Development of high hydrogen capacity complex and chemical hydrides for hydrogen storage

207 215 0
Development of high hydrogen capacity complex and chemical hydrides for hydrogen storage

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DEVELOPME T OF HIGH HYDROGE CAPACITY COMPLEX A D CHEMICAL HYDRIDES FOR HYDROGE STORAGE CHUA YO G SHE ATIO AL U IVERSITY OF SI GAPORE 2011 DEVELOPME T OF HIGH HYDROGE CAPACITY COMPLEX A D CHEMICAL HYDRIDES FOR HYDROGE STORAGE CHUA YO G SHE (B.Sc (Hons.), UTM) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTME T OF CHEMISTRY ATIO AL U IVERSITY OF SI GAPORE 2011 Acknowledgements First of all, I would like to express my sincere appreciation to my supervisors, Prof Chen Ping and Prof Richard Wong for their support throughout my PhD candidature, especially to Prof Chen Ping for her constant care, guidance and invaluable instruction I would also like to express my sincere gratitude to Prof Xiong Zhitao and Assoc Prof Wu Guotao for their precious guidance and advice in laboratory skills and structural analyses Special thanks also go to Dr S Thomas Autrey, Dr Abhi Karkamkar and Dr Wendy J Shaw from Pacific Northwest National Laboratory (PNNL) for their useful discussion and assistance in high field NMR experiments in the collaboration works I also want to thank all current and past members in Prof Chen’s group, whose assistance and encouragement composed every step in the past four years’ research course I would like to thank National University of Singapore for providing the PhD research scholarship Much appreciation also goes to the staffs of the CMMAC laboratories, especially Mdm Han Yan Hui and Mr Wong Chee Ping for NMR support I am also thankful to the assistance that I have received from the laboratory officers of Surface Science Laboratory, Mr Wong How Kwong and Mr Ho Kok Wen I Finally and most importantly, I would like to thank my family and friends, especially Ng Jeck Fei and New Siu Yee, for their support throughout the years II Table of Contents Acknowledgements I Table of Contents III Summary VIII List of Tables XI List of Figures XIII List of Schemes Chapter XXII Introduction 1.1 DOE target for hydrogen storage 1.2 Materials for hydrogen storage 1.2.1 Metal hydrides 1.2.2 Complex hydrides 1.2.2.1 Activation for hydrogen release from complex aluminum hydride 1.2.3 Chemical hydrides 11 12 1.2.3.1 Proposed dehydrogenation mechanism 1.2.3.2 Activation for hydrogen release from AB 1.3 16 17 Thermodynamic alteration on hydrides 20 1.3.1 Destabilization 20 1.3.2 Amide-hydride interaction 23 1.3.3 Cationic substitution 28 III 1.3.3.1 Interaction of metal hydride and AB 28 1.3.3.1.1 Driving forces and reaction mechanisms 1.3.3.2 Interaction of metal amide/imide/nitride with AB 1.4 31 34 Motivation 35 Experimental 38 Sample preparation and synthesis 38 2.1.1 Solid state ball milling 38 2.1.2 Liquid state reaction 39 Dehydrogenation 39 2.2.1 Open system dehydrogenation 39 2.2.2 Close system dehydrogenation 40 2.3 Characterizations 40 2.4 Quantification of NH3 41 Investigations on the solid state interactions between lithium alanate with binary and complex amides 42 3.1 Introduction 42 3.2 Experimental section 43 3.2.1 Sample preparations and synthesis 43 3.2.2 Characterizations 45 Results and discussion 45 Chapter 2.1 2.2 Chapter 3.3 IV 3.3.1 Reaction of lithium alanate with sodium amide 45 3.3.1.1 Metathesis between LiAlH4 and NaNH2 3.3.1.2 Dehydrogenation 50 3.3.1.3 Proposal of reaction mechanisms 53 3.3.1.4 Thermal decompositions of the post milled products 56 3.3.2 Reaction of lithium alanate with lithium aluminum ternary amide 58 3.3.2.1 Hydrogen release from the interaction of LiAlH4 and LiAl(NH2)4 58 3.3.2.2 Dehydrogenation pathway 3.4 45 64 Conclusion 68 Syntheses, structures and dehydrogenations of alkaline earth metal amidoboranes and their ammoniate complexes 70 4.1 Introduction 70 4.2 Experimental section 75 4.2.1 Sample preparations 75 4.2.2 Characterization 77 Results and discussion 78 4.3.1 Calcium amidoborane (CaAB) 78 Chapter 4.3 4.3.1.1 Synthesis and crystal structure 78 4.3.1.2 Dehydrogenation 82 4.3.2 Calcium amidoborane diammoniate (CaAB·2NH3) 4.3.2.1 Optimization 83 83 V 4.3.2.2 Crystal structure 85 4.3.2.3 Deammoniation 91 4.3.2.4 Dehydrogenation 94 4.3.3 Calcium amidoborane monoammoniate (CaAB·NH3) 103 4.3.3.1 Tuning NH3 content in CaAB·2NH3 103 4.3.3.2 Crystal structure 106 4.3.3.3 Deammoniation 107 4.3.3.4 Dehydrogenation 108 4.3.4 Magnesium amidoborane diammoniate (MgAB·2NH3) 112 4.3.4.1 Optimization 113 4.3.4.2 Dehydrogenation 116 4.3.5 Magnesium amidoborane monoammoniate…………… 119 (MgAB·NH3) 4.3.5.1 Crystal structure 4.3.5.2 Dehydrogenation 4.4 Chapter 121 126 Conclusion 131 Mechanistic investigation on the formation and 133 dehydrogenation of calcium amidoborane diammoniate by 15 H3 and D3 isotopic substitution 5.1 Introduction 133 5.2 Experimental section 135 5.2.1 Materials and synthesis 135 5.2.2 Characterization 136 VI 5.3 Results and discussion 136 5.3.1 Mechanistic understanding on the formation of calcium 136 amidoborane diammoniate 5.3.2 Dehydrogenation mechanism of calcium amidoborane 140 diammoniate 5.4 Conclusion 150 Thermodynamic modification on calcium amidoborane 151 6.1 Introduction 151 6.2 Experimental section 152 6.2.1 Sample preparations 152 6.2.2 Characterization 153 Results and discussion 153 6.3.1 Optimization 153 6.3.2 Dehydrogenation 158 Conclusion 163 Conclusions and future work 164 Chapter 6.3 6.4 Chapter References 169 Appendix 181 VII Summary The depletion of fossil fuel stimulates tremendous efforts in setting up a sustainable energy system Because of its abundance, high energy output and zero emission hydrogen is recognized as the most prospective energy carrier for the future energy system To utilize H2 as a fuel for transportation, a safe and efficient storage medium is needed Lithium aluminum hydride (LiAlH4) and ammonia borane (AB) possess high hydrogen content of 10.5 wt% and 19.6 wt%, respectively, and thus, are attractive for hydrogen storage However, direct uses of these chemicals for hydrogen storage are not feasible due to their poor dehydrogenation kinetic and thermodynamic properties Therefore, the aim of this study is to improve the dehydrogenation properties of LiAlH4 and AB by chemically altering (or modifying) their dehydrogenation thermodynamics Significant improvement in the dehydrogenation properties of LiAlH4 has been achieved by reacting it with NaNH2 or LiAl(NH2)4 As results of chemical alterations, LiAlH4 underwent different dehydrogenation pathways, releasing hydrogen rapidly under ambient temperature In the dehydrogenation process, the large combination potential of Hδ+ and Hδ- to H2 together with the formation of thermodynamic favorable Al-N bond induce a direct interaction of the materials to form H2, giving rise to the formation of Li-Al-N-H product VIII References Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles https://www.eecbg.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_o nboard_hydro_storage_explanation.pdf R S Irani, MRS Bull., 2002, 680-684 J Wolf, MRS Bull., 2002, 684-687 http://world.honda.com/FuelCell/ http://www.toyota-global.com/innovation/environmental_technology/fuelc ell_vehicle/ http://www.gm.com/vehicles/innovation/fuel-cells/fact_sheets/index.jsp M Felderhoff, C Weidenthaler, R von Helmolt and U Eberle, Phys Chem Chem Phys., 2007, 9, 2643-2653 W Grochala and P P Edwards, Chem Rev., 2004, 104, 1283-1315 G Sandrock, J Alloys Compd., 1999, 293-295, 877-888 10 O Boser, J Less Common Met., 1976, 46, 91-99 11 J J Reilly and R H Wiswall, Inorg Chem., 1968, 7, 2254-2256 12 B Bogdanovic, T H Hartwig and B Spliethoff, Int J Hydrogen Energ., 1993, 18, 575-589 13 J J Vajo, F Mertens, C C Ahn, R C Bowman and B Fultz, J Phys Chem B, 2004, 108, 13977-13983 169 14 J Sangster and A D Pelton, in Phase Diagrams of Binary Hydrogen Alloys, ed F D Manchester, ASM International, Materials Park, OH, 2000, p 74 15 K B Gerasimov, I G Konstanchuck, S A Chizhik and J L Bobet, in Carbon anomaterials in Clean Energy Hydrogen Systems, eds B Baranowski, S Y Zaginaichenko, D V Schur, V V Skorokhod and A Veziroglu, Springer Netherlands, 2009, pp 579-586 16 P Chen, Z T Xiong, J Z Luo, J Y Lin and K L Tan, ature, 2002, 420, 302-304 17 M.-Y Song, D R Mumm, S.-N Kwon, S.-H Hong and J.-S Bae, J Alloys Compd., 2006, 416, 239-244 18 H Reule, M Hirscher, A Weißhardt and H Kronmüller, J Alloys Compd., 2000, 305, 246-252 19 G Liang, J Alloys Compd., 2004, 370, 123-128 20 J Charbonnier, P de Rango, D Fruchart, S Miraglia, L Pontonnier, S Rivoirard, N Skryabina and P Vulliet, J Alloys Compd., 2004, 383, 205-208 21 J F R de Castro, S F Santos, A L M Costa, A R Yavari, W J Botta F and T T Ishikawa, J Alloys Compd., 2004, 376, 251-256 22 N Hanada, T Ichikawa and H Fujii, in 10th International Symposium on Metal-Hydrogen Systems, Fundamentals and Applications, Lahaina, HI, 2006, pp 67-71 23 N Hanada, T Ichikawa and H Fujii, J Phys Chem B, 2005, 109, 7188-7194 24 J F Stampfer, C E Holley and J F Suttle, J Am Chem Soc., 1960, 82, 3504-3508 170 25 B Vigeholm, J Kjøller and B Larsen, J Less Common Met., 1980, 74, 341-350 26 T W Baughman, J C Sworen and K B Wagener, Tetrahedron, 2004, 60, 10943-10948 27 N Assimomytis, Y Sariyannis, G Stavropoulos, P G Tsoungas, G Varvounis and P Cordopatis, Synlett, 2009, 2777-2782 28 K Fuchibe, Y Ohshima, K Mitomi and T Akiyama, Org Lett., 2007, 9, 1497-1499 29 X Zheng, Z T L Xiong, S Qin, Y S Chua, H Chen and P Chen, Int J Hydrogen Energ., 2008, 33, 3346-3350 30 T N Dymova, D P Aleksandrov, V N Konoplev, T A Silina and A S Sizareva, Koordinats Khim., 1994, 20, 279-285 31 V P Balema, V K Pecharsky and K W Dennis, J Alloys Compd., 2000, 313, 69-74 32 J W Wiench, V P Balema, V K Pecharsky and M Pruski, J Solid State Chem., 2004, 177, 648-653 33 B Bogdanovic and M Schwickardi, J Alloys Compd., 1997, 253-254, 1-9 34 A E Finholt, G D Barbaras, G K Barbaras, G Urry, T Wartik and H I Schlesinger, J Inorg ucl Chem., 1955, 1, 317-325 35 E C Ashby, G J Brendel and H E Redman, Inorg Chem., 1963, 2, 499-504 36 A Zaluska, L Zaluski and J O Ström-Olsen, Appl Phys A: Mater Sci Process., 2001, 72, 157-165 171 37 B Bogdanovic, R A Brand, A Marjanovic, M Schwickardi and J Tolle, J Alloys Compd., 2000, 302, 36-58 38 G Sandrock, K Gross and G Thomas, J Alloys Compd., 2002, 339, 299-308 39 J A Dilts and E C Ashby, Inorg Chem., 1972, 11, 1230-1236 40 T N Dymova, Y M Dergachev, V A Sokolov and N A Grechanaya, Dokl Akad auk SSSR, 1975, 224, 591 41 J Block and A P Gray, Inorg Chem., 1965, 4, 304-305 42 A Andreasen, T Vegge and A S Pedersen, J Solid State Chem., 2005, 178, 3672-3678 43 D Blanchard, H W Brinks, B C Hauback and P Norby, Mater Sci Eng B-Solid State Mater Adv Technol., 2004, 108, 54-59 44 V P Balema, K W Dennis and V K Pecharsky, Chem Commun., 2000, 1665-1666 45 V P Balema, J W Wiench, K W Dennis, M Pruski and V K Pecharsky, J Alloys Compd., 2001, 329, 108-114 46 J Lu and Z Z Fang, J Phys Chem B, 2005, 109, 20830-20834 47 Z Xiong, G Wu, J Hu and P Chen, J Power Sources, 2006, 159, 167-170 48 Z T Xiong, J J Hu, G T Wu, Y F Liu and P Chen, Catal Today, 2007, 120, 287-291 49 O Dolotko, H Q Zhang, O Ugurlu, J W Wiench, M Pruski, L S Chumbley and V Pecharsky, Acta Mater., 2007, 55, 3121-3130 172 50 Y Liu, J Hu, G Wu, Z Xiong and P Chen, J Phys Chem C, 2007, 111, 19161-19164 51 E W Hughes, J Am Chem Soc., 1956, 78, 502-503 52 W T Klooster, T F Koetzle, P E M Siegbahn, T B Richardson and R H Crabtree, J Am Chem Soc., 1999, 121, 6337-6343 53 R Custelcean and Z A Dreger, J Phys Chem B, 2003, 107, 9231-9235 54 S G Shore and R W Parry, J Am Chem Soc., 1955, 77, 6084-6085 55 P V Ramachandran and P D Gagare, Inorg Chem., 2007, 46, 7810-7817 56 E Mayer, Inorg Chem., 1972, 11, 866-869 57 S G Shore and K W Boddeker, Inorg Chem., 1964, 3, 914-915 58 R M Adams, J Beres, A Dodds and A J Morabito, Inorg Chem., 1971, 10, 2072-2074 59 M G Hu, R A Geanangel and W W Wendlandt, Thermochim Acta, 1978, 23, 249-255 60 V Sit, R A Geanangel and W W Wendlandt, Thermochim Acta, 1987, 113, 379-382 61 G Wolf, J Baumann, F Baitalow and F P Hoffmann, Thermochim Acta, 2000, 343, 19-25 62 J Baumann, E Baitalow and G Wolf, Thermochim Acta, 2005, 430, 9-14 63 A C Stowe, W J Shaw, J C Linehan, B Schmid and T Autrey, Phys Chem Chem Phys., 2007, 9, 1831-1836 173 64 M E Bluhm, M G Bradley, R Butterick, U Kusari and L G Sneddon, J Am Chem Soc., 2006, 128, 7748-7749 65 W J Shaw, J C Linehan, N K Szymczak, D J Heldebrant, C Yonker, D M Camaioni, R T Baker and T Autrey, Angew Chem., 2008, 120, 7603-7606 66 A Gutowska, L Y Li, Y S Shin, C M M Wang, X H S Li, J C Linehan, R S Smith, B D Kay, B Schmid, W Shaw, M Gutowski and T Autrey, Angew Chem., Int Ed., 2005, 44, 3578-3582 67 A Feaver, S Sepehri, P Shamberger, A Stowe, T Autrey and G Cao, J Phys Chem B, 2007, 111, 7469-7472 68 Q Xu and M Chandra, J Power Sources, 2006, 163, 364-370 69 S B Kalidindi, M Indirani and B R Jagirdar, Inorg Chem., 2008, 47, 7424-7429 70 B L Dietrich, K I Goldberg, D M Heinekey, T Autrey and J C Linehan, Inorg Chem., 2008, 47, 8583-8585 71 C A Jaska, K Temple, A J Lough and I Manners, J Am Chem Soc., 2003, 125, 9424-9434 72 M Chandra and Q Xu, J Power Sources, 2006, 156, 190-194 73 J M Yan, X B Zhang, S Han, H Shioyama and Q Xu, Angew Chem., Int Ed., 2008, 47, 2287-2289 74 T He, Z T Xiong, G T Wu, H L Chu, C Z Wu, T Zhang and P Chen, Chem Mater., 2009, 21, 2315-2318 75 M C Denney, V Pons, T J Hebden, D M Heinekey and K I Goldberg, J Am Chem Soc., 2006, 128, 12048-12049 174 76 F Y Cheng, H Ma, Y M Li and J Chen, Inorg Chem., 2007, 46, 788-794 77 P M Zimmerman, A Paul, Z Y Zhang and C B Musgrave, Angew Chem., Int Ed., 2009, 48, 2201-2205 78 T J Clark, G R Whittell and I Manners, Inorg Chem., 2007, 46, 7522-7527 79 M E Bluhm, M G Bradley and L G Sneddon, Prepr Symp - Am Chem Soc., Div Fuel Chem., 2006, 51, 571-572 80 Z T Xiong, C K Yong, G T Wu, P Chen, W Shaw, A Karkamkar, T Autrey, M O Jones, S R Johnson, P P Edwards and W I F David, at Mater., 2008, 7, 138-141 81 X D Kang, Z Z Fang, L Y Kong, H M Cheng, X D Yao, G Q Lu and P Wang, Adv Mater , 2008, 20, 2756-+ 82 H V K Diyabalanage, R P Shrestha, T A Semelsberger, B L Scott, M E Bowden, B L Davis and A K Burrell, Angew Chem., Int Ed., 2007, 46, 8995-8997 83 J Spielmann, G Jansen, H Bandmann and S Harder, Angew Chem., Int Ed., 2008, 47, 6290-6295 84 J J Vajo, S L Skeith and F Mertens, J Phys Chem B, 2005, 109, 3719-3722 85 A W Vittetoe, M U Niemann, S S Srinivasan, K McGrath, A Kumar, D Y Goswami, E K Stefanakos and S Thomas, Int J Hydrogen Energ., 2009, 34, 2333-2339 86 P Chen, Z T Xiong, J Z Luo, J Y Lin and K L Tan, J Phys Chem B, 2003, 107, 10967-10970 87 T Ichikawa, S Isobe, N Hanada and H Fujii, J Alloys Compd., 2004, 365, 271-276 175 88 Z T Xiong, G T Wu, H J Hu and P Chen, Adv Mater , 2004, 16, 1522-+ 89 Z T Xiong, J J Hu, G T Wu, P Chen, W F Luo, K Gross and J Wang, J Alloys Compd., 2005, 398, 235-239 90 Z Xiong, J Hu, G Wu and P Chen, J Alloys Compd., 2005, 395, 209-212 91 W Luo, J Alloys Compd., 2004, 381, 284-287 92 J J Hu, G T Wu, Y F Liu, Z T Xiong, P Chen, K Murata, K Sakata and G Wolf, J Phys Chem B, 2006, 110, 14688-14692 93 P Chen and M Zhu, Mater Today, 2008, 11, 36-43 94 S I Orimo, Y Nakamori, J R Eliseo, A Zuttel and C M Jensen, Chem Rev., 2007, 107, 4111-4132 95 T Ichikawa, N Hanada, S Isobe, H Y Leng and H Fujii, J Phys Chem B, 2004, 108, 7887-7892 96 J J Hu, Y F Liu, G T Wu, Z T Xiong, Y S Chua and P Chen, Chem Mater., 2008, 20, 4398-4402 97 H Y Leng, T Ichikawa, S Hino, N Hanada, S Isobe and H Fujii, J Phys Chem B, 2004, 108, 8763-8765 98 Y Nakamori and S.-i Orimo, J Alloys Compd., 2004, 370, 271-275 99 G T Wu, Z T Xiong, T Liu, Y F Liu, J J Hu, P Chen, Y P Feng and A T S Wee, Inorg Chem., 2007, 46, 517-521 100 H Wu, J Am Chem Soc., 2008, 130, 6515-6522 101 Y F Liu, T Liu, Z T Xiong, J J Hu, G T Wu, P Chen, A T S Wee, P Yang, K Murata and K Sakata, Eur J Inorg Chem., 2006, 4368-4373 176 102 F E Pinkerton, G P Meisner, M S Meyer, M P Balogh and M D Kundrat, J Phys Chem B, 2005, 109, 6-8 103 M Aoki, K Miwa, T Noritake, G Kitahara, Y Nakamori, S Orimo and S Towata, Appl Phys A: Mater Sci Process., 2005, 80, 1409-1412 104 Z T Xiong, G T Wu, J J Hu, Y F Liu, P Chen, W F Luo and J Wang, Adv Funct Mater., 2007, 17, 1137-1142 105 Y Kojima, M Matsumoto, Y Kawai, T Haga, N Ohba, K Miwa, S.-i Towata, Y Nakamori and S.-i Orimo, J Phys Chem B, 2006, 110, 9632-9636 106 J Yang, A Sudik, D J Siegel, D Halliday, A Drews, R O Carter, C Wolverton, G J Lewis, J W A Sachtler, J J Low, S A Faheem, D A Lesch and V Ozolinš, Angew Chem., Int Ed., 2008, 47, 882-887 107 P A Chater, W I F David, S R Johnson, P P Edwards and P A Anderson, Chem Commun., 2006, 2439-2441 108 Y E Filinchuk, K Yvon, G P Meisner, F E Pinkerton and M P Balogh, Inorg Chem., 2006, 45, 1433-1435 109 J Wang, T Liu, G Wu, W Li, Y Liu, C Araújo, R Scheicher, A Blomqvist, R Ahuja, Z Xiong, P Yang, M Gao, H Pan and P Chen, Angew Chem., Int Ed., 2009, 48, 5828-5832 110 Y Nakamori, A Ninomiya, G Kitahara, M Aoki, T Noritake, K Miwa, Y Kojima and S Orimo, J Power Sources, 2006, 155, 447-455 111 H Wu, W Zhou and T Yildirim, J Am Chem Soc., 2008, 130, 14834-14839 112 D Y Kim, N J Singh, H M Lee and K S Kim, Chem.-Eur J , 2009, 15, 5598-5604 113 T B Lee and M L McKee, Inorg Chem., 2009, 48, 7564-7575 177 114 Z T Xiong, Y S Chua, G T Wu, W L Xu, P Chen, W Shaw, A Karkamkar, J Linehan, T Smurthwaite and T Autrey, Chem Commun., 2008, 5595-5597 115 G L Xia, X B Yu, Y H Guo, Z Wu, C Z Yang, H K Liu and S X Dou, Chem.-Eur J , 2010, 16, 3763-3769 116 K R Graham, T Kemmitt and M E Bowden, Energ Environ Sci., 2009, 2, 706-710 117 K C Ott, R T Baker, A K Burrell, B L Davis, H V Diyabalanage, J C Gordon, C W Hamilton, N Henson, M Inbody, K D John, T A Semelsberger, R Shrestha and F H Stephens, 2008 DOE Annual Progress Report, Chemical Hydrogen Storage R&D at Los Alamos National Laboratory http://www.hydrogen.energy.gov/pdfs/progress08/iv_b_1f_ott.pdf 118 Z T Xiong, G T Wu, Y S Chua, J J Hu, T He, W L Xu and P Chen, Energ Environ Sci., 2008, 1, 360-363 119 Z Xiong, Y Chua, G Wu, L Wang, M W Wong, Z M Kam, T Autrey, T Kemmitt and P Chen, Dalton Trans., 2010, 39, 720-722 120 R L Lowton, M O Jones, W I F David, S R Johnson, M Sommariva and P P Edwards, J Mater Chem., 2008, 18, 2355-2360 121 B Bogdanovic, M Felderhoff, M Germann, M Hartel, A Pommerin, F Schuth, C Weidenthaler and B Zibrowius, J Alloys Compd., 2003, 350, 246-255 122 J J Fitzgerald, S D Kohl, G Piedra, S F Dec and G E Maciel, Chem Mater., 1994, 6, 1915-1917 123 R Janot, J.-B Eymery and J.-M Tarascon, The J Phys Chem C, 2007, 111, 2335-2340 124 J Rouxel and R Brec, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C, 1966, 262, 1070-& 178 125 Y H Hu and E Ruckenstein, J Phys Chem A, 2003, 107, 9737-9739 126 W Luo, D Cowgill, K Stewart and V Stavila, J Alloys Compd., 2010, 497, L17-L20 127 2008 Annual Progress Report for the DOE Hydrogen Program http://www.hydrogen.energy.gov/annual_progress08.html 128 2009 Annual Progress Report for the DOE Hydrogen Program http://www.hydrogen.energy.gov/annual_progress09.html 129 F A Uribe, S Gottesfeld and J T A Zawodzinski, J Electrochem Soc., 2002, 149, A293-A296 130 K J Fijakowski and W Grochala, J Mater Chem., 2009, 19, 2043-2050 131 A T Luedtke and T Autrey, Inorg Chem., 2010, 49, 3905-3910 132 G Soloveichik, J H Her, P W Stephens, Y Gao, J Rijssenbeek, M Andrus and J C Zhao, Inorg Chem., 2008, 47, 4290-4298 133 C H Christensen, R Z Sorensen, T Johannessen, U J Quaade, K Honkala, T D Elmoe, R Kohler and J K Norskov, J Mater Chem., 2005, 15, 4106-4108 134 X D Kang, L P Ma, Z Z Fang, L L Gao, J H Luo, S C Wang and P Wang, Phys Chem Chem Phys., 2009, 11, 2507-2513 135 Z T Xiong, J J Hu, G T Wu and P Chen, J Alloys Compd., 2005, 395, 209-212 136 Z T Xiong, G T Wu, J J Hu and P Chen, J Alloys Compd., 2007, 441, 152-156 137 E H Majzoub and E Rönnebro, The J Phys Chem C, 2009, 113, 3352-3358 179 138 S Sepehri, A Feaver, W J Shaw, C J Howard, Q Zhang, T Autrey and Cao, J Phys Chem B, 2007, 111, 14285-14289 139 N J Hess, M E Bowden, V M Parvanov, C Mundy, S M Kathmann, G K Schenter and T Autrey, J Chem Phys., 2008, 128 140 E Lepinasse and B Spinner, Int J Refrig., 1994, 17, 309-322 141 G Jeschke, W Hoffbauer and M Jansen, Solid State ucl Magn., 1998, 12, 1-7 142 P S Marchetti, D K Kwon, W R Schmidt, L V Interrante and G E Maciel, Chem Mater., 1991, 3, 482-486 143 M Worle, H M Z Altenschildesche and R Nesper, J Alloys Compd., 1998, 264, 107-114 144 E A Sullivan and S Johnson, J Phys Chem., 1959, 63, 233-238 145 S R Johnson, W I F David, D M Royse, M Sommariva, C Y Tang, F P A Fabbiani, M O Jones and P P Edwards, Chem.-Asian J., 2009, 4, 849-854 146 R Z Sorensen, J S Hummelshoj, A Klerke, J B Reves, T Vegge, J K Norskov and C H Christensen, J Am Chem Soc., 2008, 130, 8660-8668 147 D Y Kim, H M Lee, J Seo, S K Shin and K S Kim, Phys Chem Chem Phys., 2010, 12, 5446-5453 148 D J Siegel, C Wolverton and V Ozolins, Phys Rev B, 2007, 75 180 Appendix List of Conference Presentations Investigations of Chemical Reaction between a H2 and LiAlH4 Poster presentation in Singapore International Chemical Conference – (SICC-5) in Singapore, 2007 (Organized by National University of Singapore) Investigations on a H2-LiAlH4 and a H2- H3BH3 Systems for Hydrogen Production Poster presentation in Asia ano conference in Singapore, 2008 (Organized by Materials Research Society (MRS) and Institute of Materials Research & Engineering (IMRE)) Investigations on a H2-LiAlH4 and a H2- H3BH3 Systems for Hydrogen Production (Best poster award) Poster presentation in 1st Singapore-Hong Kong Bilateral Graduate Student Congress in Chemical Science in Singapore, 2009 (Organized by National University of Singapore) Calcium Amidoborane Ammoniate – Synthesis, Structure, and Hydrogen Storage Properties Poster presentation in MRS Fall Meeting 2009, in Boston, USA, 2009 (Organized by Materials Research Society (MRS)) Synthesis, Structure and Dehydrogenation of Alkaline-Earth Metal Amidoborane Derivatives Poster presentation in International Symposium on Metal-Hydrogen Systems (MH2010) in Moscow, Russia, 2010 Synthesis, Structure and Dehydrogenation of Alkaline-Earth Metal Amidoborane Derivatives Poster presentation in the Workshop on Hydrogen Storage over Ammonia Borane and Amidoborane, in Dalian, China, 2010 (Organized by Complex Hydride Materials Research Group in Dalian Institute of Chemical Physics (DICP)) 181 List of Publications Synthesis, Structure and Dehydrogenation of Magnesium Amidoborane Monoammoniate Yong Shen Chua, Guotao Wu, Zhitao Xiong, Abhi Karkamkar, Jianping Guo, Mingxian Jian, Ming Wah Wong, Thomas Autrey and Ping Chen Chemical Communications, 2010, 46, 5752-5754 Investigations on the Solid State Interaction between LiAlH4 and a H2 Yong Shen Chua, Guotao Wu, Zhitao Xiong and Ping Chen Journal of Solid State Chemistry, 2010, 183, 2040-2044 Calcium Amidoborane Ammoniate – Synthesis, Structure, and Hydrogen Storage Properties Yong Shen Chua, Guotao Wu, Zhitao Xiong, Teng He and Ping Chen Chemistry of Materials, 2009, 21, 4899-4904 Development of Amidoboranes for Hydrogen Storage Yong Shen Chua, Guotao Wu, Zhitao Xiong and Ping Chen Feature article, submitted Calcium Amidoborane Ammoniate – A Mechanistic Investigation on Its Formation and Dehydrogenation by 15 H3 and D3 Isotopic Substitution Yong Shen Chua, Wen Li, Guotao Wu, Wendy J Shaw, Zhitao Xiong, Ming Wah Wong, Thomas Autrey and Ping Chen Manuscript in preparation Interaction of Ammonia Borane with Li2 H and Li3 Zhitao Xiong, Yong Shen Chua, Guotao Wu, Li Wang, Ming Wah Wong, Zhi Ming Kam, Tom Autrey, Tim Kemmitt and Ping Chen Dalton Transactions, 2010, 39, 720-722 Interaction of Lithium Hydride and Ammonia Borane in THF Zhitao Xiong, Yong Shen Chua, Guotao Wu, Weiliang Xu, Ping Chen, Wendy Shaw, Abhi Karkamkar, John Linehan, Tricia Smurthwaite and Thomas Autrey Chemical Communications, 2008, 5595-5597 Synthesis of Sodium Amidoborane ( a H2BH3) for Hydrogen Production Zhitao Xiong, Guotao Wu, Yong Shen Chua, Jianjiang Hu, Teng He, Weiliang Xu and Ping Chen Energy & Environmental Science, 2008, 1, 360-363 182 Ambient Temperature Hydrogen Desorption from LiAlH4-Li H2 Mediated by HMPA Xueli Zheng, Weiliang Xu, Zhitao Xiong, Yong Shen Chua, Guotao Wu, Song Qin, Hua Chen and Ping Chen Journal of Materials Chemistry, 2009, 19, 8426-8431 10 Dehydrogenation of LiAlH4 in HMPA Xueli Zheng, Zhitao Xiong, Song Qin, Yong Shen Chua, Hua Chen and Ping Chen International Journal of Hydrogen Energy, 2008, 33, 3346-3350 11 Improvement of Hydrogen Storage Properties of the Li-Mg- -H System by Addition of LiBH4 Jianjiang Hu, Yongfeng Liu, Guotao Wu, Zhitao Xiong, Yong Shen Chua and Ping Chen Chemistry of Materials, 2008, 20, 4398-4402 183 ... target for hydrogen storage 1.2 Materials for hydrogen storage 1.2.1 Metal hydrides 1.2.2 Complex hydrides 1.2.2.1 Activation for hydrogen release from complex aluminum hydride 1.2.3 Chemical hydrides. ..DEVELOPME T OF HIGH HYDROGE CAPACITY COMPLEX A D CHEMICAL HYDRIDES FOR HYDROGE STORAGE CHUA YO G SHE (B.Sc (Hons.), UTM) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTME T OF CHEMISTRY... content of 10.5 wt% and 19.6 wt%, respectively, and thus, are attractive for hydrogen storage However, direct uses of these chemicals for hydrogen storage are not feasible due to their poor dehydrogenation

Ngày đăng: 10/09/2015, 15:50

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan