Building the tree of life reconstructing the evolution of a recent and megadiverse branch (calyptrates diptera)

201 361 0
Building the tree of life reconstructing the evolution of a recent and megadiverse branch (calyptrates  diptera)

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BUILDING THE TREE OF LIFE: RECONSTRUCTING THE EVOLUTION OF A RECENT AND MEGADIVERSE BRANCH (CALYPTRATAE: DIPTERA) SUJATHA NARAYANAN KUTTY (B.Tech) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2008 The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact. Thomas H. Huxley ii ACKNOWLEDGEMENTS We don't accomplish anything in this world alone . and whatever happens is the result of the whole tapestry of one's life and all the weavings of individual threads from one to another that creates something - Sandra Day O'Connor. The completion of this project would have been impossible without help from so many different quarters and the few lines of gratitude and acknowledgements written out in this section would no justice to the actual amount of support and encouragement that I have received and that has contributed to making this study a successful endeavor. I am indebted to Prof. Meier for motivating me to embark on my PhD (at a very confusing point for me) and giving me a chance to explore a field that was quite novel to me. I express my sincere gratitude to him for all the guidance, timely advice, pep talks, and support through all the stages of this project and for always being patient while dealing with my ignorance. He has also been very understanding during all my nonacademic distractions in the last two years. Thanks Prof.- your motivation and inspiration in the five years of my graduate study has given me the confidence to push the boundaries of my own capabilities. You should be acknowledged as the best supervisor one can have. I would also like to thank Dr. Thomas Pape for sending large amounts of specimens all of which have been invaluable for this study and for all his timely inputs, immaculate proof reading and important suggestions at various junctures of the project. I would also like to i thank Dr. Brian Wiegmann and his lab members especially Brain Cassel for my enriching stint at NCSU, Raleigh. Special thanks to Dr. Frederik Petersen, Dr. Adrian Pont, Dr. Marco Bernasconi and Dr. František Šifner for all their important and useful inputs in this study. I also thank all other collaborators who have directly and indirectly contributed to this study. I would like to thank Kathy, my first labbie along with whom I figured out the tricks of pcr-ing and Nalini for all the unwinding sessions and especially for her support and ‘motivation’ during the last phase of thesis writing. Thanks girls for not just being such wonderful colleagues but also lovely friends with whom I have spent some of the best times in evolab. Thanks to all the other members of the evolab (past and current) who have helped and supported me at different stages and many of whom I have seen begin and finish their projects during these years: Gaurav, Shiyang, Gwynne, Guanyang, Weisong, Yuchen, Farhan, Danwei, Denise, Dave, Nanthinee, Zeehan, Martin, Mirza, WaiKit and Huifung. Thanks Anu, Aparna, Nilofer and Rika for all the fun times, get-togethers and of course the brilliant dance sessions. Thanks to Suni for being my support system for almost a decade now, Janesh for always sticking by my side, Ettan, Chechi and Vishu for being my family away from home and my ii friends on the other side of the globe who have ‘virtually’ always supported me- Pavan and Venky. I have to thank Acha, Amma and Sumi, my ‘perfect’ family for pitching in whichever way they could, and my extended family especially my darling Meena and also my new family (in-law). Lastly and most importantly - Sunil, who switched roles from being the ‘crazy’ guy in my world to my fiancée and finally to my better half, all during the course of this dissertation. In your own quiet way, you have always been my pillar of strength and constant source of support over the years. Thank you so much for understanding and putting up with my daily crankiness, random cooking patterns and the late night writing sessions for the last couple of months. I owe you one! iii TABLE OF CONTENTS Acknowledgements i Table of contents iv Summary ix List of Tables xi List of Figures xii List of Publications xv Introduction Chapter 1: Phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers 1.1 Introduction 1.1.1 Family portraits: Biology and Systematics 1.1.2 Hippoboscoidea Phylogenetics 11 1.2 Materials and Methods 14 1.2.1 Taxon sampling, DNA extraction and sequencing 14 1.2.2 Phylogenetic Analysis 17 1.3 Results 19 1.4 Discussion 23 1.4.1 Classificatory implications 26 1.4.2 Host-shifts and diversification in Hippoboscoidea 28 1.4.3 Morphological and life history evolution in Hippoboscoidea 32 1.5 Conclusions 34 iv Chapter 2: Sensitivity analysis, molecular systematics, and natural history evolution of Scathophagidae (Diptera:Cyclorrhapha:Calyptratae) 2.1 Introduction 2.1.1 Comparing alignment techniques 36 38 through a sensitivity analysis 2.2 Materials and Methods 40 2.2.1 Taxa and DNA extractions 40 2.2.2 DNA amplification and sequencing 40 2.2.3 Tree search strategies 42 2.2.4 Sensitivity analysis 43 2.2.5 Natural history 44 2.3 Results 49 2.3.1 Alignment techniques, indel treatment, character 49 transformation weighting 2.4 Discussion 56 2.4.1 Sensitivity analyses and Choice of alignment 56 2.4.2 Node support and Node stability 60 2.4.3 Systematic conclusions 61 2.4.4 Natural history evolution 64 2.5 Conclusions 68 v Chapter 3: The Muscoidea (Diptera: Calyptratae) are paraphyletic: Evidence from four mitochondrial and four nuclear genes 3.1 Introduction 70 3.1.1 Fanniidae 71 3.1.2 Muscidae 72 3.1.3 Anthomyiidae 73 3.1.4 Scathophagidae 74 3.1.5 Interfamilial relationships 75 3.2 Materials and Methods 77 3.2.1 Taxa and DNA extractions 77 3.2.2 DNA amplification 77 3.2.3 Alignments 81 3.2.4 Tree search strategies 82 3.3 Results 83 3.3.1 Alignment techniques, indel treatment, character transformation weighting 3.4 Discussion 90 3.4.1 Comparison of tree hypotheses 91 3.4.2 Calyptrate monophyly 92 3.4.3 Superfamily monophyly and the relationships 92 between the calyptrate superfamilies 3.4.4 Interfamilial relationships within the muscoid grade 94 3.4.5 Family monophyly and relationships within families 95 3.4.6 Alignments of the ribosomal genes 98 3.5 Conclusions 108 vi Chapter 4: Molecular phylogeny of the Calyptratae (Diptera:Cyclorrhapha) with emphasis on the Oestroidea 4.1 Introduction 110 4.1.1 Oestroidea phylogenetics 111 4.1.2 Oestroidea family relationships 111 4.1.3 Oestroidea family portraits 113 4.1.4 Is the McAlpine’s fly a calyptrate? 120 4.1.5 Calyptratae phylogenetics 121 4.2 Materials and Methods 126 4.2.1 Taxa 126 4.2.2 DNA extractions 127 4.2.3 DNA amplification and sequencing 134 4.2.4 Alignments 135 4.2.5 Taxa selection strategy for analysis 136 4.2.6 Tree search strategies 137 4.3 Results 138 4.4 Discussion 147 4.4.1 Oestroidea monophyly 148 4.4.2 Placement of the McAlpine’s fly and M. zelandica in the 148 Oestroidea 4.4.3 Oestroidea family relationships 149 4.4.4 Higher-level systematics of the Calyptratae 152 4.5 Conclusions 155 vii Overall conclusions 156 References 159 viii Kloet, G. S., Hincks, W. D., 1976. A Check List of British Insects. Part 5: Diptera and Siphonaptera, 2nd ed., Handbook Ident. Br. Insects. Krinsky, W.L., 2002. Tsetse Flies (Glossinidae). In: Mullen, G., Durden, L., (Eds.), Medical and Veterinary Entomology, Academic Press, Boston, pp. 303-316. Kumar, S., Filipski, A., 2007. Multiple sequence alignment: In pursuit of homologous DNA positions. Genome Res. 17, 127-135. Kurahashi, H., 1989. Family Calliphoridae. In: Evenhuis, N.L. (Ed.), Catalog of the Diptera of the Australasian and Oceanian Regions. Bishop Museum Serial Publication, Honolulu, pp. 702-718. Kutty, S.N., Bernasconi, M.V., Sifner, F., Meier, R., 2007. Sensitivity analysis, molecular systematics and natural history evolution of Scathophagidae (Diptera : Cyclorrhapha : Calyptratae). Cladistics. 23, 64-83. Källersjö, M., Albert, V.A., Farris, J. S. 1999. Homoplasy increases phylogenetic structure. Cladistics. 15, 91–93. Labandeira, C.C., 2002. The history of associations between plants and animals. In: Herrera, C. Pellmyr, O. (Eds.), Plant-Animal Interactions: An Evolutionary Approach, Blackwell Science, Oxford, U.K, pp. 26-74, 248-61. Lameere, A., 1906. Note pour la classification des Dipteres. Mémoires de la Société Entomologique de Belgique 12, 105-140. Lehrer, A.Z., 1970. Considerations phylogenetiques et taxonomiques sur la famille Calliphoridae (Diptera). Annotationes zoologicae et botanicae. Slovenske Norodne Muzeum v Bratislave 61, 1-51. Lehrer, A.Z., 1972. Diptera Familia Calliphoridae. Fauna RepubliciiSocialiste Romania 11, 1-245. 169 Laamanen, T.R., Meier, R., Miller, M.A., Hille, A., Wiegmann, B.M., 2005. Phylogenetic analysis of Themira (Sepsidae : Diptera): sensitivity analysis, alignment, and indel treatment in a multigene study. Cladistics. 21, 258-271. Lin, C. P., Danforth, B.N., 2004. How insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol. Phylogenet. Evol. 30, 686-702. Machado, A. (1959) Nouvelles contributions l’étude systématique et biogéographiques des glossines (Diptera). Publicações Culturais, Companhia de Diamantes de Angola 22, 1-189. Maddison, D.R., Maddison, W.P., 2000. Macclade 4: Interactive Analysis of Phylogeny and Character Evolution, Version 4.01. Sinauer Associates, Sunderland, MA. Maddison, D.R., Maddison, W.P., 2001. MacClade ver 4.03. Sinauer Associates, Sunderland, Massachusetts. Malloch, J. R., 1934. Muscidae. In ‘Diptera of Patagonia and South Chile’ 7: 171-346. British Museum, London. McAlpine, J. F. 1989. Phylogeny and classification of the Muscomorpha. In McAlpine, J. F. and D. M. Wood (eds), Manual of Nearctic Diptera. Volume 3. Research Branch, Agriculture Canada, Monograph 32, Ottawa. pp 1397-1505. McClellan, D.A., Woolley, S., 2004. AlignmentHelper. Brigham Young University, Provo, Utah. Meier, R., Kotrba, M., Ferrar, P., 1999. Ovoviviparity and Viviparity in Diptera. Biol. Rev, 74, 199-258 Meier, R., Wiegmann, B.M., 2002. A phylogenetic analysis of Coelopidae (Diptera) based on morphological and DNA sequence data. Mol. Phylogenet. Evol. 25, 393-407. 170 Michelsen, V., 1991. Revision of the aberrant New World genus Coenosopsia (Diptera: Anthomyiidae), with a discussion of anthomyiid relationships. Syst. Entomol., 16, 85–104. Michelsen, V., 1996. First reliable record of a fossil species of Anthomyiidae (Diptera), with comments on the definition of recent and fossil clades in phylogenetic classification. Biol. J. Linn. Soc. 58, 441-451. Michelsen, V., 2000. Oldest authentic record of a fossil calyptrate fly (Diptera): a species of Anthomyiidae from early Coenozoic Baltic amber. Stud. Dipt. 7, 1118. Minder, A. M., Hosken, D. J., Ward, P. I. Co-evolution of male and female reproductive characters across the Scathophagidae. J. Evol. Biol., 18, 60-69. Mitter, C., Farrell, B., Wiegmann, B., 1988. The phytophagy study of adaptive zones: Has phytophagy promoted insect diversification? Am. Nat. 132, 107-128. Moeller, J., 1965. Ökologische Untersuchungen über die terrestrische Arthropodenfauna im Anwurf mariner Algen. Z. Morphol. Ökol. Tiere 55: 530586. Morrison, D. A., 2006. Multiple sequence alignment for phylogenetic purposes. Aust. Syst. Bot. 19, 479-539. Morrison, D.A., Ellis, J.T., 1997. Effects of nucleotide sequence alignment on phylogeny estimation: A case study of 18S rDNAs of Apicomplexa. Mol. Biol. Evol. 14, 428-441. Moulton, J.K., Wiegmann, B.M., 2004. Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Mol. Phylogenet. Evol. 31, 363-378. 171 Moulton, J.K., Wiegmann, B.M., 2007. The phylogenetic relationships of flies in the superfamily Empidoidea (Insecta : Diptera). Mol. Phylogenet. Evol. 43, 701713. Muir, F., 1912. Two new species of Ascodipteron. Bull. Mus. Comp. Zool. 54, 349366. Müggenburg, F.H., 1892. Der Rüssel der Diptera Pupipara. Archiv für Naturgeschichte , 287-332. Maa, T.C., 1969. Notes on the Hippoboscidae (Diptera) II. Pacific Insects Monograph 20, 237-260. Maa, T.C., 1963. Genera and species of Hippoboscidae (Diptera): Types, synonomy and natural groupings. Pacific Insects Monograph 6, 1-186. Maa, T.C, Peterson B.V., 1987. Hippoboscidae. In: McAlpine, J.F., Wood, D.M., (Eds.). Manual of Nearctic Diptera, Research Branch Agriculture Canada, Ottawa, 2, 1271-1281. Neff S. N., 1968. Observation on the immature stages of Gimnomera cerea and G. insurata (Diptera: Anthomyiidae, Scathophaginae) Can. Entomol. 100(1): 7483. Nelson M., 1990., Observation on the biology and status of dung flies of the genus Parallelomma Becker (Dipt. Scathphagidae). Entomol. Mon. Mag., 126, 18789. Nelson M., 1992. Biology and early stages of the dung fly Acanthocnema glaucescens (Loew) (Dipt., Scathophagidae). Entomol. Mon. Mag. 128, 7173. Nelson M., 1995. Dung flies Diptera: Scathophagidae) in bird’s nests, with particular reference to Trichopalpus fraternus (Meige). Entomol. Gazette, 46, 285-87. 172 Nelson M., 1998. Cordilura similes Siebke (Diptera: Scathophagidae) a problematic species associated with Carex aquatilis Wahlberg. Entomol. Gazette, 49, 199201. Nelson M., 2000. The life history of immature stages of Scathophaga (Coniosternum) tinctinervis (Becker) (Dipt., Scathophagidae). Entomol. Mon. Mag. 136, 16164. Nelson M., Šifner F., 2000. A redescription of Norellisoma flavicorne (Meigen, 1826) (Dipt., Scathophagidae), with an account of its biology and notes on other members of the genus. Entomol. Mon. Mag. 136, 31-35. Nelson, M., 1988. Observations on the prestomal teeth of British dung-flies (Dipt., Scathophagidae). Entomol. Mon. Mag.,124, 157–160. Newstead, R., 1911. A revision of the tsetse flies (Glossina) based on a study of the male genital aramature. Bull. Br. Mus. (Nat. Hist.) Entomol. 2, 9-36. Newstead, R., Evans, A.M., Potts, W.H., 1924. Guide to the study of tsetse flies. Memoirs of the Liverpool School of Tropical Medicine, Liverpool University Press, Liverpool. Nihei S.S., de Carvalho, C.J.B., 2004. Taxonomy, cladistics and biogeography of Coenosopsia Malloch (Diptera, Anthomyiidae) and its significance to the evolution of anthomyiids in the Neotropics. Syst. Entomol. 29, 260-275. Nihei, S.S., de Carvalho, C.J.B., 2007. Phylogeny and classification of Muscini (Diptera, Muscidae). Zool. J. Linn. Soc. 149, 493-532. Nirmala, X., Hypsa, V., Zurovec, M., 2001. Molecular phylogeny of calyptratae (Diptera: Brachycera): The evolution of 18S and 16S ribosomal rDNAs in higher dipterans and their use in phylogenetic inference. Insect Mol. Biol. 10, 475-485. 173 Nylander, J.A.A., 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. O’Hara, J.E., Wood, D.M., 2004. Catalogue of the Tachinidae (Diptera) of America north of Mexico. Memoirs of the Entomology International 18, 410. O'Hara, J.E., 1985. Oviposition strategies of the Tachinidae, a family of benifical parasitic flies., Agriculture and Foresty Bulletin, University of Alberta, pp. 3134. Otranto, D., Traversa, D., Guida, B., Tarsitano, E., Fiorente, P., Stevens, J.R., 2003. Molecular characterization of the mitochondrial cytochrome oxidase I gene of Oestridae species causing obligate myiasis. Med. Vet. Entomol. 17, 307-315. Page, R.D.M., 2003. Tangled Trees: Phylogeny, Cospeciation and Coevolution. University of Chicago Press, Chicago. Papavero, N., 1977. The world Oestridae (Diptera) mammals and continental drift. Ser. Entomol. 14, 1-240. Pape, T., 1986. A Phylogenetic Analysis of the Woodlouse Flies Diptera Rhinophoridae. Tijdschr. Entomol. 129, 15-34. Pape, T., 1992. Phylogeny of the Tachinidae Family-Group Diptera Calyptratae. Tijdschr. Entomol. 135, 43-86. Pape, T., 1996. Catalogue of the Sarcophagidae of the world (Insecta: Diptera). Mem. Am. Entomol. Soc. 8, 1-558. Pape, T., 1998a. A new genus of Paramacronychiinae (Diptera: Sarcophagidae), argued from a genus-level cladistic analysis. Syst. Entomol. 23, 187-200. Pape, T., 1998b. Rhinophoridae. In: Papp, L., Darvas, B. (Eds.), Contributions to a Manual of Palaearctic Diptera. Science Herald, Budapest, pp. 679–689. Pape, T., 2001. Phylogeny of Oestridae (Insecta: Diptera). Systematic Entomology 26, 133-171. 174 Pape, T., Arnaud Jr., P.H., 2001. Bezzimyia – a genus of New World Rhinophoridae (Insecta, Diptera). Zool. Scr. 30, 257-297. Parker G. A., 1970. Sperm competition and its evolutionary effect on copula duration in the fly Scatophaga stercoraria . J. Insect Physiol. 16, 1301–1328. Penny, D., Hendy, M. D., 1985. The use of comparison metrics. Syst. Zool., 34, 7582. Petersen, F.T., Meier, R., Kutty, S.N., Wiegmann, B.M., 2007. The phylogeny and evolution of host choice in the Hippoboscoidea (Diptera) as reconstructed using four molecular markers. Mol. Phylogenet. Evol. 45, 111-122. Peterson, B.V., Wenzel, R.L., 1987. Nycteribiidae. In: McAlpine, J.F, Wood, D.M., (Eds.). Manual of Nearctic Diptera, Research Branch Agriculture Canada, Ottawa, 2, 1293-1301. Pollock, J.N., 1971. Origin of the tsetse flies: a new theory. J. Entomol. Ser. B. 40, 101-9. Pollock, J.N., 1973. A comparison of the male genitalia and abdominal segmentation in Gasterophilus and Glossina, with notes on the gasterophiloid origin of the tsetse flies. Trans. R. Entomol. Soc. Lond. 125, 107-24. Pont, A.C., 1977. A revision of Australian Fanniidae (Diptera: Calyptrata). Aust. J. Zool. Suppl. Ser. 51, 1–60. Pont, A.C., 1980. 90. Calliphoridae. In “Catalogue of the Diptera of the Afrotropical Region” (R. W. Crosskey, Ed.), British Museum (Natural History), London. Price, P.W., 1980. The Evolutionary Biology of Parasites. Princeton University Press. Princeton N.J. USA. Richter, V.A., 1992. A new tribe, new and little known species of the tachinid flies (Diptera, Tachinidae) of the fauna of the USSR. . Entomological Review 70, 133-150. 175 Roback, S.S., 1951. A classification of the muscoid calyptrate Diptera. Ann. Entomol. Soc. Am. 44, 327–361. Rognes, K., 1986. The systematic position of the genus Helicobosca Bezzi with a discussion of the monophyly of the calyptrate families Calliphoridae, Rhinophoridae, Sarcophagidae and Tachinidae (Diptera). Entomol. Scand. 17, 75-92. Rognes, K., 1991. Blowflies (Diptera, Calliphoridae) of Fennoscandia and Denmark. Fauna Entomol. Scand. 24, 1-272. Rognes, K., 1993. A new genus of Helicoboscinae from the Himalayas (Diptera: Calliphoridae), with emended genus and subfamily concepts. Entomol. Scand. 23, 391-404. Rognes, K., 1997. The Calliphoridae (blowflies) (Diptera: Oestroidea) are not a monophyletic group. Cladistics. 13, 27-66. Rohdendorf, B.B., 1967. The directions of historical development of Sarcophagidae (Diptera). Proc. Palaeontol. J. Acad. Sci., USSR 116, 1-92. Rohdendorf, B.B., 1977. The classification and phylogeny of Diptera- p. 81-88 in D. A. Skarlato and K. B. Gorodkov(eds), Systematics and evolution of Diptera (Insecta). A collection of scientific works. Academy of Science, USSR [In Russian.]. Rydén N. S., 1933. Gymnomera hirta Hend., ein neuer Blüten-Minierer. Entomol. Tidskr., 54(1), 49 Raatakainen M and Vasarainen A. 1975. Damage caused by timothy grass flies (Amaurosoma spp) in Finland. Biol. Res. Rep. Univ. Jyväskylä, 1, 3-8. Raatakainen M and Vasarainen A. 1972. Ecology and control of timothy grass flies (Amaurosoma spp, Diptera, Scathophagidae) and the effects of chemical control on the fauna of field stratum. Annales Agric. Fenniae, 11, 57-73 176 Sack, P., 1937. 62a Cordyluridae. In: E. Lindner, (Ed.), Die Fliegen der Palaearktischen Region, pp. 1–103. Sanderson, M. J., Purvis, A., Henze. C.,0 1998. Phylogenetic supertrees: assembling the trees of life. Trends Ecol. Evol.,105-109 Sanderson, M.J., Driskell, A.C., 2003. The challenge of constructing large phylogenetic trees. Trends Plant Sci. 8, 374-379. Savage, J., Wheeler, T.A., 2004. Phylogeny of the Azeliini (Diptera: Muscidae). Stud. Dipt. 11, 259-299. Savage, J., Wheeler, T.A., Wiegmann, B.M., 2004. Phylogenetic analysis of the genus Thricops Rondani (Diptera : Muscidae) based on molecular and morphological characters. Syst. Entomol. 29, 395-414. Scheffer, S.J., Winkler, I.S., Wiegmann, B.M., 2007. Phylogenetic relationships within the leaf-mining flies (Diptera : Agromyzidae) inferred from sequence data from multiple genes. Mol. Phylogenet. Evol. 42, 756-775. Schuehli, G.S.E., de Carvalho, C.J.B., Wiegmann, B.M., 2007. Molecular phylogenetics of the Muscidae (Diptera:Calyptratae): new ideas in a congruence context. Invertebr. Syst. 21, 263-278. Schumann, H., 1986. Family Calliphoridae. In “Catalogue of the Palaearctic Diptera Calliphoridae–Sarcophagidae.” (Á. Soós, and L. Papp, Eds). 12, 11-58. Séguy, E. 1937. Diptera, Family Muscidae. In Wytsman, P. (ed.), ‘Genera Insectorum’. Desmet-Verteneuil, Brussels, Belgium. 205, pp 1-604. Shewell, G., 1987. 106 Calliphoridae.In “Manual of Nearctic Diptera.” (J. F. McAlpine, Ed.), Vol. 2. . Research Branch, Agriculture Canada, Monograph. Shima, H., 1989. Parasiticway of life in tachinid flies. Insectarium 26, 4–9; 46–51; 88–94; 120–126. 177 Šifner F., 2003. The family Scathophagidae (Diptera) of the Czech and Slovak Republics (with notes on selected Palaearctic taxa). In: Acta. Mus. nationalis Pragae, ser. B-Historia Naturalis. 59, 1-90. Šifner, F., 1964. Contribution la connaissance de la famille Scathophagidae en Bohême Nord-Est (Diptera). Sbor. Biol. A Geol. Ved. Ped. Fakult. 1, 209-214. Šifner, F., 1978. La révision synonymique des espèces, du genre Americina Malloch 1923 (Diptera, Sathophagidae). Proceeding of the 4th meeting of Czechoslovak Dipterist, I. Oraszagh (ed), Dipterologica Bohemoslovaca, 1, 283-302. Šifner, F., 1995. Species of the family Scathophagidae (Diptera) of the Prague protected localities, of the Czech republic, and species of the genus Norellisoma Wohlgren of the palaearctic region. Bohemia Centralis 24, 89 – 128. . Šifner, F., 1997. Scathophagidae. In: M. Chvála, (Ed.), Check List of Diptera (Insecta) of the Czech and Slovak Republics Karolinum, Charles Univ. Press, Prague, pp. 89 –90. Simmons, M.P., Muller, K., Norton, A.P., 2007. The relative performance of indelcoding methods in simulations. Mol. Phylogenet. Evol. 44, 724-740. Simmons, M.P., Ochoterena, H., 2000. Gaps as characters in sequence based phylogenetic analyses. Syst. Biol. 49, 369-381. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., Flook, P., 1994. Evolution, Weighting, and Phylogenetic Utility of Mitochondrial Gene-Sequences and a Compilation of Conserved Polymerase Chain-Reaction Primers. Ann. Entomo. Soc. Am. 87, 651-701. Simon, C., T. R. Buckley, F. Frati, J. B. Stewart and A. T. Beckenbach. 2006. Incorporating molecular evolution into phylogenetic analysis, and a new 178 compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annu. Rev. Ecol. Syst. 37: 545-579. Smith, S.A., Dunn, C.W., 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715-716 Soos, A., Minar, J., 1986a. Family Gasterophilidae. Catalogue of Palaearctic Diptera. Volume 11. Scathophagidae-Hypodermatidae., 237-240. Soos, A., Minar, J., 1986b. Family Hypodermatidae. Soos, A., Minar, J., 1986c. Family Oestridae. Catalogue of Palaearctic Diptera. Volume 11. Scathophagidae-Hypodermatidae., 240-244. Sorenson, M.D., 1999. Treerot, Version 2. Boston University, Boston, Massachusetts. Speiser, P., 1908. Die geografische Verbreitung der Diptera Pupipara und ihre Phylogenie. Zeitschrift für wissenschaftliche Insektenbiologie 4, 241-246, 301305, 420-427, 437-447. Spofford, M.G., Kurczewski, F.E., 1989. Nearctic species of Miltogrammini (Diptera: Sarcophagidae) associated with species of Aculeata (Hymenoptera: Vespoidea, Pompiloidea, Sphecoidea, Apoidea). J. Kans. Entomol. Soc. 62, 254-267. Stevens, J.R., 2003. The evolution of myiasis in blowflies (Calliphoridae). Int. J. Parasito. 33, 1105-1113. Stireman, J.O., 2002. Phylogenetic relationships of tachinid flies in subfamily Exoristinae (Tachinidae : Diptera) based on 28S rDNA and elongation factor-1 alpha. Syst. Entomol. 27, 409-435. Suwa, M., 1986. The Genus Acanthocnema in Asia and Europe with descriptions of three new species from Japan and Nepal (Diptera: Scathophagidae) Insect matsum, 34, 1-33. 179 Suwa, M., Darvas, B., 1998. Family Anthomyiidae. In: L. Papp and B. Darvas (eds.), Contributions to a manual of Palaearctic Diptera Volume 3. Science Herald, Budapest, pp 571-616. Swofford, D.J., 2002. PAUP* Phylogentic Analysis Using Parsimony (*and other methods), Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts. Swofford, D.L., Olsen, G.J., Waddell, P.J., Hillis, D.M., 1996. Phylogenetic Inference. In: D. M. Hillis, C. Moritz and B. K. Mable, (Eds.), Molecular Systematics, 2nd ed., Sinauer Associates, Inc., Sunderland, Massachusetts, pp. 407-514. Szpila, K., Pape, T., 2005a. Comparative morphology of the first instar larva of three species of Metopia Meigen (Diptera: Sarcophagidae). Acta Zool. 86, 119-134. Szpila, K., Pape, T., 2005b. The first instar larva of Apodacra pulchra (Diptera: Sarcophagidae, Miltogramminae). Insect Syst. Evol. 36, 293-300. Templeton, A. R., 1983. Phylogenetic inference from restriction site endonuclease cleavage sites maps with particular reference to humans and apes. Evolution 37, 221-244. Terry, M.D., Whiting, M.F., 2005. Comparison of two alignment techniques within a single complex data set: POY versus Clustal. Cladistics, 21, 272–281. Theodor, O., 1967. An illustrated catalogue of the Rothchild collection of Nycteribiidae (Diptera) in the British Museum. British Museum of Natural History Publication 655, 1-506. Thompson, J. D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876-4882. Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence 180 weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680. Thompson, W.R., 1934. The tachinid parasites of woodlice. Parasitology 26, 378 446. Tschorsnig , H.-P., Richter, V.A., 1998. Family Tachinidae. In Contributions to a Manual of Palaearctic Diptera (with Special Reference to Flies of Economic Importance). Sci. Herald. 880 pp., Budapest. Tschorsnig, H.-P., 1985a. Die Struktur des männlichen Postabdomens der Rhinophoridae (Diptera). – Stuttg. Beitr. Natkd. Ser. A (Biol.) 375, 1-18. Tschorsnig, H.-P., 1985b. Taxonomie forstlich wichtiger Parasiten: Untersuchungen zur Struktur des m¨annlichen Postabdomens der Raupenfliegen (Diptera, Tachinidae). Stuttg. Beitr. Natkd. Ser. A (Biol.) 383, 1-137. Van de Peer, Y., Robbrecht, E., de Hoog, S., Caers, A., De Rijk, P., De Wachter, R., 1999. Database on the structure of small subunit ribosomal RNA. Nucleic Acids Res. 27, 179-183. Verves, Y.G., 1989. The Phylogenetic Systematics of the Miltogrammatine Flies (Diptera, Sarcophagidae) of the World. Jpn. J. Med. Sci. & Biol. 42, 111-126. Verves, Y.G., 1994. A key to genera and subgenera of Palaearctic Miltogrammatinae (Diptera: Sarcophagidae) with a description of a new genus. Diptera Res. 5, 239-247. Vockeroth, J.R., 1956. Distribution patterns of the Scatomyzinae (Diptera, Muscidae). Proc. 10th Int Congress Entomol, 1, 619–626. Vockeroth, J.R., 1965. Scatophaginae. In: A. Stone, C. W. Sabrosky, W. W. Wirth, R. H. Foote, and J. R. Coulson, (Eds.), A Catalog of the Diptera of America North of Mexico. Agriculture Handbook, U.S. Forest Service, Washington, DC. pp. iv, 1696. 181 Vockeroth, J.R., 1977. Family Scathophagidae. In: M. D. Delfinado and D. E. Hardy, (Eds.), “A Catalog of the Diptera of the Oriental Region, Suborder Cyclorrhapha (excluding Aschiza). Univ. Press, Honolulu, pp. 854. Vockeroth, J.R., 1980. 82. Family Scathophagidae. In: Crosskery et al., (Eds.), Catalogue of the Diptera of the Afrotropical Region, British Museum (Natural History) London, pp. 1437. Vockeroth, J.R., 1989. Scathophagidae. In: McAlpine, J. F and Wood, D. M. (Eds.), Manual of Nearctic Diptera Vol. 2, Agriculture Canada, Research Branch, Ottawa, pp. 1085–1097. Vossbrinck, C.R., Friedman, S., 1989. A 28s Ribosomal-Rna Phylogeny of Certain Cyclorrhaphous Diptera Based Upon a Hypervariable Region. Syst. Entomol. 14, 417-431. Watermann, M.S., Smith, T.F., Beyer, W.A., 1976. Some biological sequence metrics. Adv. Math. 20, 367–387. Wada, S., 1991. Morphologische Indizien für das unmittelbare Schwestergruppenverhältnis der Schizophora mit den Syrphoidea ('Aschiza') in der phylogenetischen Systematik der Cyclorrhapha (Diptera: Brachycera). J. Nat. Hist. 25, 1531-1570. Wenzel, R.L. & Peterson, B.V. (1987) Streblidae. In: McAlpine, J.F, Wood, D.M., (Eds.). Manual of Nearctic Diptera, Research Branch Agriculture Canada, Ottawa, 2, 1283-1291. Wheeler, W.C., 1993. The triangle inequality and character analysis. Mol. Biol. Evol. 10, 707-712. Wheeler, W.C., 1995. Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst. Biol., 44, 321-331. 182 Wheeler, W.C., 1996. Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics. 12, 1-9. Wheeler, W.C., 2003. Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics, 19, 261–268. Wheeler, W.C., Gladstein, D., De Laet, J., 2003. POY, Version 3.0.11. Program and Documentation Available at ”ftp.amnh.org/pub/molecular”. American Museum of Natural History. Wheeler, W.C., Gladstein, D.S., 1994. Malign - a Multiple Sequence Alignment Program. J. Hered. 85, 417-418. Wheeler, W.C., Hayashi, C. Y., 1998. The phylogeny of the extant chelicerate orders. Cladistics. 14, 173-192. Wiegmann, B.M., Mitter, C., Farrell, B.D., 1993. Diversification of carnivorous parasitic insects: Extraordinary radiation or specialized dead end. Am. Nat. 142, 737-754. Wiegmann, B. M., Yeates, D. K., Thorne, J. L., Kishino,H., 2003. Time Flies, a New Molecular Time-Scale for Brachyceran Fly Evolution Without a Clock. Syst. Biol. 52, 745–756. Wiens, J.J., 2003. Missing data, incomplete taxa, and phylogenetic accuracy. Syst. Biol. 52, 528-538. Wood, D.M., 1986. Are Cuterebridae, Gasterophilidae, Hypodermatidae and Oestridae a monophyletic group? Hungarian Academy of Sciences, Budapest. Wood, D.M., 1987. Tachinidae. In: McAlpine, J.F. (Ed.), Manual of Nearctic Diptera. Research branch, Agriculture Canada, Ottawa, pp. 1193-1269. 183 Yeates, D.K., Wiegmann, B.M., 1999. CONGRUENCE AND CONTROVERSY: Toward a Higher-Level Phylogeny of Diptera. Ann. Rev. Entomol. 44, 397428. Yeates, D.K., Wiegmann, B.M., Courtney, G.W., Meier, R., Pape, T., 2008. Phylogeny and Systematics of Diptera: Two Decades of Progress and Prospects. Zootaxa. 1668, 565-590. Zatwarnicki, T., 1996. A new reconstruction of the origin of the eremoneuran hypopygium and its implications for classification (Insecta: Diptera). Genus 3, 103-175. Zwickl, D.J., 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. . The University of Texas at Austin, Austin. Zwickl, D.J., Hillis, D.M., 2002. Increased Taxon Sampling Greatly Reduces Phylogenetic Error. Syst. Biol. 51, 588 - 598. 184 [...]... representation with parsimony) technique in the supertree approach The trees obtained by both approaches were poorly resolved in conflict and it became clear that new data were needed Since the data overlap of both genes and taxa in the available datasets was poor, adding more data into a supermatrix of taxa from across the calyptrate group was regarded as the most appropriate approach This is the technique... elaborate and discover the details of fly relationships and diversity with the ultimate goal of providing a newly resolved phylogeny for this major branch of the Tree of Life (FLYTREE 2006) The most effective way of transmitting new phylogenetic evidence is via a published data matrix analyzed in a quantitative framework (Yeates and Wiegmann, 1999) and the FLYTREE project is an ambitious endeavor that... markers Chapter 2: Sensitivity analysis, molecular systematics, and natural history evolution of Scathophagidae (Diptera:Calyptrate: Musocidea) Chapter 3: The Muscoidea (Diptera:Calyptratae) are paraphyletic: Evidence from four mitochondrial and four nuclear genes Chapter 4: Molecular phylogeny of the Calyptratae (Diptera:Cyclorrhapha) with emphasis on the Oestroidea The sequence of the chapters in the dissertation... information has to be collected and new analytic tools are needed to reconstruct the relationships based on these data This is the main goal of the US National Science Foundation funded project ‘Assembling the Tree of Life which involves many international teams that concentrate on different subsets of taxa Obtaining an accurate and universal Tree of Life has enormous research potentials and benefits... Fanniidae, Musciidae, Oestridae, Tachinidae, Rhinophoridae, Sarcophagidae, Mystaciinobiidae) iii position of the enigmatic species referred to as “McAlpine’s fly” 3 iv evolution of life history strategies like host choice and larval breeding habits within the group v the performance of various alignment and test various analyses techniques using the calyptrate dataset I approached this large and ambitious... within the calyptrates are very poorly understood and most literature on the phylogeny of the group (Hennig, 1973; McAlpine, 1989; Pape, 1992; Nirmala, 2001; etc.) is often controversial The Calyptratae are morphologically and biologically very diverse and have invaded a large variety of habitats They show an exceptional range of natural history traits However, despite all this diversity, the clade appears... free-living and only come into close contact with their host during feeding The other three families, Hippoboscidae, Nycteribiidae, and Streblidae, are all genuine ectoparasites (i.e species with a trophic and a spatial association to a host) spending all or most of their adult life within the fur or among the feathers of their mammal and bird hosts These families exhibit a large number of unique and striking... for at least part of their life An exception is Ascodipteron Adensamer 1896 in which females, after mating, embed themselves in the tissue of the host Wings and legs are shed and the fly attains a sack- or flask like appearance while the males retain their wings throughout life The morphology of the remaining Streblidae is also unusually variable For example, some species are dorsoventrally flattened,... like the Calyptratae can be approached by either using the supermatrix method or the supertree method (Sanderson et al., 1998) I combined all the available data for species under study into a single matrix and used the information from each character directly in the supermatrix analysis The trees from the different published studies are recoded in a matrix format and then combined using the MRP (Matrix... morphological and physiological adaptations, most of which are specifically associated with their ectoparasitic lifestyle One of the most remarkable of these is adenotrophic viviparity (Meier et al., 1999) The larvae develop individually, in the female oviduct, where they are fed by secretions from accessory glands The fully mature 3rd instar larva is deposited either as a motile larva, which quickly pupates . BUILDING THE TREE OF LIFE: RECONSTRUCTING THE EVOLUTION OF A RECENT AND MEGADIVERSE BRANCH (CALYPTRATAE: DIPTERA) SUJATHA NARAYANAN KUTTY (B.Tech) A THESIS. is often controversial. The Calyptratae are morphologically and biologically very diverse and have invaded a large variety of habitats. They show an exceptional range of natural history traits approaches were poorly resolved in conflict and it became clear that new data were needed. Since the data overlap of both genes and taxa in the available datasets was poor, adding more data

Ngày đăng: 12/09/2015, 09:21

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan