Các tính chất của chuẩn orlicz trong không gian orlicz

11 174 0
Các tính chất của chuẩn orlicz trong không gian orlicz

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN NGUYỄN THANH THÚY CÁC TÍNH CHẤT CỦA CHUẨN ORLICZ TRONG KHÔNG GIAN ORLICZ Chuyên ngành : TOÁN GIẢI TÍCH Mã số: 60 46 01 02 LUẬN VĂN THẠC SỸ TOÁN HỌC Người hướng dẫn khoa học: TS VŨ NHẬT HUY Hà Nội - 2014 Lời cám ơn Trước trình bày nội dung luận văn, xin bày tỏ lòng biết ơn chân thành sâu sắc tới TS Vũ Nhật Huy, người thầy vô mẫu mực tận tình giúp đỡ bảo suốt trình hoàn thành luận văn tốt nghiệp Tôi xin chân thành cám ơn giúp đỡ thầy giáo, cô giáo khoa Toán - Cơ - Tin học, trường Đại học Khoa học Tự nhiên - Đại học Quốc gia Hà Nội Khoa sau đại học, nhiệt tình truyền thụ kiến thức tạo điều kiện giúp đỡ hoàn thành khóa Cao học Tôi xin bày tỏ lòng biết ơn đến gia đình, bạn bè động viên khuyến khích nhiều thời gian nghiên cứu học tập Do làm quen với công tác nghiên cứu khoa học hạn chế thời gian thực nên luận văn tránh khỏi thiếu sót Tác giả kính mong nhận ý kiến đóng góp thầy cô bạn để luận văn hoàn thiện Hà Nội, năm 2015 Nguyễn Thanh Thúy Mục lục Mở đầu KHÔNG GIAN ORLICZ 1.1 Hàm lồi 1.2 Hàm Young 1.3 Cặp hàm liên hợp 1.4 Lớp Orlicz 17 1.5 Không gian Orlicz 20 1.6 Chuẩn Orlicz chuẩn Luxemburg 21 CÁC TÍNH CHẤT CHUẨN ORLICZ 26 2.1 Bất đẳng thức Kolmogorov-Stein 26 2.2 Tính tương đương chuẩn Orlicz chuẩn Luxemburg 32 2.3 Công thức tính chuẩn Orlicz 36 2.4 Định lý hàm dịch chuyển 43 Kết luận 46 Tài liệu tham khảo 46 Mở đầu Năm 1931, W Orlicz Z.W Birnbaum đề xuất lớp không gian Banach mà sau Orlicz phát triển Lớp không gian ngày sau gọi không gian Orlicz.Lớp không gian Orlicz mở rộng lớp không gian Lp xác định qua hàm Young φ Lý thuyết không gian Orlicz có nhiều ứng dụng giải tích hàm, phương trình vi phân đạo hàm riêng, lý thuyết nhúng Ngoài phần mở đầu, kết luận tài liệu tham khảo, luận văn chia làm hai chương: Chương 1: Không gian Orlicz Chương trình bày hàm lồi, hàm Young, hàm Young liên hợp, khái niệm để ta xây dựng lớp Orlicz không gian Orlicz, chương luận văn trình bày chuẩn Orlicz chuẩn Luxemburg, kết liên quan đến chuẩn Orlicz chuẩn Luxemburg sở xây dựng chương sau Chương 2: Một số tính chất chuẩn Orlicz Chương nội dung cốt lõi luận văn, chương luận văn trình bày tính tương đương chuẩn Orlicz chuẩn Luxemburg, kết liên quan đến chuẩn Orlicz, chương luận văn trình bày đến bất đẳng thức Kolmogorov-Stein chuẩn Orlicz định lý hàm dịch chuyển Chương KHÔNG GIAN ORLICZ Trong chương trình bày khái niệm kết không gian Orlicz, kết sử dụng để xây dựng chứng minh kết chương sau (xem [1, 3, 4]) 1.1 Hàm lồi Định nghĩa 1.1 Hàm φ : R → R gọi hàm lồi φ (λx + (1 − λ) y) ≤ λφ (x) + (1 − λ) φ (y) ∀x, y ∈ R, λ ∈ [0; 1] Định lý 1.1 Giả sử hàm φ : (a; b) → R Khi đó, hàm φ hàm lồi với đoạn đóng [c; d] ⊂ (a; b), ta có x ϕ (t) dt với c ≤ x ≤ d, φ (x) = φ (c) + c đây, ϕ : R → R hàm đơn điệu không giảm liên tục trái Ngoài ra, φ có đạo hàm trái phải điểm thuộc (a; b) đạo hàm khác không đếm điểm Chứng minh Điều kiện cần Do φ hàm lồi nên ta có φ (c1 ) − φ (c) φ (y) − φ (x) φ (d) − φ (d1 ) ≤ ≤ c1 − c y−x d − d1 (1.1) ∀c < c1 ≤ x < y ≤ d1 < d Vậy ta có |φ (y) − φ (x)| ≤ K1 |y − x| với K1 = max φ (c1 ) − φ (c) φ (d) − φ (d1 ) ; c1 − c d − d1 Từ ta có φ thỏa mãn điều kiện Lipschitz [c; d] φ liên tục tuyệt đối (a; b) Vậy theo định lý Lesbesgue-Vitali cổ điển ta có x φ (t) dt với a ≤ x ≤ b φ (x) = φ (a) + (1.2) a Ta kiểm tra tính chất φ φ (x + h) − φ (x) h h→0+ φ (x + h + h ) − φ (x + h) ≤ lim h h→0+ φ (d) − φ (c) −∞ h Do đạo hàm trái đạo hàm phải φ tồn tại điểm thuộc [c; d] với x < y φ+ (x) ≤ φ (y) − φ (x) ≤ φ− (y) y−x Vì theo công thức (1.1) ta có φ− (x) ≤ φ+ (x) nên φ± (.) hàm tăng tập điểm gián đoạn hàm không đếm Do đó, φ− (x) = φ+ (x) xảy điểm liên tục hàm φ (1.2) Ngược lại giả sử ta có x ϕ (t) dt với c ≤ x ≤ d φ (x) = φ (c) + c Ta chứng minh φ hàm lồi, với c ≤ x ≤ d, ta xét dây cung L (x) nối (c, φ (c)) với (d, φ (d)) cho L (x) = φ (c) + φ (c) − φ (d) (x − c) c−d Ta phải chứng minh L (x) ≥ φ (x), nghĩa φ (x) − φ (c) φ (d) − φ (c) ≤ x−c d−c với c < x < d (1.3) Từ biểu diễn φ, ta có c x−c x ϕ (t) dt ≤ ϕ (x) ≤ x−d d ϕ (u) du x ϕ (c) ≤ ϕ (t) ≤ ϕ (x) ≤ ϕ (d) với c < t < x < d Bây ta thấy vế phải (1.3) biểu diễn dạng c d ϕ (t) dt + x ϕ (u) du x (d − x) + (x − c) x−c ≥ c ϕ (t) dt, x c = x−c ϕ (t) dt = x x−d d ϕ (u) du x φ (x) − φ (c) x−c Từ ta có hàm φ cho lồi Định lý chứng minh Tiếp theo ta trình bày bất đẳng thức Jensen Định lý 1.2 Cho ∆ tập đo thỏa mãn µ (∆) = 1, µ độ đo Lesbesgue cho φ : R → R lồi, f : ∆ → R đo được, φ ∆ f dx ≤ f dx ∆ ∆ φ (f ) dx tồn φ (f ) dx ∆ Chứng minh Do φ hàm lồi R nên theo định lý 1.1, với đoạn đóng [a; b] ⊂ R ta có biểu diễn sau x ϕ (t) dt với a ≤ x ≤ b, φ (x) = φ (a) + a ϕ : R → R hàm đơn điệu không giảm liên tục trái Do ϕ tăng nên ta có x ϕ (t) dt ≥ φ (a) + ϕ (a) (x − a) φ (x) = φ (a) + (1.4) a Xét x = f (ω), a = ∆ f dx lấy tích phân (1.4) ta φ (f ) dx − φ ∆ f dx ≥ ϕ (a) ∆ f dx − ∆ từ ta suy điều phải chứng minh f dx ∆ =0 1.2 Hàm Young + Định nghĩa 1.2 Một hàm lồi φ : R → R gọi hàm Young thỏa mãn điều kiện • φ(−x) = φ(x) • φ(0) = • lim φ(x) = +∞ x→∞ Ví dụ 1.1 Cho ≤ p < ∞ hàm số φ (x) = |x|p , x ∈ R Khi hàm φ hàm Young liên tục Chứng minh Hiển nhiên φ(−x) = φ(x) φ (0) = Do ≤ p nên lim φ(x) = lim |x|p = +∞ x→∞ x→∞ Do hàm φ hàm Young Dễ thấy ∀x0 ∈ R lim φ (x) = φ (x0 ) x→x0 Vậy φ hàm Young liên tục R Chứng minh hoàn thành Ví dụ 1.2 Cho ≤ p < ∞ hàm số φ (x) =     0, với ≤ |x| ≤ a < ∞ φ (x) = |x − a|p , với a < |x| < b    +∞, với |x| ≥ b, < a < b < +∞ Khi φ hàm Young Chứng minh Hiển nhiên φ1 (x) hàm lồi liên tục đoạn [a; b], hàm φ hàm lồi R Rõ ràng φ (x) = với x = 0, φ(−x) = φ(x) lim φ (x) = +∞ nên x→∞ φ hàm Young Hơn φ (x) < ∞ hàm liên tục (0; b), φ hàm Young liên tục (0; b), nhảy tới +∞ b > Chứng minh hoàn thành Tiếp theo chứng ta xét đến lớp hàm Young đặc biệt Định nghĩa 1.3 Hàm φ gọi N - hàm φ hàm Young liên tục thỏa mãn • φ(x) = x = 0, φ(x) x = 0, φ(x) • lim x = +∞, x→∞ • φ (R) ⊂ R+ • lim x→0 Ví dụ 1.3 Cho ≤ p < ∞ hàm số φ (x) =     0, với ≤ |x| ≤ a < ∞ φ (x) = |x − a|p , với a < |x| < b    +∞, với |x| ≥ b, < a < b < +∞ Khi φ hàm Young N - hàm Chứng minh Trong ví dụ 1.2 ta hàm φ cho hàm Young Ta có với ∀x ∈ (0; a) φ (x) = hàm Young cho vi phạm điều kiện thứ nên N - hàm Chứng minh hoàn thành 1.3 Cặp hàm liên hợp Mệnh đề 1.1 Giả sử φ : R → R + hàm Young Khi đó, φ biểu diễn sau |x| φ (x) = ϕ (t) dt (1.5) đó, ϕ (0) = 0, ϕ : R+ → R + liên tục trái không giảm ϕ (x) = +∞ với x ≥ a φ (x) = +∞ với x ≥ a > Xét hàm η hàm ngược mở rộng hàm đơn điệu ϕ xác định sau η (x) = inf {t : ϕ (t) > x} , x ≥ (1.6) Khi η (0) = 0, η tăng xác định Từ tính liên tục trái ϕ, tập {t : ϕ (t) > x} nửa đoạn mở trái Vì ϕ hàm Borel nên η Bây ta định nghĩa |y| ψ (y) = η (u) du (1.7) Khi đó, ψ gọi hàm Young liên hợp φ Khi ψ (0) = 0, ψ lồi Ta chứng minh cặp (φ, ψ) thỏa mãn bất đẳng thức Young từ suy ψ hàm Young liên hợp φ + Mệnh đề 1.2 Giả sử φ : R → R hàm Young, ψ hàm xác định công thức (1.6) (1.7) φ Khi đó, (φ, ψ) thỏa mãn bất đẳng thức Young xy ≤ φ (x) + ψ (y) (1.8) với x ≥ 0, y ≥ 0, đẳng thức xảy y = ϕ (x) x = η (y) với x ≥ 0, y ≥ Chứng minh Nếu với x0 , y0 mà φ (x0 ) = +∞ ψ (y0 ) = +∞ bất đẳng thức cần chứng minh Do ta xét trường hợp φ (x) < ∞ ψ (y) < ∞, với x < ∞ y < ∞ Khi đó, ta có y x ≤ xy = dudv 0 = dudv + {u x,v y:0 u ϕ(v),0 ψ(u)ϕ(v),0 v ψ(u)} min{y,ϕ(u)} du min{x,η(v)} dv y ϕ (u) du + dudv du η (v) dv = φ (x) + ψ (y) Ở đẳng thức xảy y ≥ ϕ (u) nên η (v) = x y = ϕ (x) x ≥ η (y) Bất đẳng thức chứng minh Ví dụ 1.4 Cho < p < ∞ hàm φ(x) = xp p hàm Young, xác định hàm liên hợp ψ hàm Young φ Chứng minh Với φ(x) = xp p ,1 < p < ∞ đạo hàm φ ϕ (x) = xp−1 10 Tài liệu tham khảo [1] Hà Huy Bảng, (2003), Lý thuyết không gian Orlicz, NXB Đại học Quốc gia Hà Nội [2] Mai Thị Thu (2006), Một số bất đẳng thức đạo hàm không gian Orlicz Lorentz, Luận án [3] Phạm Kỳ Anh - Trần Đức Long, (2001), Hàm thực giải tích hàm, NXB Đại học Quốc gia Hà Nội [4] Christian Léonard, (2007), Orlicz Spaces, Work in progress [5] Hà Huy Bảng (1996), A remark on the Kolmogorov - Stein inequality, Journal of Mathematical Analysis and Applications, Vol 203, pp 861-867 [6] Trương Văn Thương (2000), Some collections of functions dense in an Orlicz space., Acta Mathematica Vietnamica, Vol 25 (2), pp.195 - 208 47 [...]...Tài liệu tham khảo [1] Hà Huy Bảng, (2003), Lý thuyết không gian Orlicz, NXB Đại học Quốc gia Hà Nội [2] Mai Thị Thu (2006), Một số bất đẳng thức đạo hàm trong không gian Orlicz và Lorentz, Luận án [3] Phạm Kỳ Anh - Trần Đức Long, (2001), Hàm thực và giải tích hàm, NXB Đại học Quốc gia Hà Nội [4] Christian Léonard, (2007), Orlicz Spaces, Work in progress [5] Hà Huy Bảng (1996), A remark... Bảng (1996), A remark on the Kolmogorov - Stein inequality, Journal of Mathematical Analysis and Applications, Vol 203, pp 861-867 [6] Trương Văn Thương (2000), Some collections of functions dense in an Orlicz space., Acta Mathematica Vietnamica, Vol 25 (2), pp.195 - 208 47

Ngày đăng: 27/08/2016, 22:21

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan