443 21 Desando, M A.; Reeves, L W The Demicellization Temperature of Potassium Normal-Octanoate in Deuterium-Oxide as Estimated from H-1 and C-13 Nuclear-Magnetic-Resonance Spectra Can J Chem 1986, 64, 1817–1822 22 Chernitsky, E A.; Rozin, V V.; Senkovich, O A Influence of pH of the Medium on Parameters of Detergent-Induced Hemolysis and Vesiculation of Erythrocytes Biol Membr 2000, 17, 420–426 23 Cifuentes, A.; Bernal, J L.; Diez-Masa, J C Determination of Critical Micelle Concentration Values Using Capillary Electrophoresis Instrumentation Anal Chem 1997, 69, 4271–4274 REFERENCES 247 24 Singh, V.; Khullar, P.; Dave, P N.; Kaur, N Micelles, Mixed Micelles, and Applications of Polyoxypropylene (Ppo)-Polyoxyethylene (Peo)-Polyoxypropylene (Ppo) Triblock Polymers.International J Indust Chem 2013, 4, art 12 25 Nikoubashman, A.; Panagiotopoulos, A Z Effect of Solvophobic Block Length on Critical Micelle Concentration in Model Surfactant Systems J Chem Phys 2014, 141, 041101 26 Khougaz, K.; Gao, Z.; Eisenberg, A Determination of the Critical Micelle Concentration of Block Copolymer Micelles by Static Light Scattering Macromolecules 1994, 27, 6341–6346 27 Kataoka, K.; Harada, A.; Nagasaki, Y Block Copolymer Micelles for Drug Delivery: Design, Characterization and Biological Significance Adv Drug Del Rev 2001, 47, 113–131 28 Hruby, M.; Konak, C.; Kucka, J.; Vetrik, M.; Filippov, S K.; Vetvicka, D et al Thermoresponsive, Hydrolytically Degradable Polymer Micelles Intended for Radionuclide Delivery Macromol Biosci 2009, 9, 1016–1027 29 Hruby, M.; Filippov, S K.; Panek, J.; Novakova, M.; Mackova, H.; Kucka, J., et al Thermoresponsive Micelles for Radionuclide Delivery J Control Release 2010, 148, E60–E62 30 Hruby, M.; Filippov, S K.; Panek, J.; Novakova, M.; Mackova, H.; Kucka, J., et al Polyoxazoline Thermoresponsive Micelles as Radionuclide Delivery Systems Macromol Biosci 2010, 10, 916–924 31 Torchilin, V P PEG-based Micelles as Carriers of Contrast Agents for Different Imaging Modalities Adv Drug Deliv Rev 2002, 54, 235–252 32 Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U S Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives Angew Chem Int Edit 2010, 49, 6288–6308/ 33 Sedlacek, O.; Monnery, B D.; Filippov, S K.; Hoogenboom, R.; Hruby, M Poly(2-Oxazoline)s—Are They More Advantageous for Biomedical Applications than Other Polymers? Macromol Rapid Commun 2012, 33, 1648–1662 34 Huh, K M.; Min, H S.; Lee, S C.; Lee, H J.; Kim, S.; Park, K A New Hydrotropic Block Copolymer Micelle System for Aqueous Solubilization of Paclitaxel J Control Release 2008, 126, 122–129 35 Ruan, G.; Feng, S.-S.Preparation and Characterization of Poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) Microspheres for Controlled Release of Paclitaxel Biomaterials 2003, 24, 5037–5044 36 Nakayama, M.; Kawahara, Y.; Akimoto, J.; Kanazawa, H.; Okano, T pH-induced Phase Transition Control of Thermoresponsive Nano-Micelles Possessing Outermost Surface Sulfonamide Moieties Colloids Surf B-Biointerfaces 2012, 99, 12–19 37 Tang, X.; Pan, C.-Y Double Hydrophilic Block Copolymers PEO-b-PGA: Synthesis, Application as Potential Drug Carrier and Drug Release via pH-sensitive Linkage J Biomed Mater Res A 2008, 86A, 428–438 38 Lou, S.-F.; Zhang, H.; Williams, R G.; Branford-White, C.; Nie, H.-L.; Quana, J., et al Fabrication and Aggregation of Thermoresponsive Glucose-Functionalized Double Hydrophilic Copolymers Colloids Surf B-Biointerfaces 2013, 105, 180–186 39 Colfen, H Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers Macromol Rapid Commun 2001, 22, 219–252 ˇ Ulbrich, K Polymeric Micellar pH-sensitive Drug Delivery System 40 Hrubý, M., Koˇnák, C.; for Doxorubicin J Control Release 2005,103, 137–148 248 BIOMEDICAL APPLICATION OF BLOCK COPOLYMERS ˇ Ulbrich, K Poly(allylglycidyl ether)-block-poly(ethylene oxide): 41 Hrubý, M.; Koˇnák, C.; A Novel Promising Polymeric Intermediate for the Preparation of Micellar Drug Delivery Systems J Appl Polym Sci 2005,95, 201–211 42 Bogomolova, A.; Filippov, S K.; Starovoytova, L.; Angelov, B.; Konarev, P.; Sedlacek, O.; Hruby, M.; Stepanek, P Study of Complex Thermosensitive Amphiphilic Polyoxazolines and Their Interaction with Ionic Surfactants: Are Hydrophobic, Thermosensitive, and Hydrophilic Moieties Equally Important? J Phys Chem B, 2014, 118, 4940–4950 43 Liua, Y.; Wanga, W.; Yanga, J.;Zhoua, Ch.; Sun, J pH-sensitive Polymeric Micelles Triggered Drug Release for Extracellular and Intracellular Drug Targeting Delivery Asian J Pharm Sci 2013, 8, 159–167 44 Zhang, Z.; Sun, Q.; Zhong, J.; Yang, Q.; Li, H.; Du, C.; Liang, B.; Shuai, X Magnetic Resonance Imaging-Visible and pH-Sensitive Polymeric Micelles for Tumor Targeted Drug Delivery J Biomed Nanotechnol 2014, 10, 216–226 45 Giacomelli, F C.; Štpánek, P.; Giacomelli, C.; Schmidt, V.; Jäger, E.; Jäger, A.; Ulbrich, K pH-Triggered Block Copolymer Micelles Based on a pH-responsive PDPA (poly[2-diisopropylaminoethyl methacrylate]) Inner Core and a PEO (poly(ethylene oxide)) Outer Shell as a Potential Tool for the Cancer Therapy Soft Matter 2011, 7, 9316–9325 46 Pegoraro, C.; Cecchin, D.; Gracia, L S.; Warren, N.; Madsen, J.; Armes, S P.; Lewis, A.; MacNeil, S.; Battaglia, G Enhanced Drug Delivery to Melanoma Cells Using PMPC-PDPA Polymersomes Cancer Lett 2013, 334, 328–337 47 Wang, Y.; Zhou, K.; Huang, G.; Hensley, C.; Huang, X.; Ma, X.; Zhao, T.; Sumer, B D.; DeBerardinis, R J.; Gao, J A Nanoparticle Based Strategy for the Imaging of a Broad Range of Tumours by Nonlinear Amplification of Microenvironment Signals Nat Mater 2014, 13, 204–212 48 Giacomelli, F C.; Stepánek, P.; Schmidt, V.; Jäger, E.; Jäger, A.; Giacomelli, C Light Scattering Evidence of Selective Protein Fouling on Biocompatible Block Copolymer Micelles Nanoscale 2012, 4, 4504–4514 49 de Castro, C E.; Mattei, B.; Riske, K A.; Jäger, E.; Jäger, A.; Stepánek, P.; Giacomelli, F Understanding the Structural Parameters of Biocompatible Nanoparticles Dictating Protein Fouling Langmuir 2014, 30, 9770–9779 50 Petrova, S.; Jager, E.; Konefal, R.; Jager, A.; De Garcia Venturini, C.; Spˇeváˇcek, J.; Štˇepánek, P Novel Poly(ethylene oxide monomethyl ether)-b-poly (.epsilon.-caprolactone) Diblock Copolymers Containing a pH-Acid Labile Ketal Group as a Block Linkage Polym Chem 2014, 5, 3884–3893 51 Cabral, H.; Kataoka, K Progress of Drug-loaded Polymeric Micelles into Clinical Studies J Control Release 2014, 190, 465–476 52 Kato, K.; Chin, K.; Yoshikawa, T.; Yamaguchi, K.; Tsuji, Y.; Esaki, T.; Sakai, K.; Kimura, M.; Hamaguchi, T.; Shimada, Y.; Matsumara, Y.; Ikeda, R Phase II Study of NK105, a Paclitaxel Incorporating Micellar Nanoparticle, for Previously Treated Advanced or Recurrent Gastric Cancer Invest New Drugs 2012, 30, 1621–1627 53 Penott-Chang, E.; Walther, A.; Millard, P.; Jäger, A.; Jäger, E.; Müller, A H.; Guterres, S S.; Pohlmann, A R Amphiphilic Diblock Copolymer and Polycaprolactone Blends to Produce New Vesicular Nanocarriers J Biomed Nanotechnol 2012, 8, 272–279 54 Garanger, E.; Lecommandoux, S Towards Bioactive NanovehiclesBased on ProteinPolymers Angew Chem Int Edit 2012, 51, 3060–3062 REFERENCES 249 55 Sanson, C.; Schatz, C.; Le Meins, J F.; Soum, A.; Thevenot, J.; Garanger, E.; Lecommandoux, S A Simple Method to Achieve High Doxorubicin Loading in Biodegradable Polymersomes J Control Release 2010, 147, 428–435 56 Sanson, C.; Schatz, C.; Le Meins, J F.; Brulet, A.; Soum, A.; Lecommandoux, S Biocompatible and Biodegradable Poly(trimethylene carbonate)-b-Poly (L-glutamicacid) Polymersomes: Size Control and Stability Langmuir 2010, 26, 2751–2760 57 Sanson, C.; Le Meins, J F.; Schatz, C.; Soum, A.; Lecommandoux, S Temperature Responsive Poly(trimethylene carbonate)-block-poly(L-glutamicacid) Copolymer: Polymersomes Fusion and Fission Soft Matter 2010, 6, 1722–1730 58 Bei, D.; Meng, J.; Youan, B C Engineering Nanomedicines for Improved Melanoma Therapy: Progress and Promises Nanomedicine 2010, 5, 1385–1399 59 Marguet, M.; Edembe, L.; Lecommandoux, S Polymersomes in Polymersomes: Multiple Loading and Permeability Control Angew Chem Int Edit 2012, 51, 1173–1176 60 Marguet, M.; Sandre, O.; Lecommandoux, S Polymersomes in "Gelly" Polymersomes: Toward Structural Cell Mimicry Langmuir 2012, 28, 2035–2043 61 Marguet, M.; Bonduelle, C.; Lecommandoux, S Multicompartmentalized Polymeric Systems: Towards Biomimetic Cellular Structure and Function Chem Soc Rev 2013, 42, 512–529 62 Weikun, L.; Shanqin, L.; Renhua, D.; Jintao, Z Encapsulation of Nanoparticles in Block Copolymer Micellar Aggregates by Directed Supramolecular Assembly Angew Chem Int Edit 2011, 50, 5865–5868 63 Polyelectrolyte Complexes in the Dispersed and Solid State Mueller, M.; Ed Springer Verlag, Heidelberg 2014 64 Schubert, S.; Delaney, J T Jr.; Schubert, U S Nanoprecipitation and Nanoformulation of Polymers: From History to Powerful Possibilities beyond Poly(lactic acid) Soft Matter 2011, 7, 1581–1588 65 Hruby, M.; Konak, C.; Kucka, J.; Vetrik, M.; Filippov, S K.; Vetvicka, D.;Mackova, H.; Karlsson, G.; Edwards, K.; Rihova, B.; Ulbrich, K Thermoresponsive, Hydrolytically Degradable Polymer Micelles Intended for Radionuclide Delivery Macromol Biosci 2009, 9, 1016–1027 66 Filippov, S K.; Chytil, P.; Dyakonova, M.; Papadakis, C M.; Jigounov, A.; Plestil, J.; Stepanek, P.; Etrych, T.; Ulbrich, K.; Svergun, D I Macromolecular HPMA-Based Nanoparticles with Cholesterol for Solid-Tumor Targeting: Detailed Study of the Inner Structure of a Highly Efficient Drug Delivery System Biomacromolecules 2012, 13, 2594–2604 67 Filippov, S K.; Franklin, J M.; Konarev, P V.; Chytil, P.; Etrych, T.; Bogomolova, A.; Dyakonova, M.; Papadakis, C M.; Radulescu, A.; Ulbrich, K.; Stepanek, P.; Svergun, D I Hydrolytically Degradable Polymer Micelles for Drug Delivery: A SAXS/SANS Kinetic Study Biomacromolecules 2013, 14, 4061–4070 ˇ P.; Štˇepánek, P.; Chánová, E.; Kuˇcka, J.; Kálalová, Z.; Kaˇnková, 68 Škodová, M.; Cernoch, D.; Hrubý, M Self-Assembled Polymeric Chelate Nanoparticles as Potential Theranostic Agents Chem Phys Chem 2012, 13, 4244–4250 69 Skodova, M.; Hruby, M.; Filippov, S K.; Karlsson, G.; Mackova, H.; Spirkova, M.; Kankova, D.; Steinhart, M.; Stepanek, P.; Ulbrich K Novel Polymeric Nanoparticles Assembled by Metal Ion Addition Mac Chem Phys 2011, 212, 2339–2348 250 BIOMEDICAL APPLICATION OF BLOCK COPOLYMERS 70 Bogomolova, A.; Hruby, M.; Panek, J.; Rabyk, M.; Turner, S.; Bals, S.; Steinhart, M.; Zhigunov, A.; Sedlacek, O.; Stepanek, P.; Filippov, S K Small-Angle X-ray Scattering and Light Scattering Study of Hybrid Nanoparticles Composed of Thermoresponsive Triblock Copolymer F127 and Thermoresponsive Statistical Polyoxazolines with Hydrophobic Moieties J Appl Crystallogr 2013, 46, 1690–1698 71 Pospisilova, A.; Filippov, S K.; Bogomolova, A.; Turner, S.; Sedlacek, O.; Matushkin, N.; Cernochova, Z.; Stepanek, P.; Hruby, M Glycogen-graft-poly(2-alkyl-2oxazolines)—The New Versatile Biopolymer-Based Thermoresponsive Macromolecular Toolbox RSC Adv 2014, 4, 61580–61588 72 Jäger, A.; Gromadzki, D.; Jäger, E.; Giacomelli, F C.; Kozlowska, A.; Kobera, L.; Brus, ˇ J.; Ríhová, B.; El Fray, M.; Ulbrich, K.; Štpánek, P Novel “Soft” Biodegradable Nanoparticles Prepared from Aliphatic Based Monomers as a Potential Drug Delivery System Soft Matter 2012, 8, 4343–4354 73 Franke, D.; Svergun, D I DAMMIF, A Program for Rapid ab-initio Shape Determination in Small-Angle Scattering J Appl Crystallogr 2009, 42, 342–346 INDEX activators generated by electron transfer (AGET), 98, 200 amphiphiles, 194–195 amphiphilic gradient copolymer see gradient copolymers “arm-first” method, 201 associating polyelectrolytes (APs) in dilute solutions aggregation, hydrophobic moieties, 142–143 chemical structure, 144 intermolecular association, 147–151 intramolecular aggregation, 145–147 electrostatic repulsion, 141 loss of translational entropy, 141 poly(2-vinylpyridine) with n-dodecyl bromide, 141 in semidilute solutions electrostatic repulsion, 154 hydrophobic attraction, 154 properties, 155 rheological properties, 152, 154 shear thickening effect, 153 shear-thinning behavior, 152 viscosity, polymer concentration, 152 structures, 142 atom-transfer radical copolymerization (ATRcoP), 101 atom transfer radical polymerization (ATRP), 1–2, 163 ARGET-ATRP, 39 batch copolymerizations (meth)acrylate-based PEO monomers, 89 13 C NMR spectra, 88–89 functional spontaneous gradient copolymers, 92 Kelen-Tüdos method, 92 kMC simulations, 92 nBA/MMA, 88 NMR technique, 88 parameter value, 92–93 P(MMA-grad-nBA) copolymer chains, 88, 89 PEGMA and styrene, 92 reactivity ratios, 90–92 styrene-acrylate and methacrylate-acrylates, 88 electron transfer (A(R)GET) technique, 39 halogen atom, reversible transfer, 38 reversible termination amphiphilic block copolymers, water, 46 Cu(0)-mediated CRP, 48 dispersion–polymerization process, 47 PManA block, 48 Macromolecular Self-Assembly, First Edition Edited by Laurent Billon and Oleg Borisov © 2016 John Wiley & Sons, Inc Published 2016 by John Wiley & Sons, Inc 251 252 atom transfer radical polymerization (ATRP) (Continued) shell-crosslinked micelles, 47 TEM analysis, 48 semi-batch copolymerization AGET, 98 BMA and MMA cumulative and instantaneous compositions, 99, 100 experimental composition profiles, 101–102 MMA and nBA gradient copolymers, 102 MMA and tBA gradient copolymers, 102 nBA and tBA cumulative and instantaneous compositions, 99 S and nBA incorporation rate, 100–101 automatic continuous online monitoring of polymerization reactions (ACOMP), 93 batch copolymerizations ATRP (meth)acrylate-based PEO monomers, 89 13 C NMR spectra, 88–89 functional spontaneous gradient copolymers, 92 Kelen-Tüdos method, 92 kMC simulations, 92 nBA/MMA, 88 NMR technique, 88 parameter value, 92–93 P(MMA-grad-nBA) copolymer chains, 88, 89 PEGMA and styrene, 92 reactivity ratios, 90–92 styrene-acrylate and methacrylate-acrylates, 88 NMP, 93–95 RAFT, 95–97 biohybrid polymers, self-assembly of amphiphiles, 194–195 block copolypeptides, 205–206 electrostatic interactions charge-to-charge stoichiometry, 215–216 co-assembly process, 214 DNA/copolymer bio-IPECs, 216–218 DNA/polymer bio-IPECs, 216 environmental factors, 214 IPECs, 213–216 pH-responsive IPECs formation, 215 polyelectrolytes, 213 interaction forces, 196–198 interfacial tension, 195, 196 lamellar, cylindrical, and spherical micelles, 196, 197 nucleation polymerization amyloid fibers structure, 207 INDEX characteristic features, 207, 208 critical micelle concentration, 208 DNA-peptide hybrids, 212–213 lag time, 208 polymer-DNA hybrids, 209 polymer-peptide hybrids, 209–212 packing parameter, 195–196 polymer-DNA hybrids comb/graft copolymers, 201, 202 linear block copolymers, 199–201 star copolymers, 201–204 polypeptide-block copolymers, 204–205 static and dynamic, 193–194 biomedical application, block copolymers diblock and triblock copolymers, 234–240 graft and statistical copolymers, 240–245 hydrophobic block, 233 LCST-type polymer systems, 234 self-assembled structures, 232 temperature–composition phase diagram, 233 thermodynamic conditions, 232 unimer–micelle exchange equilibration kinetics, 233 bis-hydrophilic diblock copolymers, 129 bis-hydrophilic miktoarm stars generalized theoretical mean-field approach, 135 hierarchical assembly process, 135 Janus-like structures formation, 134 lamellar (vesicular) morphology, 136 turbidimetric titration curves, 134 vesicular IPECs, 135, 136 block copolymer polymersomes, 240 bottle brush polymers, 15–16 branched polymers bottle brush polymers, 15–16 cyclic polymer architectures, 17 hydrogels, 12–13 star polymers, 13–15 cetyltrimethylammonium bromide (CTAB), 165 cobalt-Mediated Radical Polymerization (CMRP), 108 comb/graft copolymers, 201, 202 controlled radical copolymerizations (CRcoP), 87 batch copolymerizations ATRP, 88–93 NMP, 93–95 RAFT, 95–97 block-gradient copolymers, 86 advantage, 107, 108 “boot-strap” effect, 110 bulk polymerization, 106 CMRP, 108 INDEX disadvantages, 107 Fineman-Ross and Kelen-Tudos methods, 109 MCPDT, 109 MMA/DMA system, 107 molecular weight distributions, 106 one-step strategy, 107 procedure, 109–110 RAFT, 109 semi-batch copolymerization ATRP, 98–102 NMP, 102–105 parameters influence, 98 RAFT, 105–106 using syringe pump, 97 controlled radical polymerization ATRP, 37 block copolymer synthesis, 37 large-scale industrial production, 36 micellar nucleation, 36 NMP, 37 reversible termination mechanism, 37–39 reversible transfer mechanism, 39 statistical copolymers, 36–37 controlled radical polymerization (CRP) techniques, 86 copper(I)-catalyzed azide-alkyne cycloaddition (CuAAc), critical micelle concentration (CMC), 208 cumenehydroperoxide (CHP), 95 cyclic polymer architectures, 17 cyclodextrin host/guest complexes adamantyl containing hydrogel cube, 24, 25 CD-based, CD-based polymer architectures micelles/core-shell particles, 17–19 nanoparticles and hybrid materials, 21–22 nanotubes and fibers, 20–21 planar surface modification, 22–23 vesicles, 19–20 CD functionalization, 3–5, complexation constants, drug delivery, 23, 24 enzymatic degradation, modular ligation reaction, phenolphthalein derivatives, properties, 2–3 siRNA delivery, 23 steric hindrance, stimuli-responsive, 5, structure–property relationships, types, versatility, zipping–unzipping, 24 253 Decoration, artificial macromolecules assembly application, 181–183 dissipative assembly, 184 DNA-assisted assembly complementary vs noncomplementary strands, 174 complex 2D and 3D nanostructures, 174 core/satellite structures, 175–176 DNA-guided amorphous aggregation and reorganization, 176, 177 DNA-hybridization approaches, 174–175 DNA-nanoparticle conjugates, 176 double-stranded DNA, 173, 174 freestanding superlattices, 175, 176 hairpin loop segments, 174 ligands with terminal thiols of disulfides, 173, 174 pyramidal geometry, 176 Watson–Crick base-pairing, 173, 174 functional material design, 160 length scales, 159 mechanical deformation, 183 nanoparticles challenges, 161 controlled living polymerization techniques, 163 core/shell particles, 165 CTAB stabilization, 165 encapsulation of, 164, 165 grafting-from approach, 162–164 grafting-onto approaches, 162–164 layer-by-layer strategy, 165 NIPAm, 164–166 PNIPAm, 164–166 polymer size and architecture, 159, 161 pre-synthesized polymer chains, 162 purification procedures, 161 seeded polymerization, 164 optical and electronic processes, 159–160 protein-assisted assembly chemisorption, 178 electrostatic adsorption and physisorption, 178, 179 end-to-end assembly, 179, 180 host–guest/key–lock principle, 179 magnetic core particle, 179, 180 metal-histidine coordination, 178 mixed monolayer assembly, 179, 180 quantum dots, 179, 180 superfacial tags, 179, 180 stimuli, 160 symmetry breaking, 171–172 2D and 3D Au@PNIPAm gel particles, 167, 169 254 Decoration, artificial macromolecules (Continued) Bragg peaks, 170 colloidal crystal, 169, 170 colloidal monolayer, 166–167 crystalline sample, 170 indium tin oxide (ITO)-coated glass substrates, 169 Langmuir–Blodget approach, 169 length scales, 160, 166 linear PNIPAm ligands, 166, 168 molecular and macromolecular ligands, 166, 167 particle gap, 171 PS ligands, 166, 168 PVP shell, 168 SANS, 170 soft and deformable properties, 170 diblock and triblock copolymers biocompatible and biodegradable diblock copolymer, 239 dynamic equilibrium, 234 dynamic light scattering, 239 HPLC, 240 hydrophilic corona, 236 interfacial activity, 234 low-molecular-weight surfactants, 235 MAIGal-b-DMAEMA, 239, 240 micellar system, 234 molecular structure, PEG-b-PDPA, 237, 238 monomethoxy-PEG-b-poly(D,L-lactic acid) (MPEGPDLLA), 239 nanoparticles, fouling properties, 239 neutral degradation products, 239 PEO-derived systems, 236 pH-sensitive drug delivery systems, 237 polymeric micellar pH-sensitive system, 236 polymersome, structure, 240, 241 stability and interaction, 238 thermoresponsive polymer micelles, 237 dispersion polymerization monomers, morphological transition mechanism, 69–70 solvent except water anisotropic morphologies, 68 methanol, 69 water as solvent core-shell nanogels, 62 H-NMR, 65 2-methoxyethyl acrylate (MEA), 63 microwave irradiation, 61 morphological order-to-order transitions, 65–67 oligolamellar and unilamellar vesicles, 63, 64 INDEX PEO-b-PDMAAm-b-P(DEAAm-coMBAAm) nanogels, 62 preparation of phase diagrams, 63 self-assembly reorganization, 65 thermally induced gel-to-sol transitions, 66 dissipative assembly, 184 DNA-assisted assembly complementary vs noncomplementary strands, 174 complex 2D and 3D nanostructures, 174 core/satellite structures, 175–176 DNA-guided amorphous aggregation and reorganization, 176, 177 DNA-hybridization approaches, 174–175 DNA-nanoparticle conjugates, 176 freestanding superlattices, 175, 176 hairpin loop segments, 174 ligands with terminal thiols of disulfides, 173, 174 pyramidal geometry, 176 Watson–Crick base-pairing, 173, 174 double hydrophilic diblock copolymers see bis-hydrophilic diblock copolymers dynamic and static light scattering (DLS/SLS), 241 dynamic self-assembly (DSA), 194 electrostatic interactions charge-to-charge stoichiometry, 215–216 co-assembly process, 214 DNA/copolymer bio-IPECs, 216–218 DNA/polymer bio-IPECs, 216 environmental factors, 214 IPECs, 213–216 pH-responsive IPECs formation, 215 polyelectrolytes, 213 emulsion polymerization amphiphilic diblock copolymers, 57 2-dimethylaminoethyl methacrylate (DMAEMA)-based macro-RAFT agent, 55 2-hydroxyethyl methacrylate (HEMA), 58, 59 2-hydroxypropyl methacrylate (HPMA), 58, 59 macroRAFT, 55, 56 morphological transition, 53, 54 nonspherical objects, 53 oligomeric poly(acrylic acid) (PAA5) macroRAFT agents, 49 PAA and PAA-b-PSt macroRAFT agents, 50 particle formation, 49, 58 PEO-based brush macroRAFT agents, 53 PEO methyl ether acrylate (PEOA), 52 pH value and salt concentration, 52 INDEX P(MAA-co-PEOMA) macroRAFT agents, 56, 57 PNaSS-stabilized particles, 61 poly(N, N-dimethylacrylamide) (PDMAAm), 51 RAFT ab initio batch emulsion polymerization, 60 surfactant-free, batch emulsion homopolymerization, 51 trithiocarbonate PEO-based macroRAFT agent, 50 enhanced permeability and retention (EPR) effect, 234, 235 gradient copolymers block and random copolymers, 83–85 characterization, 83 CRP technique, 86 diblock-gradient copolymers, 111–113 forced method (see semi-batch copolymerizations) history, 83 instantaneous composition, 83, 86 phase boundary, 84 poly(acrylic acid-grad-styrene) (P(AA-grad-S)) copolymer, 85 solution properties and self-assembling behavior, 85, 110 spontaneous method (see batch copolymerizations) triblock-gradient copolymers, 113–114 graft and statistical copolymers ab initio calculations, 243 aliphatic biodegradable copolyesters, 244 anticancer drug doxorubicin (Dox), 241 diagnostic and therapeutic radionuclides, 241 glycogen-graft-poly(2-alkyl-2-oxazolines), 244 nanoparticles, 240 nuclear medicine, 243 pair-distance distribution function, 243 PBS/PBDL nanoparticles, porosity, 244 physicochemical procedures complexation, 240 emulsification, 240 nanoprecipitation, 240 PTX encapsulation, 245 SAXS and SANS experiments, 241–242 heteroarm (miktoarm) star, 126 homoarm star, 126 homopolyelectrolyte stars bis-hydrophilic diblock copolymers, 129–130 255 core-corona (micelle-like) structure, 128–129, 131 dynamic/static light scattering measurements, 127 hydrodynamic radius, 127 macromolecular co-assembly formation, 130 poly(acrylic acid) star, 127 Z-values, 127 hydrogels, 12–13 intermolecular association, APs clusters hydrophobic domains, 150–151 shape and inner organization, 149–150 size and aggregation number, 148–149 Coulombic repulsion of chains, 147 critical aggregation concentration (cac), 148 macroscopic gel, 151 interpolyelectrolyte complexes (IPECs), 213–216 bis-hydrophilic miktoarm stars generalized theoretical mean-field approach, 135 hierarchical assembly process, 135 Janus-like structures formation, 134 lamellar (vesicular) morphology, 136 turbidimetric titration curves, 134 vesicular IPECs, 135, 136 co-assembly process, 126 heteroarm (miktoarm) star, 126 homoarm star, 126 homopolyelectrolyte stars bis-hydrophilic diblock copolymers, 129–130 core-corona (micelle-like) structure, 128–129, 131 dynamic/static light scattering measurements, 127 hydrodynamic radius, 127 macromolecular co-assembly formation, 130 poly(acrylic acid) star, 127 Z-values, 127 ionic amphiphilic diblock copolymers core-shell-corona (“onion-like”) structure, 132 small-angle neutron scattering intensity, 132, 133 star-like polyisobutylene-block-poly(methacrylic acid) micelles, 130, 131 star-like micelle, 126 intramolecular aggregation, APs chiral globules, 147 hydrophilic sequences, 147 256 intramolecular aggregation, APs (Continued) necklace globules, 146–147 sequence-controlled synthetic, 147 spherical globules, 145–146 IPECs see interpolyelectrolyte complexes (IPECs) kinetic Monte Carlo (kMC) simulations, 92 linear block copolymers, 199–201 AB block copolymers, 7, diblock copolymers, 9–10 higher order block copolymers, 10–11 supramolecular step growth polymers, 11–12 liquid adsorption chromatography (LAC) analyses, 93 methyl methacrylate (MMA), 102 nanoparticles decoration challenges, 161 controlled living polymerization techniques, 163 core/shell particles, 165 CTAB stabilization, 165 encapsulation of, 164, 165 grafting-from approach, 162–164 grafting-onto approaches, 162–164 layer-by-layer strategy, 165 NIPAm, 164–166 PNIPAm, 164–166 polymer size and architecture, 159, 161 pre-synthesized polymer chains, 162 purification procedures, 161 seeded polymerization, 164 nanotechnology, block copolymers, 231 n-butyl acrylate (nBA) gradient copolymers, 102 N-isopropylacrylamide (NIPAm), 164–166 nitroxide-mediated living radical polymerization, 1–2, 163 nitroxide-mediated polymerization (NMP) batch copolymerizations, 93–95 chemical structures, 38 diffusion-controlled rate, 38 homolytic cleavage, alkoxyamine, 37–38 kinetics and molar masses, 38 reversible termination hydrosoluble oly(methacrylate)-type macroalkoxyamines, 42–44 macroalkoxyamine initiation efficiency, 42–44 One-Pot PISA, 44–46 INDEX poly(acrylic acid)-based macroalkoxyamine, 40–42 semi-batch copolymerization, 102–105 nuclear magnetic resonance (NMR) techniqu, 88 nucleation polymerization amyloid fibers structure, 207 characteristic features, 207, 208 critical micelle concentration, 208 DNA-peptide hybrids, 212–213 lag time, 208 polymer-DNA hybrids, 209 polymer-peptide hybrids, 209–212 packing parameter, 195–196 PISA see Polymerization-induced self-assembly (PISA) poly(1,1,2,2-tetrahydroperfluorodecyl acrylate-co-acetoacetoxyethyl methacrylate) (poly(FDA-co-AAEM)), 96 poly(1,1,2,2-tetrahydroperfluorodecyl acrylate-co-vinylbenzylphosphonic acid diethylester) (poly(FDA-co-VBPDE)), 96 poly(methyl methacrylate-grad-n-butyl acrylate) (P(MMA-grad-nBA) copolymer chains, 88 poly(N-isopropylacrylamide) (PNIPAm), 164–166 polymer-DNA hybrids comb/graft copolymers, 201, 202 linear block copolymers, 199–201 star copolymers, 201–204 polymerization-induced self-assembly (PISA) advantages, 36 amphiphilic block copolymers, 72 antagonistic properties, 33 aqueous dispersed systems, 34, 35 emulsion system, 34 “pure” morphologies, 33, 34 reversible termination using ATRP, 46–48 using NMP, 40–46 surfactant-free emulsion, 35 surfactant-free latex particles, 72 using CRP, water, 35 poly(ethylene glycol) methyl ether methacrylate (PEGMA), 92 polypeptide-block copolymers, 204–205 poly(vinylpyrrolidone) (PVP) shell, 168 protein-assisted assembly chemisorption, 178 electrostatic adsorption and physisorption, 178, 179 end-to-end assembly, 179, 180 host–guest/key–lock principle, 179 magnetic core particle, 179, 180 INDEX metal-histidine coordination, 178 mixed monolayer assembly, 179, 180 quantum dots, 179, 180 superfacial tags, 179, 180 quartz crystal microbalance (QCM), 200 RAFT polymerization, 1–2, 163 batch copolymerizations, 95–97 dispersion polymerization, 61–70 emulsion polymerization, 48–61 Semi-batch copolymerization, 105–106 reversible-deactivation radical polymerization (RDRP) see controlled radical polymerization (CRP) techniques reversible termination mechanism ATRP, 38–39 hydrosoluble oly(methacrylate)-type macroalkoxyamines, 42–44 macroalkoxyamine initiation efficiency, 42–44 NMP, 38 one-pot PISA, 44–46 poly(acrylic acid)-based macroalkoxyamine, 40–42 ring-opening metathesis polymerization (ROMP), 163 semi-batch copolymerizations ATRP AGET, 98 ATRcoP, 101 BMA and MMA cumulative and instantaneous compositions, 99, 100 257 experimental composition profiles, 101–102 MMA and nBA gradient copolymers, 102 MMA and tBA gradient copolymers, 102 nBA and tBA cumulative and instantaneous compositions, 99 S and nBA incorporation rate, 100–101 NMP, 102–105 parameters influence, 98 RAFT, 105–106 using syringe pump, 97 small angle neutron scattering (SANS), 170, 241 small-angle X-ray scattering (SAXS), 164, 241 S-methoxycarbonylphenylmethyldodecyltrithiocarbonate (MCPDT), 109 solution properties, APs chitosan, 141 water-soluble associating polymers star copolymers, 201–204 star polymers, 13–15 static self-assembly (SSA), 193–194 supramolecular approach branched architectures, 12–16 cyclic polymer architectures, 17 linear block copolymers, 7–12 surfactant parameter see packing parameter synergistic effects, 159 TERP, emulsion, 70–71 OrganoTellerium mediated radical emulsion polymerization (emulsion TERP), 70–71 tert-butyle acrylate (tBA) gradient copolymers, 102 WILEY END USER LICENSE AGREEMENT Go to www.wiley.com/go/eula to access Wiley’s ebook EULA ... in Self- Assembly, 196 193 vi CONTENTS 7.2 Self- Assembly of Biohybrid Polymers, 198 7.2.1 Polymer-DNA Hybrids, 198 7.2.2 Polypeptide Block Copolymers, 204 7.2.3 Block Copolypeptides, 205 7.3 Self- Assembly. .. INTRODUCTION Macromolecular self- assembly is one of the key research areas in contemporary polymer science Because complex macromolecular architectures have a significant effect on self- assembly behavior,... 6.2.3 Breaking the Symmetry, 171 6.3 Guiding Assembly by Decoration with Biomacromolecules, 173 6.3.1 DNA-Assisted Assembly, 173 6.3.2 Protein-Assisted Assembly, 177 6.4 Application of Assemblies,

Ngày đăng: 16/06/2017, 15:07

Từ khóa liên quan

Mục lục

  • Cover

  • Title Page

  • Copyright

  • Contents

  • List of Contributors

  • Preface

  • Chapter 1 A Supramolecular Approach to Macromolecular Self-Assembly: Cyclodextrin Host/Guest Complexes

    • 1.1 Introduction

    • 1.2 Synthetic Approaches to Host/Guest Functionalized Building Blocks

      • 1.2.1 CD Functionalization

      • 1.2.2 Suitable Guest Groups

      • 1.3 Supramolecular CD Self-Assemblies

        • 1.3.1 Linear Polymers

        • 1.3.2 Branched Polymers

        • 1.3.3 Cyclic Polymer Architectures

        • 1.4 Higher Order Assemblies of CD-Based Polymer Architectures Toward Nanostructures

          • 1.4.1 Micelles/Core-Shell Particles

          • 1.4.2 Vesicles

          • 1.4.3 Nanotubes and Fibers

          • 1.4.4 Nanoparticles and Hybrid Materials

          • 1.4.5 Planar Surface Modification

          • 1.5 Applications

          • 1.6 Conclusion and Outlook

          • References

Tài liệu cùng người dùng

Tài liệu liên quan