Lectures 22, 23 Typical dynamic instability problems and test review

26 652 0
Lectures 22, 23 Typical dynamic instability problems and test review

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

AAE 556 Aeroelasticity Lectures 22, 23 Typical dynamic instability problems and test review Purdue Aeroelasticity 22-1 How to recognize a flutter problem in the making Given: a DOF system with a parameter Q that creates loads on the system that are linear functions of the displacements  M1     &&x1   K1  + M   &&x2   0   x1   = Q    K   x2   p21   x1     x1     =  ei ωt   x 2   x   p12   x1      x2  ( ) K = M1 ω 22 = ω − ω ω 12 + ω 22 + ω12ω 22 = Q is a real number If p12 and p21 have the same sign (both positive or both negative) can flutter occur? ω12   −ω + ω 12     Q  − M p21    ( ( ) ∆ = −ω +ω 2 )( K2 M2  Q   − p12       M1   x  = 0   x  0  −ω + ω 22      ( ) ) Q=0 Q not zero Q2 −ω +ω − p12 p21 = M 1M 2 2 The modified determinant  M1 −ω     x1   K1  +   M   x2   ( ∆ = − ω + ω12 ω12 = 2 ω + ω 2 ωn = ± 2 )(   x1    −Q  K   x2   p21 p12   x1  0  r  =      x2  0  ) Q − ω + ω22 − p12 p21 = M 1M K1 M1 ω 22 (ω −ω K2 = M2 ) 2 Q2 +4 p12 p21 M 1M If flutter occurs two frequencies must merge 2 ω + ω 2 ωn = ± 2 (ω −ω ) 2 Q2 +4 p12 p21 M 1M FLUTTER – Increasing Q must cause the term under the radical sign to become zero K1 ω1 = ω 22 = (ω M1 K2 M2 Q =− −ω ) Q2 =− p12 p21 M 1M ??? 2 ( M M ω 12 − ω 22 p12 p21 ) p12 p21 = − ( M M ω 12 − ω 22 ) 4Q For frequency merging flutter to occur, p12 and p21 must have opposite signs If one of the frequencies can be driven to zero then we have divergence ( ∆ = −ω +ω 2 ωn = )( ) Q2 −ω +ω − p12 p21 = M 1M 2 2 ( )( ) ω 12 ω 22 ( )( ) Q2 = p12 p21 M 1M KK Q = p12 p21 2 ∆ = = ω1 ω2 Q2 − p12 p21 M 1M M M 2ω 12ω 22 Q = p12 p21 p12 p21 = M M 2ω12ω 22 Q2 Divergence requires that the cross-coupling terms have the same sign Aero/structural interaction model TYPICAL SECTION What did we learn? L = qSCL α (αo + θ ) V lift e θ GJ KT ∝ span torsion spring KT  qScCMAC   αo +  K T  L = qSCLα   − qSeC Lα    K   T Divergence-examination vs perturbation L= 1− qSCLα qSeCLα αo + KT Kh  1− qSCLα qSeC Lα KT  qScC  MAC    K   T h   − L   =   KT θ  MSC  ∞ = + q + q + q + = + ∑ q n 1− q n=1 Perturbations & Euler’s Test V KT (∆θ ) > (∆L)e lift e θ torsion spring KT .result - stable - returns -no static equilibrium in perturbed state KT ( ∆θ ) < ( ∆L)e result - unstable -no static equilibrium - motion away from equilibrium state KT ( ∆θ ) = ( ∆L)e result - neutrally stable - system stays - new static equilibrium point Stability equation is original equilibrium equation with R.H.S.=0 ∆θ ≠ V θ lift e torsion spring KT (KT − qSeC Lα )= KT = The stability equation is an equilibrium equation that represents an equilibrium state with no "external loads" – Only loads that are deformation dependent are included The neutrally stable state is called self-equilibrating Multi-degree of freedom systems A 2KT 3KT panel panel e b/2 V 5 KT   −2 A b/2 αο + θ2 αο + θ1 shear centers aero centers From linear algebra, we know that there is a solution to the homogeneous equation only if the determinant of the aeroelastic stiffness matrix is zero view A-A −2 θ1   −1  θ1  1   + qSeC Lα    = qSeC Lα αo    θ2  −1   θ  1 Three different definitions of roll effectiveness • Generation of lift – unusual but the only game in town for the typical section • Generation of rolling moment – • contrived for the typical section – reduces to lift generation • Multi-dof systems – this is the way to it • Generation of steady-state rolling rate or velocity-this is the information we really want for airplane performance • Reversal speed is the same no materr which way you it Control effectiveness  q  c  CM δ   1+    qD e CLδ   L = qSCL δ δ o =0 q 1− qD q  c  CM δ 1+ =0   qD e CLδ KT  CL δ   qR = −  ScCLα  CMδ  Lift α0+ θ V MAC t orsion spring KT shear center e δ0 reversal is not an instability - large input produces small output opposite to divergence phenomenon Steady-state rolling motion  qScCMδ v   L = = qSCLα δo − + qSC Lα δ o  KT V Lift α0+ θ V MAC t orsion spring KT shear center e δ0 Swept wings α structural= θ − φ tan Λ qn = qcos2 Λ K1 d f K2 αo Λ V C V cosΛ A b c B A   Kφ    −tb  − Q Kθ   −te b  φ b   Qα o     θ  = cosΛ   e   e B C Divergence bt   ∆ = Kθ Kφ + Q Kθ − Kφe   Kθ  e   c   Kφ  tan Λ crit = 2    c b  Kθ  2.0 nondimensional divergence dynamic pressure Seao qD =   b  K  tan Λ  cos Λ  1−   θ   e K    φ  nondimensional divergence dynamic pressure vs wing sweep angle 1.5 sweep back sweep f orward 1.0 5.72 degrees 0 -0 -1.0 b/c=6 e/c=0.10 Kb/Kt=3 -1.5 -2.0 -90 -75 -60 -45 -30 -15 15 30 sweep angle (degrees) 45 60 75 90 Lift effectiveness lift eff ect iveness vs dynamic pressure 2.0 lif t ef f ect iveness unswept wing 1.5 unswept wing divergence 1.0 15 degrees sweep 30 degrees sweep 0 50 10 150 20 250 dynamic pressure (psf ) 30 350 Flexural axis x ref e r enc e ax is Λ θ E = θ − φ tanΛ β y Flexural axis - locus of points where a concentrated force creates no stream-wise twist (or chordwise aeroelastic angle of attack) θE = The closer we align the airloads with the flexural axis, the smaller will be aeroelastic effects How to recognize a flutter problem in the making Given: a DOF system with a parameter Q that creates loads on the system that are linear functions of the displacements  M1     &&x1   K1  + M   &&x2   0   x1   = Q    K   x2   p21   x1     x1     =  ei ωt   x 2   x   p12   x1      x2  ( ) K = M1 ω 22 = ω − ω ω 12 + ω 22 + ω12ω 22 = Q is a real number If p12 and p21 have the same sign (both positive or both negative) can flutter occur? ω12   −ω + ω 12     Q  − M p21    ( ( ) ∆ = −ω +ω 2 )( K2 M2  Q   − p12       M1   x  = 0   x  0  −ω + ω 22      ( ) ) Q=0 Q not zero Q2 −ω +ω − p12 p21 = M 1M 2 2 If flutter occurs two frequencies must merge 2 ω + ω 2 ωn = ± 2 (ω −ω ) 2 Q2 +4 p12 p21 M 1M FLUTTER – Increasing Q causes the term under the radical sign to be zero K1 ω1 = ω 22 = ( M1 ω 12 K2 M2 Q =− − ω 22 ) Q2 = −4 p12 p 21 M1 M ( M M ω 12 − ω 22 p12 p21 ) p12 p21 = − ( M M ω 12 − ω 22 ) 4Q For frequency merging flutter to occur, p12 and p21 must have opposite signs If one of the frequencies is driven to zero then we have divergence ωn =  M1     &&x1   K1  +  M   &&x2   0   x1   = Q    K   x2   p21 ( )( ) 2 ∆ = = ω1 ω2 ( )( ) ω 12 ω 22 Q2 = p12 p21 M 1M KK Q = p12 p21 p12   x1      x2  Q2 − p12 p21 M 1M M M 2ω 12ω 22 Q = p12 p21 p12 p21 = M M 2ω12ω 22 Q2 Divergence requires that the cross-coupling terms are of the same sign Fuel line flutter A hollow, uniform-thickness, flexible tube has a mass per unit length of m slugs/ft and carries liquid fuel with density ρ to a rocket engine The fuel flow rate is U ft/sec through a pipe cross-section of A The tube is straight and has supports a distance L apart, the tube bending displacement is approximated to be  πy   2π y  w (y,t ) = φ1 sin  + φ sin  L L  φ1 φ2 Unknown amplitudes of vibrational motion The free vibration frequencies when the fluid is not flowing are:  π  EI ω =  L mo  2π EI ω 22 =   L mo mo = m + ρA Fluid flow creates system coupling, but through the velocity, not the displacement  ρ AU && φ1 −   mo L  &  ρ AU  π   φ1 = ÷φ2 +  ω1 −  ÷÷ ÷ mo  L      ρ AU && φ2 −   mo L  &  ρ AU  2π   φ2 = ÷φ1 +  ω2 −  ÷÷ mo  L  ÷    Find the divergence speed Estimate the flow speed that flutter occurs, if it occurs Divergence is found by computing the determinant of the aeroelastic stiffness matrix ∆ aesm  ρ AU φ&&1 −   mo L  &  ρ AU  π   φ1 = ÷φ2 +  ω1 −  ÷÷ ÷ m L    o    ρ AU φ&&2 −   mo L  &  ρ AU  2π   φ2 = ÷φ1 +  ω2 −  ÷÷ ÷ m L    o    ρAU  π   ρAU  2π    ω2 − =0 =  ω1 −        m L m L     o o      L   U1 = ρA  π  mo ω12   L   U2 =  ρA  2π  mo ω 22  π  EI U div =    L  ρA Assume that coupling leads to flutter and find an estimate of the merging point  ρ AU  π   φ&&1 +  ω1 − φ1 =  ÷÷  ÷ mo  L     ρ AU  2π 2  φ&&2 +  ω2 − φ2 =  ÷÷  ÷ mo  L    Harmonic motion?  2   2  2  ρ AU π ρ AU π    2  −ω + ω − m  L   −ω + ω − m  L   =  o    o    The frequencies are approximated  2   2  2  π  2π   2 ρAU ρAU      = − ω + ω − − ω + ω −       mo  L    mo  L      ω = ω 12 2 ρAU π    − mo  L   ρAU 2π 2   ω = ω2 − mo  L  2 2 ρAU  π  ρAU  2π  ω −   ≅ ω2 −   mo  L  mo  L  F 2 F 2  π  EI mo L U ≅ ω2 − ω1 = 5  ρA π  L  ρA F ( )

Ngày đăng: 05/08/2016, 00:59

Từ khóa liên quan

Mục lục

  • Slide 1

  • How to recognize a flutter problem in the making

  • The modified determinant

  • If flutter occurs two frequencies must merge

  • Slide 5

  • Slide 6

  • Divergence-examination vs. perturbation

  • Perturbations & Euler’s Test

  • Slide 9

  • Multi-degree of freedom systems

  • MDOF stability

  • Three different definitions of roll effectiveness

  • Control effectiveness

  • Steady-state rolling motion

  • Swept wings

  • Divergence

  • Lift effectiveness

  • Flexural axis

  • How to recognize a flutter problem in the making

  • If flutter occurs two frequencies must merge

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan