Synthesis of cobalt and iron based metal organic frameworks and their applications

127 540 1
Synthesis of cobalt and iron based metal organic frameworks and their applications

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

TU N THACH CONTENTS INTRODUCTION CHAPTER 1: THE CHEMISTRY & APPLICATIONS OF METAL ORGANIC FRAMEWORKS 1.1 Definition of Metal Organic Framework 1.2 Applications of Metal-organic Frameworks 1.2.1 Applications of Metal organic Frameworks as Heterogeneous Catalysis 1.2.1.1 Metal-organic Frameworks as Scaffold for Oxidative Transformation of Organic Substrates 1.2.1.1.1 Cobalt-based MOFs for Oxidative Transformation of Small Organic Substrates 1.2.1.1.2 Metal-organic Frameworks for Oxidative Conversation of Large Organic Substrates 1.2.1.2 Strategy for Design the Catalytic Active Centers in MOFs 1.2.1.2.1 Metal Clusters as the Catalytic Active Sites in MOFs 1.2.1.2.2 Functional Linkers as Catalytic Active Sites in MOFs 10 1.2.1.2.3 Post-Modification Strategy for Incorporating Catalytic Active Sites into MOFs 12 1.2.1.2.4 1.2.2 Immobilization of Catalytic Active Guests into MOFs via Self-Assembly 13 MOFs for Proton Conduction 15 1.2.2.1 Water-mediated Proton Conducting MOFs 16 1.2.2.1.1 Design Strategy toward High Proton Conductivity MOFs under Humidity Condition 16 1.2.2.1.1.1 Doping Proton Donors Molecules into the MOFs 16 1.2.2.1.1.2 Coordinately Unsaturated Metal Sites Approach 17 iv TU N THACH 1.2.2.1.1.3 Acidic Functional Groups Approach 17 1.2.2.1.1.4 Defect Sites Approach 18 1.2.2.1.1.5 Water-mediated Proton Conductivity of MOFs 18 1.2.2.2 Anhydrous proton-conducting MOFs 20 CHAPTER 2: SYNTHESIS OF THE NOVEL METAL-ORGANIC FRAMEWORKS AND MATERIAL CHARACTERIZATIONS 22 2.1 Introduction 22 2.1.1 The Modular Nature in Design and Synthesis of MOFs and The Quest to Design and Synthesize New MOFs 22 2.1.2 Objective 24 2.1.3 Approach 24 2.2 Materials and Instrumentation 24 2.2.1 Materials 24 2.2.2 Single Crystal X-ray Diffraction (SC-XRD) and Powder X-ray Diffraction (PXRD) Data Collection 25 2.2.3 Instruments for Characterization of VNU-10, VNU-15, Fe-NH2BDC, Fe-BTC 26 2.3 Material Synthesis, Single Crystal Structure Analysis and Characterization for VNU-10 27 2.3.1 Synthesis of VNU-10 27 2.3.2 Crystal Structure of VNU-10 27 2.3.3 Characterization of VNU-10 31 2.3.3.1 Microscope Image of VNU-10 31 2.3.3.2 PXRD Analysis of VNU-10 31 2.3.3.3 FT-IR Analysis of activated VNU-10 32 v TU N THACH 2.3.3.4 Thermogravimetric Analysis of VNU-10 33 2.3.3.5 Gas Adsorption Measurements 33 2.4 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of VNU-15 35 2.4.1 Synthesis of VNU-15 35 2.4.2 Crystal Structures of VNU-15 36 2.4.3 Characterization of VNU-15 40 2.4.3.1 Microscope Image of VNU-15 40 2.4.3.2 PXRD Analysis for VNU-15 40 2.4.3.3 FT-IR Analysis of activated VNU-15 41 2.4.3.4 Thermogravimetric Analysis of VNU-15 42 2.4.3.5 Porosity and Gas Adsorption of VNU-15 43 2.4.3.6 Water Uptake, PXRD and FT-IR of Corresponding VNU-15 Sample 45 2.5 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of Fe-NH2BDC 46 2.5.1 Synthesis of Fe-NH2BDC 46 2.5.2 Crystal Structures of Fe-NH2BDC 47 2.5.3 Characterization of Fe-NH2BDC 50 2.5.3.1 Microscope Image of Fe-NH2BDC 50 2.5.3.2 PXRD Analysis of Fe-NH2BDC 50 2.5.3.3 FT-IR Analysis of activated Fe-NH2BDC 51 2.5.3.4 Thermogravimetric Analysis of Fe-NH2BDC 51 2.6 Material Synthesis, Single Crystal Structure Analysis and Characterization for the Novel structure of Fe-BTC 52 vi TU N THACH 2.6.1 Synthesis of Fe-BTC 52 2.6.2 Crystal Structures of Fe-BTC 53 2.6.3 Characterization of Fe-BTC 55 2.6.3.1 PXRD Analysis of Fe-BTC 55 2.6.3.2 Thermogravimetric Analysis of Fe-BTC 56 CHAPTER 3: APPLICATIONS OF VNU-10 AND VNU-15 57 3.1 NEW TOPOLOGICAL HETEROGENEOUS CATALYST Co2(BDC)2(DABCO) FOR AMINATION AS OF HIGHLY ACTIVE OXAZOLES VIA OXIDATIVE C-H/N-H COUPLINGS 57 3.1.1 The Quest for Large Pore Window (above 15 Å) and High Surface Area (above 2600 m2 g-1) MOFs as Catalyst for Large Substrate Conversions 57 3.1.2 Direct Amination of Azoles under Mild Reaction Conditions 58 3.1.3 Objective 59 3.1.4 Approach 59 3.1.5 Method for Catalysis Study 60 3.1.5.1 Method for Gas Chromatographic 60 3.1.5.2 GC Calculation and analysis 61 3.1.5.3 Method for Catalytic studies 61 3.1.5.4 Synthesis of Reported MOFs 62 3.1.6 Investigations on VNU-10 Catalytic Performance for Direct Oxidative Amination of Benzoxazole with Piperidine 62 3.1.6.1 Conditions Screening for Direct Oxidative Amination of Benzoxazole with Piperidine Using Heterogeneous VNU-10 62 3.1.6.1.1 Effect of Reagent Ratio on GC Yield 63 vii TU N THACH 3.1.6.1.2 Effect of Catalyst Loading on GC Yield 64 3.1.6.1.3 Effect of Various Solvents on GC Yield 65 3.1.6.1.4 Effect of Various Acids on GC Yield 66 3.1.6.1.5 Effect of Various Oxidants on GC Yield 68 3.1.6.1.6 Optimizing Condition for Amination of Benzoxazole Reaction Using VNU- 10 Catalyst & Product Analysis by 1H-NMR and 13C-NMR 70 3.1.6.2 Advantages of VNU-10 for Amination of Benzoxazole Reaction over Other Heterogeneous and Homogeneous Catalyst 71 3.1.6.3 The Heterogeneous Nature of VNU-10 74 3.1.6.4 Greener Protocol to Benzoxazole Amine Compounds by Recycling of VNU-10 76 3.1.6.5 Synthesis of Diverse Benzoxazole Amine Derivatives with Different Amine Substitutes 78 3.2 HIGH PROTON CONDUCTIVITY AT LOW RELATIVE HUMIDITY IN AN ANIONIC Fe-BASED METAL-ORGANIC FRAMEWORK 80 3.2.1 Introduction of Hydrogen Fuel Cell, Impedance and Nyquist Plot of Impedance 80 3.3.1.1 Hydrogen Fuel Cell 80 3.3.1.2 Definition of Impedance and Nyquist Plot of Impedance 82 3.2.2 The Quest of Proton Conducting Membrane that Maintain High Conductivity at High Temperature and Low Humidity 83 3.2.3 Objectives 84 3.2.4 Approach 84 3.2.5 Method for Proton Conductivity Measurement 84 3.2.5.1 Preparation of Pelletized VNU-15 and Proton Conductivity Measurement 84 viii TU N THACH 3.2.5.2 Data Proceeding to Obtain Proton Conductivity 85 3.2.6 Investigation for the Proton Conductivity of VNU-15 86 3.2.6.1 Correlation between Structure of VNU-15 and Proton Conductivity 86 3.2.6.2 Proton Conductivity Measurement of VNU-15 under Low Humidity at 95 °C 87 3.2.6.3 Exploration of the Proton Conduction Mechanism of pelletized VNU-15 89 3.2.6.4 Investigation for the Stability of VNU-15 during Proton Conductivity Measurement 92 3.2.6.5 Investigation for the Working Stability of VNU-15 as Function of Time & Conductivities under 55 and 60% RH at 95 °C 95 CONCLUSION 97 List of Publications 99 References 100 ix TU N THACH List of Figures Fig Structure of MOF-5 constructed from Zn4O(CO2)6 cluster and BDC2- linker Fig Recent progress on synthesizing high surface area material Fig a) Crystal structure of PCN-222; b) Peroxidase-like oxidation reaction of pyrogallol catalyzed by PCN-222(Fe) Fig a) Crystal structure of PCN-600(Fe); b) Enzyme mimetic co-oxidation of phenol and 4-aminoantipyrine catalyzed by PCN-600(Fe) Fig a) [Co4Cl]7+ secondary building unit and the crystal structure of Co-btt; b) Epoxides ring opening reaction carried out by Co-btt catalysis Fig a) Crystal structure of ZIF-9; b) The CO2 reduction reactions catalysis by ZIF-9 10 Fig a) Structure of ZnPO-MOF and corresponding linker to construct the MOF; b) Mechanism for acyl-transfer reaction catalyze by ZnPO-MOF 11 Fig a) Urea MOF strategy; b) Catalytic activities of NU-601 12 Fig a) Post-modified MIL-101 by sequent combination between Brønsted acid and Lewis acid sites; b) Investigated the benzylation reaction of mesitylene with benzyl alcohol; c) Compared catalytic activity of MIL-101-Cr-SO3H·Al(III) with other catalysts 12 Fig 10 One-Pot Synthesis of the MIL101-Anchored Nickel Complex, Ni@(Fe)MIL101 13 Fig 11 a) Crystal structure of rho-ZMOF with schematic presentation of [H2TMPyP]4+ porphyrin ring enclosed in rho-ZMOF α-cage, b) Cyclohexane catalytic oxidation at 65 °C Yield % based on TBHP, eq consumed per alcohol produced and eq consumed per ketone produced 14 Fig 12 X-rays crystal structure of CuPW11O39]5-@HKUST-1 15 x TU N THACH Fig 13 Structure of VNU-10, the paddle wheel cluster are connected with BDC2- by two different way to form the DABCO connected kgm layers of VNU-10 and DABCO connected sql layer of Co2(BDC)2(DABCO) C, black; O, red; Co, light blue; N, blue; H was omitted for clarity 28 Fig 14 Crystal structure of VNU-10 represented in DABCO connected kgm layers; a) Vertexes and edges assignment for cobalt nodes and linkages of VNU-10; b) Structure of VNU-10 represented in DABCO connected kgm layers Black, BDC2-; Blue, DABCO; light blue, paddle wheel cobalt nodes; yellow, linkages between iron nodes 28 Fig 15 Thermal ellipsoid plot of the asymmetric unit of VNU-10 with 30% probability C, black; O, red; Co, light blue; N, blue; H, white 29 Fig 16 Green needle crystal of VNU-10 at forty zooming times 31 Fig 17 The calculated PXRD pattern of VNU-10 from single crystal data (red) compared with the experimental patterns from the as-synthesized VNU-10 (orange) and Co2(BDC)2DABCOsql (Black) 32 Fig 18 FT-IR of activated VNU-10; inset: zooming with wavelength from 1450 to 1690 cm-1 32 Fig 19 Thermogravimetric analysis of VNU-10 in air stream under 20% O2 and 80% N2 33 Fig 20 N2 adsorption isotherm of VNU-10 at 77 K 34 Fig 21 CO2, CH4, N2 adsorption isotherm of VNU-10 at 273 K 34 Fig 22 CO2, CH4, N2 adsorption isotherm of VNU-10 at 298 K 35 Fig 23 Crystal structure of VNU-15 is constructed from BDC2- and NDC2- linkers that stitch together corrugated infinite rods of [Fe2(CO2)3(SO4)2(DMA)2]∞ (a) These corrugated infinite rods propagate along the a and b axes to form the three-dimensional architecture The structure is shown from the [110] and [001] plans (b, c, respectively) xi TU N THACH Atom colors: Fe, orange and blue polyhedra; C, black; O, red; S, yellow; N, blue; and DMA cations, light blue All other H atoms are omitted for clarity 37 Fig 24 Representation of the fob topology that VNU-15 adopts a) Vertexes and edges assignment for iron nodes and linkages of VNU-15; b) Structure of VNU-15 represented in fob topology Atom colors: Fe, orange and blue polyhedra; C, black; O, red; S, yellow; N, blue; and DMA cations, light blue All other H atoms are omitted for clarity 38 Fig 25 Thermal ellipsoid plot of the asymmetric unit of VNU-15 with 50% probability C, black; O, red; Fe, orange; S, yellow; N, blue; H, white 40 Fig 26 Orange octahedral crystal of VNU-15 at forty zooming times 40 Fig 27 The calculated PXRD pattern of VNU-15 from single crystal data (black) compared with the experimental patterns from the as-synthesized sample (blue) and samples after activation at 100 °C (red) 41 Fig 28 FT-IR spectra of activated VNU-15 42 Fig 29 Thermogravimetric analysis of VNU-15 in air stream with 20% O2 and 80% N2 42 Fig 30 CO2, CH4, N2 adsorption isotherm of VNU-15 at 298 K 43 Fig 31 CO2, CH4, N2 adsorption isotherm of VNU-15 at 273 K 44 Fig 32 Water uptake of VNU-15 at 25 °C as a function of P/P0 ranging from 8% to 80% Inset: Water uptake of VNU-15 at 25 °C with P/P0 ranging from 8% to 62.58% 45 Fig 33 PXRD analysis of VNU-15 exhibiting the long range order of the structure was retained after water uptake up to 60% RH at 25 °C The experimental pattern (red) corresponded well with the simulated (black) diffraction pattern of VNU-15 from single crystal data 45 xii TU N THACH Fig 34 FT-IR spectra of VNU-15, post H2O uptake at 60% RH, as compared with activated VNU-15 46 Fig 35 Structure of Fe-NH2BDC: a) Fe2(CO2)4(SO4)2 clusters were connected by NH2BDC to form Fe-NH2BDC; b) Connected sql layers through hydrogen bond between (CH3)2NH2+ and sulphate ligand; c) Crystal structure of Fe-NH2BDC represents in sql layers Atom color: C, black; O, red; Fe, orange polyhedra; S, yellow; N, blue; H of nitrogen, white; H atoms connected to carbon are omitted for clarity 47 Fig 36 Thermal ellipsoid plot of the asymmetric unit of Fe-NH2BDC with 30% probability C, black; O, red; Fe, orange; S, yellow; N, blue; H, white; Cu green 48 Fig 37 Orange blocked crystal of Fe-NH2BDC at eighty zooming times 50 Fig 38 The calculated PXRD pattern of Fe-NH2BDC from single crystal data (black) compared with the experimental patterns from the as-synthesized sample (red) 50 Fig 39 FT-IR of activated Fe-NH2BDC 51 Fig 40 Thermogravimetric analysis of activated Fe-NH2BDC in air stream with 20% O2 and 80% N2 52 Fig 41 Crystal structure of Fe-BTC is constructed from BTC3- linkers and two different SBU: tetrahedral single iron atom SBU and the iron paddle wheel SBU (a); The crystal structure of Fe-BTC viewed along [001] plan (b); The mmm-a topology of Fe-BTC (c) Atom colors: Fe, blue polyhedra; C, black All other H atoms are omitted for clarity Atom colors: Fe, blue polyhedra; C, black; O, red; S, yellow; N, blue; and DMA cations, light green All other H atoms are omitted for clarity 53 Fig 42 Thermal ellipsoid plot of the asymmetric unit of Fe-BTC with 30% probability C, black; O, red; Fe, orange; S, yellow; N, blue; H, white 55 Fig 43 The calculated PXRD pattern of Fe-BTC from single crystal data (black) compared with experimental patterns from the as-synthesized sample (red) 55 xiii TU N THACH 3.2.6.5 Investigation for the Working Stability of VNU-15 as Function of Time & Conductivities under 55 and 60% RH at 95 °C Fig 76 Nyquist plot of VNU-15 at 55 (blue circles) and 60% RH (red circles) at 95 ºC after 40 h of consecutive ac impedance measurements Fig 77 Time-dependent proton conductivity of VNU-15 at 55% RH (blue circles) and 60% RH (red circles) and 95 ºC In order to understand the working capacity of VNU-15 as a function of time, timedependent ac impedance measurements were performed at 60% RH and 95 °C 95 TU N THACH Remarkably, it was found that VNU-15 maintained ultrahigh proton conductivity (2.6 × 10-2 S cm-1) for ≥ 40 h, without any observable loss in performance (Figure 76, 77) 96 TU N THACH CONCLUSION Material Synthesis and characterization  Four novel metal organic frameworks, namely, VNU-10, VNU-15, Fe-NH2-BDC and Fe-BTC have been synthesized and the structure of these compounds was solved by single crystal x-ray diffraction (SC-XRD)  SC-XRD revealed the structure of VNU-10, which was built from DABCO- pillared kagome layers in the triangular and hexagonal fashion to construct the large hexagonal channels (14 Å) with high surface area (2600 m2 g-1)  SC-XRD revealed that the architecture of VNU-15, that encompasses a novel infinite rod SBU The architecture of VNU-15 adopts the unprecedented fob topology with pore channels that are densely occupied by a hydrogen-bonded network of sulphate ligands and dimethylammonium (DMA) ions  The structure of Fe-NH2-BDC and Fe-BTC were identified by SC-XRD Compound Fe-NH2-BDC possessed a two dimension architecture, in which the framework was constructed from sql layers, on the other hand, compound Fe-BTC possessed a three dimension architecture, which adopting mmm-a topology  Full characterization of VNU-10 and VNU-15 was done by various host method, included single and powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR), thermogravimetric analysis (TGA) gas (CO2, CH4, N2), atomic absorption spectroscopy (AAS) and water adsorption at various temperature Preliminary characterization on Fe-NH2-BDC and Fe-BTC have been done by powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR), thermogravimetric analysis (TGA) Application of VNU-10  VNU-10 with large pore aperture was found to efficient catalyze for direct amination reactions of oxazoles Excellent conversions with a variety of amines were obtained Remarkably, VNU-10 offered significantly higher activity than that of Co2(BDC)2(DABCO) with the sql structure as well as other Co-based catalysts 97 TU N THACH  VNU-10 was proven to be recyclable without a significant degradation in catalytic activity Leaching tests indicated no contribution of homogeneous leached active cobalt species  Various derivatives from amination of benzoxazole with different amines were also synthesized using VNU-10 catalyst Application of VNU-15  VNU-15 exhibited ultrahigh proton conductivity (2.9 × 10-2 S cm-1) at the practical conditions of 60% RH and 95 °C with low activation energy (0.22 eV) through the wide range temperature  Time-dependent proton conductivity at 60% RH and 95 °C indicated the stable conductivity of pelletized VNU-15 with no appreciated loss of conductivity over 40 hours  Powder X-rays diffraction, Fourier transforms infrared analysis (FT-IR) revealed the maintenance of long range structural order of VNU-15 after proton conducting measurement  The proton conductivity of VNU-15 is amongst the highest reported in MOF chemistry, especially when considering practical operating conditions 98 TU N THACH List of Publications Tu, N Thach; Nguyen, K D.; Nguyen T N.; Truong, T.; Phan N T S New topological Co2(BDC)2(DABCO) as highly active heterogeneous catalyst for amination of oxazoles via oxidative C-H/N-H couplings, Catalysis Science & Technology 2016, 6, 1384-1392 DOI: 10.1039/C5CY01145K (IF: 5.287) Tu, N Thach; Phan N Q.; Vu, T T.; Nguyen, H L.; Cordova, K E.; Furukawa, H High Proton Conductivity at Low Relative Humidity in an Anionic Fe-based Metal-Organic Framework, Journal of Materials Chemistry A 2016, 4, 3638-3641 DOI: 10.1039/c5ta10467j (IF: 8.262) 99 TU N THACH References (1) Furukawa, H.; Cordova, K E.; O’Keeffe, M.; Yaghi, O M Science 2013, 341 (6149), 974 (2) Li, Q.; He, R.; Jensen, J O.; Bjerrum, N J Chem Mater 2003, 15 (26), 4896 (3) Ramaswamy, P.; Wong, N E.; Shimizu, G K H Chem Soc Rev 2014, 43 (16), 5913 (4) Tu, T N.; Phan, N Q.; Vu, T T.; Nguyen, H L.; E Cordova, K.; Furukawa, H J Mater Chem A 2016, (10), 3638 (5) Tu Nguyen, K.D., Nguyen, T.N., Truong, T., Phan, N.T.S., T N Catal Sci Technol 2016, (5), 1384 (6) Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O M Nature 1999, 402, 276 (7) Farha, O K.; Yazaydın, A O.; Malliakas, C D.; Kanatzidis, M G.; Nguyen, S B T.; T.Hupp, J.; Hauser, B G Nat Chem 2010, (11), 944 (8) Furukawa, H.; Aratani, N.; Choi, S B.; Choi, E.; Snurr, R Q.; O’Keeffe, M.; Kim, J.; Yaghi, O M Science 2010, 329 (5990), 424 (9) Li, B.; Wen, H M.; Zhou, W.; Chen, B J Phys Chem Lett 2014, (20), 3468 (10) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C Y Chem Soc Rev 2014, 43 (16), 6011 (11) Kreno, L E.; Leong, K.; Farha, O K.; Allendorf, M.; Van Duyne, R P.; Hupp, J T Chem Rev 2012, 112 (2), 1105 (12) So, M C.; Wiederrecht, G P.; Mondloch, J E.; Hupp, J T.; Farha, O K Chem Commun 2015, 51 (17), 3501 (13) Keskin, S.; Kızılel, S Ind Eng Chem Res 2011, 50 (4), 1799 (14) Wang, L.; Han, Y.; Feng, X.; Zhou, J.; Qi, P.; Wang, B Coord Chem Rev 2016, 100 TU N THACH 307, 361 (15) Kuppler, R J.; Timmons, D J.; Fang, Q R.; Li, J R.; Makal, T A.; Young, M D.; Yuan, D.; Zhao, D.; Zhuang, W.; Zhou, H C Coord Chem Rev 2009, 253 (23-24), 3042 (16) Tonigold, M.; Tu, Y.; Bredenkötter, B.; Rieger, B.; Bahnmüller, S.; Hitzbleck, J.; Langstein, G.; Volkmer, D Angew Chem Int Ed 2009, 48 (41), 7546 (17) Tonigold, M.; Lu, Y.; Mavrandonakis, A.; Puls, A.; Staudt, R.; Mollmer, J.; Sauer, J.; Volkmer, D Chem Eur J 2011, 17 (31), 8671 (18) Ren, H Y.; Yao, R X.; Zhang, X M Inorg Chem 2015, 54 (13), 6312 (19) Sun, D.; Sun, F.; Deng, X.; Li, Z Inorg Chem 2015, 54 (17), 8639 (20) Feng, D.; Gu, Z Y.; Li, J R.; Jiang, H L.; Wei, Z.; Zhou, H C Angew Chem Int Ed 2012, 51 (41), 10307 (21) Wang, K.; Feng, D.; Liu, T F.; Su, J.; Yuan, S.; Chen, Y P.; Bosch, M.; Zou, X.; Zhou, H C J Am Chem Soc 2014, 136 (40), 13983 (22) Vermoortele, F.; Vandichel, M.; Voorde, B Van de; Ameloot, R.; Waroquier, M.; Speybroeck, V Van; Vos, D E D Angew Chem Int Ed 2012, 51 (20), 4887 (23) Phan, N T S.; Nguyen, C K.; Nguyen, T T.; Truong, T Catal Sci Technol 2014, (2), 369 (24) Leus, K.; Muylaert, I.; Vandichel, M.; Marin, G B.; Waroquier, M.; Speybroeck, V V; Voort, P V D Chem Commun 2010, 46 (28), 5085 (25) Shi, D.; Ren, Y.; Jiang, H.; Cai, B.; Lu, J Inorg Chem 2012, 51 (12), 6498 (26) Horike, S.; Dinca, M.; Tamaki, K.; Long, J R J Am Chem Soc 2008, 130 (18), 5854 (27) Phan, N T S.; Vu, P H L.; Nguyen, T T J Catal 2013, 306, 38 101 TU N THACH (28) Roberts, J M.; Fini, B M.; Sarjeant, A a; Farha, O K.; Hupp, J T.; Scheidt, K a J Am Chem Soc 2012, 134 (7), 3334 (29) Shultz, A M.; Farha, O K.; Hupp, J T.; Nguyen, S B T J Am Chem Soc 2009, 131 (12), 4204 (30) Zhu, C.; Yuan, G.; Chen, X.; Yang, Z.; Cui, Y J Am Chem Soc 2012, 134 (19), 8058 (31) Meng, L.; Cheng, Q.; Kim, C.; Gao, W Y.; Wojtas, L.; Chen, Y S.; Zaworotko, M J.; Zhang, X P.; Ma, S Angew Chem Int Ed 2012, 51 (40), 10082 (32) Li, B.; Leng, K.; Zhang, Y.; Dynes, J J.; Wang, J.; Hu, Y.; Ma, D.; Shi, Z.; Zhu, L.; Zhang, D.; Sun, Y.; Chrzanowski, M.; Ma, S J Am Chem Soc 2015, 137 (12), 4243 (33) Manna, K.; Zhang, T.; Greene, F X.; Lin, W J Am Chem Soc 2015, 137 (7), 2665 (34) Canivet, J.; Aguado, S.; Schuurman, Y.; Farrusseng, D J Am Chem Soc 2013, 135 (11), 4195 (35) Alcañiz, J J.; Gascon, J.; Kapteijn, F J Mate Chem 2012, 22 (20), 10102 (36) Alkordi, M H.; Y.Liu; Larsen, R W.; Eubank, J F.; Eddaoudi, M J Am Chem Soc 2008, 130 (38), 12639 (37) J Song; Z Luo; D K Britt; H Furukawa; O M Yaghi; K I Hardcastle; Hill, C L J Am Chem Soc 2011, 133 (42), 16839 (38) Biswas, S.; Maes, M.; Dhakshinamoorthy, A.; Feyand, M.; De Vos, D E.; Garcia, H.; Stock, N J Mater Chem 2012, 22 (20), 10200 (39) Wang, S.; Yao, W.; Lin, J.; Ding, Z.; Wang, X Angew Chem Int Ed 2014, 53 (4), 1034 (40) Y., M.; S., K.; N., S.; K., K Angew Chem Int Ed 2013, 52 (10), 2688 102 TU N THACH (41) Dybtsev, D N.; Ponomareva, V G.; Aliev, S B.; Chupakhin, A P.; Gallyamov, M R.; Moroz, N K.; Kolesov, B A.; Kovalenko, K A.; Shutova, E S.; Fedin, V P ACS Appl Mater Interfaces 2014, (7), 5161 (42) Phang, W J.; Lee, W R.; Yoo, K.; Ryu, D W.; Kim, B.; Hong, C S Angew Chem Int Ed 2014, 53 (32), 8383 (43) Ponomareva, V G.; Kovalenko, K A.; Chupakhin, A P.; Dybtsev, D N.; Shutova, E S.; Fedin, V P J Am Chem Soc 2012, 134 (38), 15640 (44) Jeong, N C.; Samanta, B.; Lee, C Y.; Farha, O K.; Hupp, J T J Am Chem Soc 2012, 134 (1), 51 (45) Xu, G.; Otsubo, K.; Yamada, T.; Sakaida, S.; Kitagawa, H J Am Chem Soc 2013, 135 (20), 7438 (46) Phang, W J.; Jo, H.; Lee, W R.; Song, J H.; Yoo, K.; Kim, B.; Hong, C S Angew Chem Int Ed 2015, 54 (17), 5142 (47) Kim, S.; Dawson, K W.; Gelfand, B S.; Taylor, J M.; Shimizu, G K J Am Chem Soc 2013, 135 (3), 963 (48) Ramaswamy, P.; Wong, N E.; Gelfand, B S.; Shimizu, G K J Am Chem Soc 2015, 137 (24), 7640 (49) Sen, S.; Nair, N N.; Yamada, T.; Kitagawa, H.; Bharadwaj, P K J Am Chem Soc 2012, 134 (47), 19432 (50) Shigematsu, A.; Yamada, T.; Kitagawa, H J Am Chem Soc 2011, 133 (7), 2034 (51) Taylor, J M.; Dawson, K W.; Shimizu, G K H J Am Chem Soc 2013, 135 (4), 1193 (52) Taylor, J M.; Komatsu, T.; Dekura, S.; Otsubo, K.; Takata, M.; Kitagawa, H J Am Chem Soc 2015, 137 (35), 11498 (53) Taylor, J M.; Dekura, S.; Ikeda, R.; Kitagawa, H Chem Mater 2015, 27 (7), 103 TU N THACH 2286 (54) Tang, Q.; Liu, Y.; Liu, S.; He, D.; Miao, J.; Wang, X.; Yang, G.; Shi, Z.; Zheng, Z J Am Chem Soc 2014, 136 (35), 12444 (55) Zhai, Q G.; Mao, C.; Zhao, X.; Lin, Q.; Bu, F.; Chen, X.; Bu, X.; Feng, P Angew Chem Int Ed 2015, 54 (27), 7886 (56) Nagarkar, S S.; Unni, S M.; Sharma, A.; Kurungot, S.; Ghosh, S K Angew Chem Int Ed 2014, 53 (10), 2638 (57) Horike, S.; Kamitsubo, Y.; Inukai, M.; Fukushima, T.; Umeyama, D.; Itakura, T.; Kitagawa, S J Am Chem Soc 2013, 135 (12), 4612 (58) Colodrero, R M.; Pastor, P O.; Losilla, E R.; Aranda, M A.; Reina, L L.; Papadaki, M.; McKinlay, A C.; Morris, R E.; Demadis, K D.; Cabeza, A Dalt Trans 2012, 41 (14), 4045 (59) Sadakiyo, M.; Yamada, T.; Kitagawa, H J Am Chem Soc 2009, 131 (29), 9906 (60) Garcia, M B.; Colodrero, R M.; Papadaki, M.; Garczarek, P.; Zon, J.; Pastor, P O.; Losilla, E R.; Reina, L L.; Aranda, M A.; Lazarte, D C.; Demadis, K D.; Cabeza, A J Am Chem Soc 2014, 136 (15), 5731 (61) Panda, T.; Kundu, T.; Banerjee, R Chem Commun 2012, 48 (44), 5464 (62) Panda, T.; Kundu, T.; Banerjee, R Chem Commun 2013, 49 (55), 6197 (63) Ohkoshi, S I.; Nakagawa, K.; Tomon, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H J Am Chem Soc 2010, 132 (19), 6620 (64) Pardo, E.; Train, C.; Gontard, G.; Boubekeur, K.; Fabelo, O.; Liu, H.; Dkhil, B.; Lloret, F.; Nakagawa, K.; Tokoro, H.; Ohkoshi, S.; Verdaguer, M J Am Chem Soc 2011, 133 (39), 15328 (65) Colodrero, R M.; Pastor, P O.; Losilla, E R.; Alonso, D H.; Aranda, M A.; Reina, L L.; Rius, J.; Demadis, K D.; Moreau, B.; Villemin, D.; Palomino, M.; Rey, F.; Cabeza, A Inorg Chem 2012, 51 (14), 7689 104 TU N THACH (66) Hurd, J A.; Vaidhyanathan, R.; Thangadurai, V.; Moudrakovski, I L.; Shimizu, G K Nat Chem 2009, (9), 705 (67) Yamada, T.; Sadakiyo, M.; Kitagawa, H J Am Chem Soc 2009, 131 (9), 3144 (68) Liang, X.; Zhang, F.; Feng, W.; Zou, X.; Zhao, C.; Na, H.; Sun, F.; Zhu, G Chem Sci 2013, (3), 983 (69) Colodrero, R M P.; Papathanasiou, K E.; Stavgianoudaki, N.; Pastor, P O.; Losilla, E R.; Aranda, M A G.; Reina, L L.; Sanz, J.; Sobrados, I.; Lazarte, D C.; Ruiz, J M G.; Atienzar, P.; Rey, F.; Demadis, K D.; Cabeza, A Chem Mater 2012, 24 (19), 3780 (70) Begum, S.; Wang, Z.; Donnadio, A.; Costantino, F.; Casciola, M.; Valiullin, R.; Chmelik, C.; Bertmer, M.; Karger, J.; Haase, J.; Krautscheid, H Chem Eur J 2014, 20 (29), 8862 (71) Dong, X Y.; Wang, R.; Wang, J Z.; Zang, S Q.; Maka, T C W J Mater Chem A 2015, (2), 641 (72) Mallick, A.; Kundu, T.; Banerjee, R Chem Commun 2012, 48 (70), 8829 (73) Sadakiyo, M.; Yamada, T.; Kitagawa, H J Am Chem Soc 2014, 136 (38), 13166 (74) Okawa, H.; Shigematsu, A.; M.Sadakiyo; Miyagawa, T.; Yoneda, K.; M.Ohba; Kitagawa, H J Am Chem Soc 2009, 131 (37), 13516 (75) Bao, S S.; Otsubo, K.; Taylor, J M.; Jiang, Z.; Zheng, L M.; Kitagawa, H J Am Chem Soc 2014, 136 (26), 9292 (76) Umeyama, D.; Horike, S.; Inukai, M.; Hijikata, Y.; Kitagawa, S Angew Chem Int Ed 2011, 50 (49), 11706 (77) Horike, S.; Chen, W.; Itakura, T.; Inukai, M.; Umeyama, D.; Asakura, H.; Kitagawa, S Chem Commun 2014, 50 (71), 10241 (78) Umeyama, D.; Horike, S.; Inukai, M.; Itakura, T.; Kitagawa, S J Am Chem 105 TU N THACH Soc 2012, 134 (30), 12780 (79) Ponomareva, V G.; Kovalenko, K A.; Chupakhin, A P.; Shutova, E S.; Fedin, V P Solid State Ionics 2012, 225, 420 (80) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O M Science 2002, 295 (5554), 469 (81) Ma, B Q.; Mulfort, K L.; Hupp, J T Inorg Chem 2005, 44 (14), 4912−4914 (82) Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O M Science 2008, 319 (5865), 939 (83) Shimizu, G K.; Vaidhyanathan, R.; Taylor, J M Chem Soc Rev 2009, 38 (5), 1430 (84) Peng, Y.; Krungleviciute, V.; Eryazici, I.; Hupp, J T.; Farha, O K.; Yildirim, T J Am Chem Soc 2013, 135 (32), 11887 (85) Hamon, L.; Serre, C.; Devic, T.; Loiseau, T.; Millange, F.; Ferey, G.; Weireld, G D J Am Chem Soc 2009, 131 (25), 8775 (86) Cavka, J H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K P J Am Chem Soc 2008, 130 (42), 13850 (87) Rosi, N L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O M J Am Chem Soc 2004, 127 (5), 1504 (88) Spek, A L Acta Cryst 2009, D65, 148 (89) O’Keeffe, M.; Peskov, M A.; Ramsden, S J.; Yaghi, O M Acc Chem Res 2008, 41 (12), 1782 (90) Serre, C.; Draznieks, C M.; Audebrand, N.; Filinchuk, Y.; Ferey, G Science 2007, 315 (5820), 1828 (91) Lee, C Y.; Bae, Y S.; Jeong, N C.; Farha, O K.; Sarjeant, A A.; Stern, C L.; Nickias, P.; Snurr, R Q.; Hupp, J T.; Nguyen, S T J Am Chem Soc 2011, 133 106 TU N THACH (14), 5228 (92) Liu, D.; Lang, J P.; Abrahams, B F J Am Chem Soc 2011, 133 (29), 11042 (93) Morabito, J V; Chou, L Y.; Li, Z.; Manna, C M.; Petroff, C A.; Kyada, R J.; Palomba, J M.; Byers, J A.; Tsung, C K J Am Chem Soc 2014, 136 (36), 12540 (94) Farha, O K.; Eryazici, I.; Jeong, N C.; Hauser, B G.; Wilmer, C E.; Sarjeant, A A.; Snurr, R Q.; Nguyen, S T.; Yazaydin, A O.; Hupp, J T J Am Chem Soc 2012, 134 (36), 15016 (95) Deng, H.; Grunder, S.; Cordova, K E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Whalley, A C.; Liu, Z.; Asahina, S.; Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J F.; Yaghi, O M Science 2012, 336 (6084), 1018 (96) Farha, O K.; Malliakas, C D.; Kanatzidis, M G.; Hupp, J T J Am Chem Soc 2010, 132 (3), 950 (97) Kaye, S S.; Dailly, A.; Long, J R J Am Chem Soc 2007, 129 (46), 14176 (98) Nelson, A P.; Farha, O K.; Hupp, J T J Am Chem Soc 2009, 131 (2), 458 (99) Park, H J.; Lim, D W.; Yang, W S.; Oh, T R.; Suh, M P Chem Eur J 2011, 17 (26), 7251 (100) Ferey, G.; Draznieks, C M.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I Science 2005, 309 (5743), 2040 (101) Volkringer, C.; Meddouri, M.; Loiseau, T.; Guillou, N.; Ferey, G.; Haouas, M.; Taulelle, F.; Audebrand, N.; Latroche, M Inorg Chem 2008, 47 (24), 11892 (102) Chun, H.; Moon, J Inorg Chem 2007, 46 (11), 4371 (103) Maniam, P.; Stock, N Inorg Chem 2011, 50 (11), 5085 (104) Hili, R.; Yudin, A K Nat Chem Biol 2006, (6), 284 (105) Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z Angew Chem Int Ed 2010, 49 (46), 107 TU N THACH 8670 (106) Ng, K H.; Chan, A S C.; Yu, W Y J Am Chem Soc 2010, 132 (37), 12862 (107) Vedernikov, A N.; Caulton, K G Chem Commun 2004, No 2, 162 (108) Paul, E.; Patt, J.; Hartwig, J F J Am Chem Soc 1994, 116 (13), 5969 (109) Guram, A S.; Buchwald, S L J Am Chem Soc 1994, 116 (17), 7901 (110) Evano, G.; Blanchard, N.; Toumi, M Chem Rev 2008, 108 (8), 3054 (111) Kawano, T.; Hirano, K.; Satoh, T.; Miura, M J Am Chem Soc 2010, 132 (20), 6900 (112) Matsuda, N.; Hirano, K.; Satoh, T.; Miura, M Org Lett 2011, 13 (11), 2860 (113) Tan, Y.; Hartwig, J F J Am Chem Soc 2010, 132 (11), 3676 (114) Nadres, E T.; Daugulis, O J Am Chem Soc 2012, 134 (1), (115) Wasa, M.; Yu, J Q J Am Chem Soc 2008, 130 (43), 14058 (116) Yoo, E J.; Ma, S.; Mei, T S.; Chan, K S.; Yu, J Q J Am Chem Soc 2011, 133 (20), 7652 (117) Chen, X.; Hao, X S.; Goodhue, C E.; Yu, J Q J Am Chem Soc 2006, 128 (21), 6790 (118) John, A.; Nicholas, K M J Org Chem 2011, 76 (10), 4158 (119) Shuai, Q.; Deng, G.; Chua, Z.; Bohle, D S.; Li, C J Adv Synth Catal 2010, 352 (4), 632 (120) Wang, Q.; Schreiber, S L Org Lett 2009, 11 (22), 5178 (121) Cho, S H.; Yoon, J.; Chang, S J Am Chem Soc 2011, 133 (15), 5996 (122) Cho, S H.; Kim, J Y.; Lee, S Y.; Chang, S Angew Chem Int Ed 2009, 48 (48), 9127 (123) Kim, J Y.; Cho, S H.; Joseph, J.; Chang, S Angew Chem Int Ed 2010, 49 (51), 108 TU N THACH 9899 (124) Wang, H.; Getzschmann, J.; Senkovska, I.; Kaskel, S Microporous Mesoporous Mater 2008, 116, 653 (125) Wang, W.; Zhang, R.; He, D.; Liao, S Catal Comm 2011, 12 (10), 875 (126) Maes, M.; Schouteden, S.; Hirai, K.; Furukawa, S.; Kitagawa, S.; Vos, D E D Langmuir 2011, 27 (15), 9083 (127) Rosi, N L.; Kim, J.; Eddaoudi, M.; Chen, B.; O’Keeffe, M.; Yaghi, O M J Am Chem Soc 2005, 127 (5), 1504 (128) Steele, B C.; Heinzel, A Nature 2001, 414 (6861), 345 (129) Wang, Y J.; Zhao, N.; Fang, B.; Li, H.; Bi, X T.; Wang, H Chem Rev 2015, 115 (9), 3433 (130) Sone, Y.; Ekdunge, P.; Simonsson, D J Electrochem Soc 1996, 143 (4), 1254 (131) Li, Z.; He, G.; Zhang, B.; Cao, Y.; Wu, H.; Jiang, Z.; Tiantian, Z ACS Appl Mater Interfaces 2014, (12), 9799 (132) Kim, G.; Jhi, S H ACS Nano 2011, (2), 805 (133) Martin, K E.; Kopasz, J P Fuel Cells 2009, (4), 356 109 [...]... MOFs, ZIFs with smaller pore size in catalytic transformation of large organic substrates.5 Applications for other new materials, namely, Fe-NH2-BDC and Fe-BTC, are still under investigations 2 TU N THACH CHAPTER 1: THE CHEMISTRY & APPLICATIONS OF METALORGANIC FRAMEWORKS 1.1 Definition of Metal Organic Frameworks Metal organic frameworks (MOFs) is the compound which are consisted of metal clusters and. .. exceeding those of traditional porous materials such as zeolites and activated carbons (Figure 2).7,8 1.2 Applications of Metal- organic Frameworks Due to high porosity and the modular nature of MOF design and synthesis, in which the backbone components [e.g inorganic and organic secondary building units (SBUs)], can be easily tailored, MOFs is promised for diverse applications such as gas storage and separation,9... our scope of exploration, we employed the cheap and commercial linkers as well as earth abundant metals such as iron and cobalt to synthesize the novel metal- organic frameworks Subsequently, the newly discovered crystal structure were employed as standpoint for initially justifying the interesting properties of novel MOFs to use in relevant applications In detail, four new metal- organic frameworks. .. centers, a few MOFs catalysts exhibited interesting properties for oxidative transformation of large organic substrates, however, the examples for these class of catalytic reactions are still very rare 1.2.1.1 Metal- organic Frameworks as Scaffold for Oxidative Frameworks for Oxidative Transformation of Organic Substrates 1.2.1.1.1 Cobalt- based Metal- organic Transformation of Small Organic Substrates... Recently, MOFs have been employed as the platform for catalytic synthesis of diverse organic compounds.10 In fact, most of published MOFs possessed the small pore aperture with low surface area (less than 8 Å and 2000 m2 g1 ), some of most noticeable MOFs have large internal surface areas and ultralow densities.7 Due to the large and uniform pore size and definitely coordinative environment of metal active... than 20.000 different metal- organic frameworks (MOFs) have been reported.1 Several of these were found to have the capabilities to solve modern challenges Despite the significant progress in synthesis and applications of MOFs, there are maintained challenges sought to overcome by novel MOFs, which possess novel or enhanced properties For examples: i The global demand of cleaner and sustainable energy... goal.2 Recently, metal- organic frameworks (MOFs) have been explored as potential candidates for use as electrolyte materials 40 This is primarily due to the modular nature of MOF design and synthesis, in which the backbone components [e.g inorganic and organic secondary building units (SBUs)] can be easily tailored to satisfy particular applications. 1 Indeed, previous work on developing MOFs as proton... Co-MOF-74 and the mixed of Co & Ni-MOF-74 by Zhaohui Li et all The results revealed that introduction of active Co into the Ni-MOF-74 framework enabled the inert Ni-MOF-74 to show activity for cyclohexene oxidation with the maximum conversion of 54.7% Furthermore, the superior catalytic performance, compared with pure Co-MOF-74, was observed.19 1.2.1.1.2 Metal- organic Frameworks for Oxidative Conversation of. .. conduction,3 sensor,11 light harvest,12 drug delivery,13 batteries and supercapacitors,14 and so on.1,15 1.2.1 Applications of Metal- organic Frameworks as Heterogeneous Catalysis Catalysts, generally, were classified into homogenous and heterogeneous, in which, the homogenous catalysts were recognized for fast kinetic and high conversion in organic synthesis, albeit, several drawbacks have been accounted for,... published a porphyrin -based MOF, named PCN-222 and took advantage of large pore size of material with porphyrin active center to use for catalyst The self-assembly of tetrakis(4-carboxyphenyl)porphyrin) and zirconium cluster leaded to csq framework, in which, the architecture contained hexagonal and triangular one dimension channels with diameter of 36 and 8 Å (Figure 3a) The iron analogue 7 TU N THACH ... those of traditional porous materials such as zeolites and activated carbons (Figure 2).7,8 1.2 Applications of Metal-organic Frameworks Due to high porosity and the modular nature of MOF design and. .. Nature in Design and Synthesis of MOFs and The Quest to Design and Synthesize New MOFs 22 2.1.2 Objective 24 2.1.3 Approach 24 2.2 Materials and Instrumentation... Water-mediated Proton Conductivity of MOFs 18 1.2.2.2 Anhydrous proton-conducting MOFs 20 CHAPTER 2: SYNTHESIS OF THE NOVEL METAL-ORGANIC FRAMEWORKS AND MATERIAL CHARACTERIZATIONS

Ngày đăng: 11/01/2017, 12:11

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan