chapter 3 intrusive igneous rocks

39 193 0
chapter 3 intrusive igneous rocks

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Igneous Rocks, Intrusive Activity, and the Origin of Igneous Rocks Physical Geology 13/e, Chapter Tim Horner, CSUS Geology Department The Rock Cycle • A rock is a naturally formed, consolidated material usually composed of grains of one or more minerals • The rock cycle shows how one type of rocky material gets transformed into another – Representation of how rocks are formed, broken down, and processed in response to changing conditions – Processes may involve interactions of geosphere with hydrosphere, atmosphere and/or biosphere – Arrows indicate possible process paths within the cycle The Rock Cycle and Plate Tectonics • Magma is created by melting of rock above a subduction zone • Less dense magma rises and cools to form igneous rock • Igneous rock exposed at surface gets weathered into sediment Convergent plate boundary • Sediments transported to low areas, buried and hardened into sedimentary rock • Sedimentary rock heated and squeezed at depth to form metamorphic rock • Metamorphic rock may heat up and melt at depth to form magma Igneous Rocks • Magma is molten rock • Igneous rocks form when magma cools and solidifies – Intrusive igneous rocks form when magma solidifies underground Granite • Granite is a common example – Extrusive igneous rocks form when magma solidifies at the Earth’s surface (lava) • Basalt is a common example Basalt Igneous Rock Textures • Texture refers to the size, shape and arrangement of grains or other constituents within a rock • Texture of igneous rocks is primarily controlled by cooling rate • Extrusive igneous rocks cool quickly at or near Earth’s surface and are typically finegrained (most crystals 1 mm) Fine-grained igneous rock Coarse-grained igneous rock Special Igneous Textures • A pegmatite is an extremely coarse-grained igneous rock (most crystals >5 cm) formed when magma cools very slowly at depth • A glassy texture contains no crystals at all, and is formed by extremely rapid cooling • A porphyritic texture includes two distinct crystal sizes, with the larger having formed first during slow cooling underground and the small forming during more rapid cooling at the Earth’s surface Pegmatitic igneous rock Porphyritic igneous rock Igneous Rock Identification Igneous rock names are based on texture (grain size) and mineralogic composition Textural classification • • – – Plutonic rocks (gabbro-diorite-granite) are coarse-grained and cooled slowly at depth V olcanic rocks (basalt-andesite-rhyolite) are typically fine-grained and cooled rapidly at the Earth’s surface Compositional classification • – – – Mafic rocks (gabbro-basalt) contain abundant dark-colored ferromagnesian minerals Intermediate rocks (diorite-andesite) contain roughly equal amounts of dark- and light-colored minerals Felsic rocks (granite-rhyolite) contain abundant light-colored minerals Igneous Rock Identification • Igneous rock names are based on texture (grain size) and mineralogic composition Chemistry (mineral content) Igneous Rock Chemistry Rock chemistry, particularly silica (SiO2) content, determines mineral content and general color of igneous rocks • – Mafic rocks have ~50% silica, by weight, and contain dark-colored minerals that are abundant in iron, magnesium and calcium • – Felsic (silicic) rocks have >65% silica, by weight, and contain lightcolored minerals that are abundant in silica, aluminum, sodium and potassium • – Intrusive/extrusive felsic rocks - granite/rhyolite Intermediate rocks have silica contents between those of mafic and felsic rocks • – Intrusive/extrusive mafic rocks - gabbro/basalt Intrusive/extrusive intermediate rocks - diorite/andesite Ultramafic rocks have [...]... of coarse-grained rocks Intrusive Rock Bodies V olcanic neck • – Shallow intrusion formed when magma solidifies in throat of volcano Dike • – Tabular intrusive structure that cuts across any layering in country rock Light-colored dikes Sill • – Tabular intrusive structure that parallels layering in country rock Pluton • – – Large, blob-shaped intrusive body formed of coarse-grained igneous rock, commonly... beneath Earth’s surface Chill and solidify fairly quickly in cool country rock Generally composed of fine-grained rocks Insert new Fig 3. 11 here Intrusive Rock Bodies • Intrusive rocks exist in bodies or structures that penetrate or cut through pre-existing country rock • Intrusive bodies are given names based on their size, shape and relationship to country rock – Deep intrusions: Plutons • • • Form at.. .Intrusive Rock Bodies • Intrusive rocks exist in bodies or structures that penetrate or cut through pre-existing country rock • Intrusive bodies are given names based on their size, shape and relationship to country rock – Shallow intrusions: Dikes and sills • • • Form 100 km2  What causes rocks to melt?  The internal Earth is hot  Temperature increases downward  Yet the interior of the Earth is mostly solid  Melts occur by three processes:  Decompression... melting Decompression melting: LIQUID Normal conditions: Mantle is not hot enough to melt SOLID Decompression melting: Move mantle rocks up toward the surface – decrease the pressure at a given temperature Normal conditions: Mantle is not hot enough to melt Increase temperature of rocks at a given depth Water decreases the melting temperature of hot rock = FLUX MELTING Fluxing effect- Used in foundries Add... feldspar forms with a chemical composition that evolves (from Ca-rich to Na-rich) with decreasing temperature Bowen’s Reaction Series Lessons from Bowen’s Reaction Series • • • • • Large variety of igneous rocks is produced by large variety of magma compositions Mafic magmas will crystallize into basalt or gabbro if early-formed minerals are not removed from the magma Intermediate magmas will similarly

Ngày đăng: 29/11/2016, 23:13

Từ khóa liên quan

Mục lục

  • PowerPoint Presentation

  • Slide 2

  • Slide 3

  • Slide 4

  • Slide 5

  • Slide 6

  • Slide 7

  • Slide 8

  • Chemistry (mineral content)

  • Slide 10

  • Slide 11

  • Slide 12

  • Slide 13

  • Deep intrusive structures: Batholiths

  • The Big Picture

  • 1) Decrease Pressure

  • Slide 17

  • 2) Increase Temperature

  • 2. Increase Temperature

  • 3. Change composition (add H2O)

  • Slide 21

  • Plate tectonics and melting

  • Divergent Boundary

  • Hot Spots (e.g. Hawaii)

  • Slide 25

  • Slide 26

  • Slide 27

  • Slide 28

  • Slide 29

  • Slide 30

  • Slide 31

  • Convergent Margins- flux melting

  • Most magma is generated by melting the mantle (makes a mafic melt) but we see a whole range of compositions from mafic to felsic. How do we get different compositions? or: Why is continental crust felsic, not mafic?

  • Bowen’s Reaction Series

  • Slide 35

  • Slide 36

  • Slide 37

  • Evidence for crustal assimilation

  • Slide 39

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan