NGHIÊN CỨU ẢNH HƯỞNG CỦA MỘT SỐ THÔNG SỐ LÊN KÌM QUANG HỌC SỬ DỤNG HAI CHÙM XUNG GAUSS NGƯỢC CHIỀU

130 239 0
NGHIÊN CỨU ẢNH HƯỞNG CỦA MỘT SỐ THÔNG SỐ LÊN KÌM QUANG HỌC SỬ DỤNG HAI CHÙM XUNG GAUSS NGƯỢC CHIỀU

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Header Page of 89 B GIO DC V O TO B QUC PHềNG VIN KHOA HC V CễNG NGH QUN S HONG èNH HI NGHIấN CU NH HNG CA MT S THễNG S LấN KèM QUANG HC S DNG HAI CHM XUNG GAUSS NGC CHIU LUN N TIN S VT Lí H NI 2014 Footer Page of 89 Header Page of 89 B GIO DC V O TO B QUC PHềNG VIN KHOA HC V CễNG NGH QUN S HONG èNH HI NGHIấN CU NH HNG CA MT S THễNG S LấN KèM QUANG HC S DNG HAI CHM XUNG GAUSS NGC CHIU Chuyờn ngnh: Quang hc Mó s: 62.44.01.09 LUN N TIN S VT Lí NGI HNG DN KHOA HC PGS.TS H Quang Quý H NI 2014 Footer Page of 89 Header Page of 89 LI CAM OAN Tụi xin cam oan ni dung ca bn lun ỏn ny l cụng trỡnh nghiờn cu ca riờng tụi Cỏc s liu, kt qu lun l trung thc v cha c cụng b bt k mt cụng trỡnh no khỏc Tỏc gi lun ỏn Hong ỡnh Hi Footer Page of 89 Header Page of 89 LI CM N Lun ỏn c hon thnh di s hng dn khoa hc ca PGS.TS H Quang Quý, tỏc gi xin c by t lũng bit n chõn thnh ti cỏc thy giỏo, nhng ngi ó t ti, dn dt tn tỡnh v ng viờn tỏc gi sut quỏ trỡnh nghiờn cu hon thnh lun ỏn Tỏc gi xin chõn thnh cm n cỏc thy giỏo, cụ giỏo, cỏc nh khoa hc v cỏc bn ng nghip Vin Vt lý k thut, Phũng o to - Vin Khoa hc v cụng ngh Quõn s - B Quc Phũng, Trng i Hc Vinh, Trng CSP Ngh An ó úng gúp nhng ý kin khoa hc b ớch cho ni dung ca lun ỏn, to iu kin v giỳp tỏc gi thi gian hc v nghiờn cu Tỏc gi xin gi li cm n sõu sc ti bn bố, ngi thõn gia ỡnh ó quan tõm, ng viờn, giỳp tỏc gi quỏ trỡnh nghiờn cu v hon thnh lun ỏn Xin trõn trng cm n! Tỏc gi lun ỏn Footer Page of 89 Header Page of 89 MC LC Danh mc cỏc ký hiu i Danh mc cỏc hỡnh v . iii M u Chng TNG QUAN V KèM QUANG HC S DNG HAI CHM XUNG GAUSS NGC CHIU 1.1 Quang lc 1.2 Kỡm quang hc s dng hai chựm xung Gauss ngc chiu 14 1.2.1 Cu hỡnh quang ca hai chựm xung Gauss ngc chiu 1.2.2 Biu thc cng tng ca hai chựm xung Gauss ngc chiu 16 1.2.3 nh hng ca khong cỏch d n phõn b cng tng 19 1.2.4 nh hng ca mt tht chựm tia W0 n phõn b cng tng 21 1.2.5 Biu thc quang lc tỏc dng lờn ht in mụi 23 1.2.6 nh hng ca bỏn kớnh mt tht W0 lờn phõn b quang lc dc 24 1.2.7 nh hng ca rng xung lờn phõn b quang lc dc 26 1.2.8 nh hng ca khong cỏch hai mt tht d n quang lc 1.2.9 dc 27 nh hng ca bỏn kớnh mt tht W0 lờn quang lc ngang 29 1.2.10 nh hng ca khong cỏch hai mt tht d lờn quang lc ngang Footer Page of 89 15 32 Header Page of 89 1.2.11 nh hng ca rng xung lờn quang lc ngang 33 1.3 Chuyn ng Brown ca vi ht in mụi cht lu 35 1.4 Cỏc yu t nh hng n n nh ca by quang hc 37 1.4.1 S cn thit ca s n nh 38 1.4.2 Cỏc yu t nh hng n n nh ca ht quỏ trỡnh by 38 Kt lun chng 39 Chng QU TRèNH NG HC CA VI HT 41 2.1 Phng trỡnh Lagevin cho trng hp tng quỏt 41 2.2 Phng trỡnh ng hc ca vi ht by quang hc s dng hai 1.5 chựm xung Gauss ngc chiu 44 2.3 Thut toỏn v quy trỡnh mụ phng 47 2.4 Chuyn Brown mt phng tiờu bn 48 2.5 Quỏ trỡnh ng hc ca vi ht cú quang lc 52 2.6 Kt lun chng 56 Chng NH HNG CA CC THAM S LấN QU TRèNH NG HC CA VI HT 58 3.1 nh hng ca v trớ ban u ca vi ht 59 3.2 nh hng ca nng lng tng 63 3.3 nh hng ca bỏn kớnh mt tht chựm tia 65 3.4 nh hng ca kớch thc ht 67 Footer Page of 89 Header Page of 89 3.5 Kt lun chng Chng NH HNG CA CC THAM S LấN VNG N NNH CA KèM 70 72 4.1 Khỏi nim v vựng n nh khụng gian - thi gian 73 4.2 nh hng ca nng lng xung laser lờn vựng n nh 74 4.3 nh hng ca bỏn kớnh tht chựm lờn vựng n nh 76 4.4 nh hng ca rng xung lờn vựng n nh 77 4.5 nh hng ca tn s lp xung laser lờn s n nh 79 4.6 nh hng ca tr xung lờn vựng n nh 81 4.7 nh hng ca bỏn kớnh vi ht lờn vựng n nh 87 4.8 nh hng ca nht cht lu lờn vựng n nh 89 4.9 Kt lun chng 91 KT LUN CHUNG 93 Ti liu tham kho 98 Ph lc 105 Footer Page of 89 Header Page of 89 i DANH MC CC Kí HIU Ký hiu í ngha a Bỏn kớnh ht in mụi hỡnh cu H s ma sỏt nht H s hp th mt ln B H s Anhxtanh c Vn tc ỏnh sỏng chõn khụng Cpr Tit din tỏn x D H s khuch tỏn d Khong cỏch gia hai nh xung E0 Nng lng tng ca chựm tia El Cng in trng ca chựm bờn trỏi Er Cng in trng ca chựm bờn phi E Vộc t cng in trng Hng s in mụi Fgrad Lc gradient Fp Lc Lorentz Fscat Lc tỏn x Ft Thnh phn lc bin i ca t trng f Lc tng hp tỏc ng vo ht f vis Lc tỏc ng ph thuc tc f total Lc tỏc ng khụng ph thuc tc f Brown Lc Brown Footer Page of 89 Header Page of 89 ii f gravity Trng lc f Hydrate Lc n hi ca mụi trng nht ca mụi trng H T trng tng ng gn ỳng cn trc h (t ) Hm ngu nhiờn (randum) Il Cng chựm tia bờn trỏi Ir Cng chựm tia bờn phi I Cng tng ca hai chựm tia k S súng k Vộc t súng m = n1 n2 T s chit sut ht by vi mụi trng cht lu m lng ht by à0 t thNm chõn khụng n1 Chit sut ca ht in mụi hỡnh cu n2 Chit sut ca mụi trng cha ht in mụi Pp Cụng sut bm P Vộc t momen lng cc To hng tõm H s phõn cc ca ht hỡnh cu ch Rayleigh Bỏn rng xung U Nng lng chựm Gauss ca laser Toỏn t laplace W Bỏn kớnh tit din tht chựm Tn s súng W0 Bỏn kớnh tit din tht chựm ti mt phng z =0 Footer Page of 89 Header Page 10 of 89 iii Bc súng ca chựm laser to ban u ca ht by Vộc t n v theo hng xuyờn tõm x Vộc t n v ca phõn cc dc theo hng trc x z Vộc t n v dc theo hng truyn ca chựm tia z h. Nng lng trung bỡnh ca mt photon bm t Khong thi gian n nh ca ht by ng kớnh vựng n nh T tr thi gian gia hai xung Footer Page 10 of 89 Header Page 116 of 89 102 tweerz, Opt Express 13, 2006, pp.3673-3680 [45] Justin E.Molloy et al, Preface: Optical tweezers in a new light, Journal of Modern Optics, Vol.50, No.10, 2003, pp.1501-1507 [46] K B Sorensen, E J G Peterman, T Weber, and C F Schmidt, Power spectrum analysis for optical tweezer II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth, Rev of Scient Intruments, Vol 77, 2006, pp 063106-063110 [47] K C Neuman and S M Block, Optical trapping, Rev of Scient Intruments, Vol 75, 2004, 2787-2809 [48] K-B Im, D-Y Lee, H-I Kim, C-H Oh, S-H Song and P-S Kim, B-C Park, Calculation of optical trapping forces on microspheres in the ray optics regime, J Korean Phys Soc., vol 40, 2002, pp 930-933 [49] Kishan Dholakia et al, Optical tweezers:the next generation, Physics World, 2002, pp.31-35 [50] L G.Wang et al, Effect of spatial coherence on radiation forces acting on a Rayleigh dialectic sphere, Opt Lett 32, 2007, pp.1393-1395 [51] L V.Tarasov, Laser Physics, Transiated from the Russian by Ram S.Wadhwa, Moscow, 1983 [52] M D Wang, H Yin, R Landick, J Gelles, and S M Bock, Stretching DNA with Optical Tweezers, Biophys J Vol.72, 1997, pp 1335-1346 [53] M Kawano, J T Blakely, R gordon, and D Sinton, Theory of dielectric micro-sphere dynamics in a dual-beam optical trap, Opt Express, Vol 16, 2008, pp 9306-9317 [54] M S Rocha, Optical tweezer for undergraduates: Theoretical analysis and Experiments, Am J Phys., Vol 77, 2009, pp 704-712 [55] M Siler, t Cizmar, M Sery, P.Zemanek, Optical forces generated by evanescent standing waves and their usage for sub-micro particle delivery, Appl Phys B84, 2006, pp 157-165 [56] Michael Gửgler et al, Forces on Small Spheres in a One-Beam Gradient Trap, Leipzig Uni., Germany, Wintersemester 2005/2006 [57] N G Dagalakis, Th LeBrun, J Lippiatt, Micro-mirror array control of optical tweezer trapping beams, 2th IEEE Conf on Nanotechnology, Footer Page 116 of 89 Header Page 117 of 89 103 Washington DC, August 26-28, 2002, pp 177-180 [58] Neil A Schofield, Development of Optical Trapping for the Isolation of Environmentally Regulated Genes, Submitted in partial fulfiment of the requirement for the degree of doctor of philosophy, 1998 [59] Nguyen Huy Bang, Physics of Bose - Einstein Condensation of Neutron atoms: Cooling and trapping, Warsaw, Poland, 28 February 2007 [60] O Moine and B Stout, Optical force calculations in arbitrary beams by use of the vector addition theorem, J Opt Soc Am B, vol 22, 2005, pp 1620-1631 [61] P Mangeol, D Cote, T Bizebard, O Legrand, and U Bockelmann, Probing DNA and RNA single molecules with a double optical tweezer, Eur Phys E19, 2006, pp 311-317 [62] P Zemanek, V Karasek, A Sasso, Optical forces acting on Rayleigh particle placed into interference field, Optics Commun 240, 2004, pp.401-415 [63] Q Q Ho, D H Hoang, Dynamic of the dielectric nano-particle in optical tweezer using counter-propagating pulsed laser beams, J Phys Scien And Appl., Vol 2, 2012, pp 345-351 [64] Q Q Ho, Simulation of influence of partially coherent Gaussian laser beam on gradient force acting on dielectric nanoparticle inside random medium, J Phys Scien And Appl., Vol 2, 2012, pp 301-305 [65] Q Q Ho, V N Hoang, Influence of the Kerr effcect on the optical force acting on the dielectric particle, J Phys Scien And Appl., Vol 2, 2012, pp 414-419 [66] S C Kuo, M P Sheetz, Optical tweezers in cell biology, Trends Cell Biol 2, 1992, pp.16-24 [67] S Couris, M Renard, O Faucher, B Lavorel, R Chaux, E Koudoumas, X Michaut An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques Chemical Physics Letters 369 (2003), pp 318-324 Footer Page 117 of 89 Header Page 118 of 89 104 [68] S Hormeno and J R Arias-Gonzalez, Exploring mechanochemical processes in the cell with optical tweezers, Biol Cell, vol.98, 2006, pp 679-695 [69] T T Perkin, Optical traps for single molecule biophysics: a primer, Laser & Photon Rev., Vol 3, 2009, pp 203-220 [70] T Tlusty, A Meller, and R Bar-Ziv, Optical Gradient Forces of Strongly Localized fields, Phys Rev Lett Vol 81, 1998, pp.1738-1741 [71] W J Greenleaf, M T Woodside, E A Abbondanzieri, and S M Block, Passive all-optical force clamp for high-resolution laser trapping, Phys Rev Lett., Vol 95, 2005, pp 208102-1- [72] W Singer, S Bernet, and M Ritsch-Marte, 3D- force calibration of optical tweezers for mechanical stimulation of surfactant-releasing lung cells, Laser Phys Vol.11, 2001, pp 1217-1223 [73] X Cui, D Erni, C Hafner, Optical forces on metallic nanoparticles induced by a photonic nanojet, Opt Express, Vol 16, 2008, pp 1356013568 [74] Y C Jian, J J Xiao, and J P Huang, Optical force on dielectric nanorods coupled to a high-Q photonic crystal nanocavity, J Phys Chem C 113, 2009, pp 17170-17175 [75] Z.W Wilkes, S Varma, Y.-H Chen, H.M Milchberg, T.G Jones and A Ting Direct measurements of the nonlinear index of refraction of water at 815 and 407 nm using-shot supercontinuum spetral interferometry Applied Physics letters 94, 211102 (2009) Footer Page 118 of 89 Header Page 119 of 89 105 PH LC Chơng trình mô dùng phần mềm Matlab Chnng trỡnh mụ phng cng tng % Cuong tong cua hai xung nguoc chieu t=-3.*10.^-12:0.05.*10.^-12:3.*10.^-12; z=0; rho=-2.*10.^-6:0.05.*10.^-6:2.*10.^-6; d=10.^-6; w_0=10.^-6; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=10.*10.^(-9); pi=3.14; U=10.^(-6); c=3.*10.^8; k=2.*pi./lamda; mi_0=4.*pi.*10.^-7; exi_0=1/(4.*pi.*9.*10.^9); z_dv=1; x_dv=1; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); [x,y]=meshgrid(rho_ng,t_ng); P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); alpha=(128.*pi.^5.*a.^6./(3.*lamda.^4)).*((m.^2-1)./(m.^2+2)).^2; beta=4.*pi.*n_2.^2.*exi_0.*a.^3.*((m.^2-1)/(m.^2+2)); I_l=P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(2.*(y+(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); I_r=P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(y-(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); I=I_l+I_r; figure(1); surf(x,y,I_r); Footer Page 119 of 89 Header Page 120 of 89 xlabel('ro(micro m)'); ylabel('t(ps)'); zlabel('I_r(J)'); figure(2); surf(x,y,I_l); xlabel('ro(micro m)'); ylabel('t(ps)'); zlabel('I_l(J)'); figure(3); surf(x,y,I) xlabel('ro(micro m)'); ylabel('t(ps)'); zlabel('I(J)'); Footer Page 120 of 89 106 Header Page 121 of 89 107 Chng trỡnh mụ phng quang lc %(Luc F_rho phu thuoc rho,t ) t=-3.*10.^-12:0.05.*10.^-12:3.*10.^-12; z=5.*10^-6; rho=-2.*10.^-6:0.05.*10.^-6:2.*10.^-6; d=10.*10.^-6; w_0=10.^-6; %rho=0; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=10.*10.^(-9); pi=3.14; U=10.^(-6); c=3.*10.^8; k=2.*pi./lamda; mi_0=4.*pi.*10.^-7; exi_0=1/(4.*pi.*9.*10.^9); z_dv=1; x_dv=1; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); [x,y]=meshgrid(rho_ng,t_ng); P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); alpha=(128.*pi.^5.*a.^6./(3.*lamda.^4)).*((m.^2-1)./(m.^2+2)).^2; beta=4.*pi.*n_2.^2.*exi_0.*a.^3.*((m.^2-1)/(m.^2+2)); N_l=P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(-2.*(y(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); N_r=P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(y+(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); N=N_l+N_r; F_s=z_dv.*n_2.*alpha.*N_l./c-z_dv.*n_2.*alpha.*N_r./c; F_g_z=(z_dv.*2.*beta.*N_l./(n_2.*exi_0.*c.*k.*w_0.^2)).*((z_ng+d_ng).*k.^2.*w_0 ^4./(c.^2.*tau.^2)k.*y.*w_0.^2./(c.*tau)+2.*(z_ng+d_ng).*(1+4.*(z_ng+d_ng).^2- Footer Page 121 of 89 Header Page 122 of 89 108 2.*x.^2)./(1+4.*(z_ng+d_ng).^2).^2)+(z_dv.*2.*beta.*N_r./(n_2.*exi_0.*c.*k *w_0.^2)).*((z_ng-d_ng).*k.^2.*w_0.^4./(c.^2.*tau.^2)k.*y.*w_0.^2./(c.*tau)+2.*(z_ng-d_ng).*(1+4.*(z_ng-d_ng).^22.*x.^2)./(1+4.*(z_ng-d_ng).^2)); F_g_rho=((-2.*beta.*N_l./(n_2.*exi_0.*c.*w_0)).*x./(1+4.*(z_ng+d_ng).^2)(2.*beta.*N_r./(n_2.*exi_0.*c.*w_0)).*x./(1+4.*(z_ng-d_ng).^2)); F_t=z_dv.*8.*mi_0.*beta.*N_l.*(y./tau)+z_dv.*8.*(z_ng+d_ng).*mi_0.*beta.*N_ l.*k.*w_0.^2./(c.*tau.^2)+z_dv.*8.*mi_0.*beta.*N_r.*(y./tau)z_dv.*8.*(z_ng-d_ng).*mi_0.*beta.*N_r.*k.*w_0.^2./(c.*tau.^2); F_z=abs(F_s+F_g_z+F_t); figure(1); F_g_rho=F_g_rho.*10.^12; surf(x,y,F_g_rho); xlabel('ro(micro m)'); ylabel('t(ps)'); zlabel('F_ro(pN)'); figure(2); surf(x,y,F_z); xlabel('ro'); ylabel('t'); zlabel('F_z'); figure(3); contour(x,y,F_g_rho,100);grid; figure(4); surf(F_s); Footer Page 122 of 89 Header Page 123 of 89 109 Chng trỡnh mụ phng ng hc ca ht % Qua trinh dong hoc cua hat (phuong trinh Lagevin) for i=1:1:1; tgx=6; t=(-tgx./2).*10^-12:0.05.*10.^-12:(tgx./2).*10.^-12; z=0; rho=0.*10^-6; d=0.10^-6; w_0=1.*10.^-6; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=18.*10.^(-9); pi=3.14; U=0.9.*10.^(-6); c=3.*10.^8; k=2.*pi./lamda; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); x=rho_ng; P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); I_l=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(2.*(t_ng+(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); I_r=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(t_ng-(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); I=I_l+I_r; y=t_ng+tgx./2+(i-1).*tgx; nui =7.797.*10.^(-4); to=10.^-9; %pi=3.14; kbT=4.14.*10.^-21; gamma=6.*pi.*a.*nui; D=kbT./gamma; can2=sqrt(2); beta=((4.*pi.*n_2.^2.*a.^3).*(m.^2-1))./(m.^2+2); A=3.*beta.*P./c./n_2./w_0./gamma; Footer Page 123 of 89 Header Page 124 of 89 110 B=sqrt(2.*D); Ao=1.*10^-6;Bo=-tgx./2;delta=tgx./10000; for j=1:1:10000 t=-tgx./2+(j-1).*delta; tg=exp(-2.*Ao.^2); %tg=tg.*(exp(-Bo.^2)+exp(-(Bo-3).^2)).^2; tg=tg.*exp(-2.*Bo.^2); tg=Ao-A.*tg.*delta.*Ao+B.*rand.*delta-B.*rand.*delta; lido=tg; y_1=t+tgx./2+(i-1).*tgx; % plot(y,I,y_1,lido,''); plot(y_1,lido,''); grid on; hold on; Ao=lido; Bo=t; end xlabel(''); ylabel(''); end Footer Page 124 of 89 Header Page 125 of 89 111 Chng trỡnh mụ phng vựng n nh hai xung cựng pha %khoang bay cua xung for i=1:1:1; tgx=6; t=(-tgx./2).*10^-12:0.05.*10.^-12:(tgx./2).*10.^-12; %t=(-tgx./2+2).*10^-12:0.05.*10.^-12:(tgx./2-2).*10.^-12; z=0; rho=0; d=10.^-6; w_0=1.*10.^-6; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=20.*10.^(-9); pi=3.14; U=5.*10.^(-6); c=3.*10.^8; k=2.*pi./lamda; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); x=rho_ng; P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); I_l=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(2.*(t_ng+(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); I_r=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(t_ng-(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); I=I_l+I_r; y=t_ng+tgx./2+(i-1).*tgx; nui =7.797.*10.^(-4); to=10.^-9; %pi=3.14; kbT=4.14.*10.^-21; gamma=6.*pi.*a.*nui; D=kbT./gamma; can2=sqrt(2); beta=((4.*pi.*n_2.^2.*a.^3).*(m.^2-1))./(m.^2+2); Footer Page 125 of 89 Header Page 126 of 89 112 A=3.*beta.*P./c./n_2./w_0./gamma; B=sqrt(2.*D); Ao=0.*10^-6;Bo=-tgx./2;delta=tgx./10000; for j=1:1:3350 %t=-tgx./2+(j-1).*delta; t=-tgx./2+2+(j-1).*delta; tg=exp(-2.*Ao.^2); tg=tg.*exp(-2.*Bo.^2); tg=Ao-A.*tg.*delta.*Ao+B.*rand.*delta-B.*rand.*delta; lido=tg; y_1=t+tgx./2+(i-1).*tgx; % plot(y,I,y_1,lido,''); plot(y_1,lido,''); grid on; hold on; Ao=lido; Bo=t; end xlabel(''); ylabel(''); end Footer Page 126 of 89 Header Page 127 of 89 113 Chng trỡnh mụ phng vựng n nh cú tr pha gia hai xung %Vung on dinh cú tre cua xung deltaT=q.to for i=1:1:1; tgx=6; t=(-tgx./2).*10^-12:0.05.*10.^-12:(tgx./2).*10.^-12; z=0; rho=0; d=10.^-6; w_0=1.*10.^-6; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=20.*10.^(-9); pi=3.14; U=0.9.*10.^(-6); c=3.*10.^8; k=2.*pi./lamda; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); x=rho_ng; P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); I_l=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(2.*(t_ng+(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); I_r=10^-26.*P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(t_ng-(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); I=I_l+I_r; y=t_ng+tgx./2+(i-1).*tgx; nui =7.797.*10.^(-4); to=10.^-9; %pi=3.14; kbT=4.14.*10.^-21; gamma=6.*pi.*a.*nui; D=kbT./gamma; can2=sqrt(2); beta=((4.*pi.*n_2.^2.*a.^3).*(m.^2-1))./(m.^2+2); A=3.*beta.*P./c./n_2./w_0./gamma; Footer Page 127 of 89 Header Page 128 of 89 114 B=sqrt(2.*D); Ao=0.*10^-6;Bo=-tgx./2;delta=tgx./10000; for j=1:1:15000 t=-tgx./2+(j-1).*delta; tg=exp(-2.*Ao.^2); %deltaT=q.*to q=3; tg=tg.*(exp(-Bo.^2)+exp(-(Bo-q).^2)).^2; tg=Ao-A.*tg.*delta.*Ao+B.*rand.*delta-B.*rand.*delta; lido=tg; y_1=t+tgx./2+(i-1).*tgx; % plot(y,I,y_1,lido,''); plot(y_1,lido,''); grid on; hold on; Ao=lido; Bo=t; end xlabel(''); ylabel(''); end Footer Page 128 of 89 Header Page 129 of 89 115 Chng trỡnh mụ phng vựng n nh ph thuc tn s lp xung %( ph thuc v tn s lp xung) for i=1:1:8; tgx=2; t=(-tgx./2).*10^-12:0.05.*10.^-12:(tgx./2).*10.^-12; z=0; rho=0; d=10.^-6; w_0=1.*10.^-6; tau=1.*10.^-12; rho_ng=rho./w_0; t_ng=t./tau; lamda=1.064.*10.^-6; n_1=1.592; n_2=1.332; m=n_1./n_2; a=20.*10.^(-9); pi=3.14; U=5.*10.^(-6); c=3.*10.^8; k=2.*pi./lamda; z_ng=z./(k.*w_0.^2); d_ng=d./(2.*k.*w_0.^2); x=rho_ng; P=2.*sqrt(2).*U./(pi.^(3./2).*(w_0.^2).*tau); I_l=10^-27.*P.*exp(-2.*x.^2./(1+4.*(z_ng+d_ng).^2)).*exp(2.*(t_ng+(z_ng+d_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng+d_ng).^2); I_r=10^-27.*P.*exp(-2.*x.^2./(1+4.*(z_ng-d_ng).^2)).*exp(-2.*(t_ng-(z_ngd_ng).*k.*w_0.^2./(c.*tau)).^2)./(1+4.*(z_ng-d_ng).^2); I=I_l+I_r; y=t_ng+tgx./2+(i-1).*tgx; nui =7.797.*10.^(-4); to=10.^-9; %pi=3.14; kbT=4.14.*10.^-21; gamma=6.*pi.*a.*nui; D=kbT./gamma; can2=sqrt(2); beta=((4.*pi.*n_2.^2.*a.^3).*(m.^2-1))./(m.^2+2); A=3.*beta.*P./c./n_2./w_0./gamma; Footer Page 129 of 89 Header Page 130 of 89 116 B=sqrt(2.*D); Ao=0.*10^-6;Bo=-tgx./2;delta=tgx./10000; for j=1:1:10000 t=-tgx./2+(j-1).*delta; tg=exp(-2.*Ao.^2); tg=tg.*exp(-2.*Bo.^2); tg=Ao-A.*tg.*delta.*Ao+B.*rand.*delta-B.*rand.*delta; lido=tg; y_1=t+tgx./2+(i-1).*tgx; plot(y,I,y_1,lido,''); grid on; hold on; Ao=lido; Bo=t; end xlabel(''); ylabel(''); end Footer Page 130 of 89 ... TNG QUAN V KèM QUANG HC S DNG HAI CHM XUNG GAUSS NGC CHIU 1.1 Quang lc 1.2 Kỡm quang hc s dng hai chựm xung Gauss ngc chiu 14 1.2.1 Cu hỡnh quang ca hai chựm xung Gauss ngc chiu... chựm xung Gauss ngc chiu S nguyờn lý quang ca kỡm quang hc s dng hai chựm xung Gauss h to Decard [2] c trỡnh by hỡnh 1.5 Hỡnh 1.5 S by quang hc s dng hai chựm Gauss ngc chiu a S hai chựm Gauss. .. Quang Quý khng nh li bng mụ phng v ó xut cu hỡnh kỡm quang hc s dng hai chựm xung Gauss ngc chiu nhm loi b quang lc tỏn x (vi gi thit cỏc tham s ca hai chựm nh nhau) 1.2.1 Cu hỡnh quang ca hai

Ngày đăng: 07/03/2017, 07:37

Tài liệu cùng người dùng

Tài liệu liên quan