Application of ammonia borane and metal amidoboranes in organic reduction

147 360 0
Application of ammonia borane and metal amidoboranes in organic reduction

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

APPLICATION OF AMMONIA BORANE AND METAL AMIDOBORANES IN ORGANIC REDUCTION XU WEILIANG (B.Sci., Soochow University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY NATIONAL UNIVERSITY OF SINGAPORE 2012 ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Prof. Chen Ping. As my Ph.D. supervisor, Prof. Chen taught me both basic and advanced techniques in chemistry with great patience. She also led me to the right direction with her experience and knowledge at every critical point of this thesis. Her assistance and supervision are great treasures to me and this thesis work. I also appreciate the help from my co-supervisor, Asst. Prof. Wu Jishan. Dr Wu gave me great suggestions on my research work and inspired me in every discussion with him. In addition, I need to warmly acknowledge Prof. Fan Hongjun and Prof. Zhou Yonggui from Dalian Institute of Chemical Physics, Chinese Academy of Sciences. The help from Prof. Fan in theoretical calculation improves the understanding of my research topic. The discussion with Prof. Zhou on research topic helps me achieve several additional insights into this topic. A very special recognition needs to be given to my research group members such as Prof. Xiong Zhitao and Prof. Wu Guotao for their extensive help and support during research. Finally, a special thanks to my family for their uncontional love and support in every way possible throughout the process of my Ph.D. course.       i   THESIS DECLARATION The work in this thesis is the original work of Xu Weiliang, performed independently under the supervision of Assoc Prof. Chen Ping, Chemistry Department, National University of Singapore, between 2007 and 2011. The content of the thesis has been published in: 1. Xu, W.; Zhou, Y.; Wang, R.; Wu, G.; Chen, P., Lithium amidoborane, highly chemoselective reagent for reduction of -unsaturated ketones to allylic alcohols. Organic & Biomolecular Chemistry, 2012,10, 367-371. 2. Xu, W.; Wang, R.; Wu, G.; Chen, P. Calcium amidoborane, a new chemoselective reagent for reduction of ,-unsaturated aldehydes and ketones to allylic alcohols. RSC Advances, DOI: 10.1039/C2RA01291J. 3. Xu, W.; Zheng, X; Wu, G.; Chen, P. Reductive amination of aldehydes and ketones with primary amines by using lithium amidoborane. Chinese Journal of Chemistry, DOI: 10.1002/cjoc.201200132. 4. Xu, W.; Fan, H.; Wu, G.; Chen, P., Comparative study on reducing aromatic aldehydes by using ammonia borane and lithium amidoborane as reducing reagents. New Journal of Chemistry, DOI: 10.1039/c2nj40227k.       Name Signature Date ii   Table of contents Acknowledgements………………………………………………………… i Publication list…………………………………………………… viii Summary………………………………………………………………………. ix List of Tables………………………………………………………………… xi List of Figures…………………………………………………………………. xii Abbreviation List…………………………………………………………… xiv Chapter 1. Introduction 1.1 Review on methods for organic reduction……………………………… 1.1.1 Catalytic hydrogenation………………………………………………. 1.1.2 Electroreduction and reduction with metals………………………… 1.1.3 Transfer hydrogenation…………………………………………… . 1.1.4 Reduction with hydrides and complex hydrides……………………… 1.2 Reducing reactivity of some typical borohydride compounds………… 10 1.2.1 Sodium borohydride (NaBH4)……………………………………… 10 1.2.2 Diborane (B2H6), tetrahydrofuran-borane complex (BH3-THF) and dimethyl sulfide Borane (BMS) ………………………………………………. 13 1.2.3 Amine borane ………………………………………………………… 19 1.2.4 Sodium aminoborohydrides (NaNRR’BH3) ………………………… 25 1.2.5 Lithium aminoborohydrides (LiNRR’BH3, LAB) ………………… . 28 1.3 Mechanistic interpretations on borohydride reduction……………………. 31 1.4 Review on ammonia borane and metal amidoboranes for hydrogen iii   storage ……………………………………………………………… . 35 1.4.1 Ammonia borane (AB)……………………………………………… 35 1.4.2 Metal amidoborane (MAB)………………………………………… 38 1.5 Research gaps and aims…………………………………………………… 39 1.5.1 Research gaps………………………………………………………… 39 1.5.2 Research aims………………………………………………………… 40 Chapter 2. Methodology 2.1 Synthesis of metal amidoboranes…………………………………………. 42 2.1.1 Introduction………………………………………………………… 42 2.1.2 Synthetic procedure of metal amidoboranes. ……………………… 43 2.2 Synthesis of deuterated ammonia borane and deuterated metal amidoboranes 45 2.2.1 Introduction…………………………………………………………. 46 2.2.2 Synthetic procedure of deuterated ammonia borane and deuterated metal amidoboranes……………………………………………………… 46 2.3 Characterization methods………………………………………………. 47 Chapter 3. Reducing aldehydes and ketones by ammonia boranes 3.1 Introduction……………………………………………………………… 48 3.2 Results and discussion ……………………………………………………. 49 3.2.1 Reaction process and reactivity study……………………………… . 49 3.2.2 Kinetic study………………………………………………………… 53 3.2.3 Theoretical study……………………………………………………. 55 iv   3.3 Conclusion……………………………………………………………… 58 3.4 Experimental section………………………………………………………. 58 3.4.1 General Remarks………………………………………………… . 58 3.4.2 General experimental procedure for reducing aldehydes and ketones with AB 59 3.4.3 Products characterization . 60 Chapter 4. Reducing aldehydes, ketones and imines by metal amidoboranes 4.1 Introduction………………………………………………………………… 64 4.2 Results and discussion ……………………………………………………. 65 4.2.1 Reducing ketones by MAB……………………………………… . 65 4.2.2 Reducing imines with MAB……………………………………… . 71 4.2.3 Theoretical Study………………………………………………… 77 4.2.4 Reducing aromatic aldehydes with MAB…………………………… 79 4.3 Conclusion………………………………………………………………. 82 4.4 Experimental section……………………………………………………… 83 4.4.1 General Remarks…………………………………………………… 83 4.4.2 Synthesis of imines . 83 4.4.3 General experimental procedure for reducing ketones with LiAB, NaAB or CaAB . 84 4.4.4 General experimental procedure for reducing imines with LiAB, NaAB or CaAB 84 4.4.5 Products characterization 85 v   Chapter 5. Chemoselectively reducing -unsaturated aldehydes and ketones into allyic alcohols by metal amidoboranes 5.1 Introduction……………………………………………………………… 92 5.2 Results and discussion …………………………………………………… 94 5.2.1 Reactivity study……………………………………………… 94 5.2.2 Mechanism study………………………………………………… 97 5.2.3 Reducing -unsaturated aldehydes with MAB………………… . 98 5.2.4 Explanation on 1,2-reduction property of MAB………………… 100 5.3 Conclusion………………………………………………………………… 100 5.4 Experimental section……………………………………………………… 101 5.4.1 General remarks………………………………………………… . 101 5.4.2 Synthesis of -unsaturated ketones………………………… . 101 5.4.3 General experimental procedure for reducing -unsaturated ketones or aldehydes with CaAB………………………………………………………. 102 5.4.4 Products characterization……………………………………… 103 Chapter 6. Reductive amination of aldehydes and ketones with primary amines by using lithium amidoborane 6.1 Introduction………………………………………………………………. 109 6.2 Results and discussion ……………………………………………………. 111 6.2.1 Choice of Lewis acid…………………………………………… . 111 6.2.2 Reactivity study………………………………………………… 112 vi   6.3 Conclusion………………………………………………………………… 114 6.4 Experimental section………………………………………………………. 115 6.4.1 General remarks…………………………………………………… 115 6.4.2 General experimental procedure for reducing amination by LiAB 115 6.4.3 Products characterization……………………………………… . 116 Chapter 7. Conclusion and Future work 7.1 Conclusion ……………………………………………………………… 121 7.2 Future work……………………………………………………………… 124 Reference……………………………………………………………………… 125                           vii   PUBLICATION LIST 1. Xu, W.; Zhou, Y.; Wang, R.; Wu, G.; Chen, P., Lithium amidoborane, highly chemoselective reagent for reduction of ,-unsaturated ketones to allylic alcohols. Organic & Biomolecular Chemistry, 2012,10, 367-371. 2. Xu, W.; Wang, R.; Wu, G.; Chen, P. Calcium amidoborane, a new chemoselective reagent for reduction of ,-unsaturated aldehydes and ketones to allylic alcohols. RSC Advances, DOI: 10.1039/C2RA01291J. 3. Xu, W.; Zheng, X.; Wu, G.; Chen, P. Reductive amination of aldehydes and ketones with primary amines by using lithium amidoborane. Chinese Journal of Chemistry, DOI: 10.1002/cjoc.201200132. 4. Xu, W.; Fan, H.; Wu, G.; Chen, P., Comparative study on reducing aromatic aldehydes by using ammonia borane and lithium amidoborane as reducing reagents. New Journal of Chemistry, DOI: 10.1039/c2nj40227k 5. Xu, W.; Fan, H.; Wu, G.; Wu, J.; Chen, P., Metal Amidoboranes, Superior Double Hydrogen Transfer Agents in Reducing Ketones and Imines. Chemistry- a European Journal, under revision. 6. Zheng, X.; Xu, W.; Xiong, Z.; Chua, Y.; Wu, G.; Qin, S.; Chen, H.; Chen, P., Ambient temperature hydrogen desorption from LiAlH4-LiNH2 mediated by HMPA. Journal of Material Chemistry. 2009, 19 (44), 8426-8431. 7. Xiong, Z.; Wu, G.; Chua, Y. S.; Hu, J.; He, T.; Xu, W.; Chen, P., Synthesis of sodium amidoborane (NaNH2BH3) for hydrogen production. Energy & Environmental Science 2008, (3), 360-363. 8. Xiong, Z. T.; Chua, Y. S.; Wu, G. T.; Xu, W. L.; Chen, P.; Shaw, W.; Karkamkar, A.; Linehan, J.; Smurthwaite, T.; Autrey, T., Interaction of lithium hydride and ammonia borane in THF. Chemical Communications. 2008, (43), 5595-5597.       viii   SUMMARY Ammonia borane (NH3BH3, AB) and metal amidoboranes (M(NH2BH3)n, MABs) are attractive materials for hydrogen storage due to their high hydrogen capacities and mild dehydrogenation temperature. One of the driving forces for releasing hydrogen from those materials is the co-existence of protic and hydridic hydrogens in their structures. On the other hand, although AB and MAB belong to borohydrides, their applications in organic reductions have not yet been extensively explored. Moreover, few investigations were given to the participation of protic hydrogens of amine boranes in organic reductions. The objectives of this study were to explore AB and MABs as reducing agents in organic reduction and to study the reduction mechanism involved. Our experimental results show that AB possesses high reactivity in reducing aldehydes at ambient temperature and in reducing ketones at 65oC. Based on the in-situ FT-IR and NMR characterizations, we found that not only the hydridic hydrogens of AB transfer to carbonyl groups, but the protic hydrogens of AB also participate in reaction. Furthermore, kinetic study and density functional theory (DFT) calculations indicate that the reaction between AB and carbonyl obeys a second-order rate law, being first order of each reactant. In addition, concerted double hydrogen transfer pathway is the dominant path in the reduction. In another part of this study, MABs were utilized to reduce unsaturated functional groups. Interestingly, MABs has higher reducibility towards unsaturated functional groups than AB. Moreover, the protic hydrogens of MABs are also proved to ix   was treated with HCl (4ml, 2M) and stirred for an additional hour. Then, NaOH (2M) solution was added to adjust the pH value to 8. Next, the solution was extracted with 10 ml diethyl ether for times. The combined diethyl ether extracts were washed with brine, dried with NaSO4 overnight and concentrated in vacuum. In the final step, the residue was purified by silica gel flash chromatography to obtain the desired product. The product was characterized by FTIR, 1H NMR, 13C NMR and GC-MS. 6.4.3 Products characterization N-benzylaniline (entry 1,Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 4.00 (s, 1H; N-H), 4.32 (s, 2H; CH2), 6.64-6.72 (m, 3H; Ar-H), 7.16-7.36 ppm (m, 7H; ArH).13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 48.36, 112.87, 117.59, 127.23, 127.52, 128.64, 129.27, 140.51 ppm. FT-IR (KBr): νmax = 3419,3052, 3026, 2920, 2841, 1602, 1505, 1452, 1324, 750, 693 cm-1.MS (EI): m/z (%) 182 [M-H]+ (100), 91 (70), 106 (12), 77 (10), 65 (9). N-benzyl-4-methylaniline (entry 2, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 2.25 (s, 3H; CH3), 3.89 (s, 1H; N-H), 4.31 (s, 2H; CH2), 6.57-7.00 (m, 4H; Ar-H), 7.28-7.36 ppm (m, 5H; Ar-H).13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 20.39, 48.67, 113.02, 126.75, 127.15, 127.50, 128.60, 129.75, 139.70, 145.96 ppm. FT-IR (KBr): νmax =3416, 3027, 2918, 2863, 1617, 1521, 807, 742, 697cm-1. MS (EI): m/z (%) 196 [M-H]+ (100), 91 (78), 120 (18), 65 (11). N-benzyl-4-methoxyaniline (entry 3, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 3.74 (s, 3H; CH3), 3.77 (s, 1H; N-H), 4.28 (s, 2H; CH2), 6.60-6.62 (m, 2H; Ar-H), 6.78-6.79 (m, 2H; Ar-H), 7.28-7.37 ppm (m, 5H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 49.27, 55.83, 114.14, 114.97, 127.17, 127.55, 128.60, 139.75, 142.52, 152.26 ppm. FT-IR (KBr): νmax = 3392, 3060, 3028, 2998, 2906, 2833, 1624, 1512, 1245, 1034, 820, 742, 694 cm-1.MS (EI): m/z (%) 212 [M-H]+ (100), 122 (53), 91 (47), 195 (43), 167 (18). 116    N-benzyl-4-chloroaniline (entry 4, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 4.04 (s, 1H; N-H), 4.30 (s, 2H; CH2), 6.54-6.57 (m, 2H; Ar-H), 7.09-7.10 (m, 2H; Ar-H), 7.27-7.34 ppm (m, 5H; Ar-H). 13 C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 48.36, 113.93, 122.13, 127.37, 127.41, 128.70, 129.07, 138.96, 146.67 ppm. FT-IR (KBr): νmax = 3427, 3062, 3028, 2922, 2852, 1600, 1500, 1321, 1177, 815, 733, 698 cm-1. MS (EI): m/z (%) 216 [M-H]+ (82), 91 (100), 65 (9), 139 (9). N-benzyl-4-nitroaniline (entry 5, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 4.41 (s, 2H; CH2), 4.86 (s, 1H; N-H), 6.54-6.56 (m, 2H; Ar-H), 7.31-7.35 (m, 5H; Ar-H), 8.05-8.07 ppm (m, 2H; Ar-H). 13 C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 47.70, 111.34, 113.238, 126.37, 127.35, 127.87, 128.96, 137.38, 153.04 ppm. FT-IR (KBr): νmax = 3373, 2929, 1605, 1519, 740 cm-1. MS (EI): m/z (%) 227 [M-H]+ (100), 106 (40), 89 (24), 181 (21), 77 (19). Dibenzylamine (entry 6, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 1.62 (s, 1H; NH), 3.80 (m, 4H; CH2), 7.25-7.33 ppm (m, 10H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 53.18, 58.72, 126.94, 128.15, 128.39, 128.80, 128.97, 129.58, 134.42, 140.35 ppm. FT-IR (KBr): νmax = 3308, 3195, 3062, 3027, 2920, 2837, 1495, 1454cm-1. MS (EI): m/z (%) 197 [M]+ (100), 91 (78), 120 (18), 65 (11). N-benzylpropan-1-amine (entry 7, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 0.90 (t, 3JHH = 7.41 Hz, 3H; CH3), 1.23 (s, 1H; NH), 1.49-1.53 (m, 2H; CH2), 2.58 (t, 3JHH = 7.24 Hz, 2H; CH2), 3.76 (s, 2H; CH2), 7.29-7.31 ppm (m, 5H; ArH). 13 C NMR (126 MHz, CDCl3, 25oC; CDCl3) : δ = 11.74, 23.14, 51.32, 54.00, 126.85, 128.10, 128.35, 129.11ppm. FT-IR (KBr): νmax = 3306, 3063, 3028, 2959, 2928, 2873, 2817, 1494, 1454 cm-1. MS (EI): m/z (%) 149 [M]+ (10), 91(100), 106 (5), 120 (60), 65 (15), 77 (5). N-(2-methylbenzyl)aniline (entry 8, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 2.41 (s, 3H; CH3), 3.83 (s, 1H; N-H), 4.30 (s, 2H; CH2), 6.67-6.77 (m, 5H; Ar-H), 7.23-7.37 ppm (m, 4H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 18.96, 46.44, 112.76, 117.51, 126.21, 127.46, 128.30, 129.32, 130.37, 136.37, 137.08, 117    148.37 ppm. FT-IR (KBr): νmax = 3416, 3050, 3019, 2969, 2919, 2859, 1602, 1505, 1332, 747cm-1. MS (EI): m/z (%) 197 [M]+ (50), 105 (100), 77 (40), 93 (20) N-(3-methylbenzyl)aniline (entry 9, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 2.38 (s, 3H; CH3), 3.99 (s, 1H; N-H), 4.31 (s, 2H; CH2), 6.67-6.75 (m, 3H; Ar-H), 7.12-7.26 ppm (m, 6H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 21.46, 48.40, 112.89, 117.56, 124.63, 128.03, 128.33, 128.57, 129.29, 138.45, 139.45, 148.31ppm. FT-IR (KBr): νmax = 3418, 3050, 3021, 2919, 2860, 1602, 1505, 1323, 749cm-1. MS (EI): m/z (%) 197 [M]+ (50), 105 (100), 77 (40), 93 (30). N-(4-methylbenzyl)aniline (entry 10, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 2.36 (s, 3H; CH3), 3.96 (s, 1H; N-H), 4.30 (s, 2H; CH2), 6.64-6.73 (m, 3H; Ar-H), 7.17-7.27 ppm (m, 6H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 21.10, 48.11, 112.87, 117.51, 127.53, 129.26, 129.32, 136.41, 136.87, 148.27 ppm. FT-IR (KBr): νmax = 3419, 3049, 3020, 2920, 2860, 1603, 1505, 1325, 1266, 806, 748 cm-1. MS (EI): m/z (%) 196 [M-H]+ (85), 105 (100), 77 (18). N-(4-methoxybenzyl)aniline (entry 11, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 o C; TMS): δ = 3.81 (s, 3H; CH3), 3.93 (s, 1H; N-H), 4.26 (s, 2H; CH2), 6.65-6.90 (m, 5H; Ar-H), 7.19-7.30 ppm (m, 4H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 47.83, 55.31, 112.89, 114.89, 117.53, 128.82, 129.27, 131.49, 148.27, 158.92 ppm. FT-IR (KBr): νmax = 3398, 3047, 2962, 2836, 1604, 1514, 1425, 1302, 1253, 1175, 1034, 818, 748, 694cm-1. MS (EI): m/z (%) 212 [M-H]+ (50), 121 (100), 77 (13). N-(4-chlorobenzyl)aniline (entry 12, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 4.02 (s, 1H; N-H), 4.30 (s, 2H; CH2), 6.60-6.73 (m, 3H; Ar-H), 7.17-7.30 ppm (m, 6H; Ar-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 47.63, 112.91, 117.82, 128.69, 128.75, 129.29, 132.89, 138.00, 147.85 ppm. FT-IR(KBr): νmax = 3419, 3052, 3022, 2923, 2852, 1701, 1603, 1088, 1014, 817, 750, 692cm-1. MS (EI): m/z (%): 216 [M-H]+ (98), 125 (100), 90 (17), 77 (13), 106 (10), 181 (13). N-cinnamylaniline (entry 13, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 3.83(s, 1H; NH), 3.95 (s, 2H; CH2), 6.33-6.36 (m, 1H; CH), 6.70 (d, 3JHH = 15.80 Hz, 1H; CH), 6,74-7.76 ppm (m, 3H; ArH) 7.21-7.39 ppm (m, 7H; ArH). 13 C NMR 118    (126 MHz, CDCl3, 25oC; CDCl3): δ = 46.24, 113.10, 117.60, 126.37, 127.12, 127.56, 128.60, 129.31, 131.56, 136.93, 148.10 ppm. FT-IR (KBr): νmax = 3414, 3052, 3023, 2917, 2834, 1602, 1504, 1322, 966, 748, 692cm-1. MS (EI): m/z (%) 208 [M-H]+ (60), 117 (100), 91 (20), 77 (19). N-cinnamyl-4-methylaniline (entry 14, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 o C; TMS): δ = 2.23 (s, 3H; CH3), 3.68 (s, 1H; NH), 3.90 (s, 2H; CH2), 6.32-6.34 (m, 1H; CH), 6.57-6.59 ppm (m, 3H; ArH) 7.00-7.36 ppm (m, 7H; ArH). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 20.36, 46.61, 113.28, 126.32, 126.88, 127.34, 127.46, 128.54, 129.75, 131.42, 136.96, 145.81 ppm. FT-IR (KBr): νmax = 3414, 3052, 3023, 2917, 2834, 1602, 1504, 1322, 966, 748, 692cm-1. MS (EI): m/z (%) 223 [M]+ (80), 117 (100), 91 (40), 77 (19). N-benzyl-3-phenylprop-2-en-1-amine (entry 15, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 1.55 (s, 1H; NH), 3.44 (s, 2H; CH2), 3.84 (s, 2H; CH2) 6.29-6.34 (m, 1H; CH), 6.53 (d, 3JHH = 15.80 Hz, 1H; CH), 7.21-7.36 ppm (m, 10H; ArH). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 51.22, 53.36, 126.28. 126.98, 127.34, 128.20, 128.44, 128.48, 128.54, 131.41, 137.18, 140.29 ppm. FT-IR (KBr): νmax = 3311, 3059, 3025, 2918, 2816, 1494, 1452, 966, 734 cm-1. MS (EI): m/z (%) 223 [M]+ (40), 117 (100), 91 (20), 77 (19). 3-phenyl-N-propylprop-2-en-1-amine (entry 16, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 0.92 (t, 3JHH = 7.40 Hz, 3H; CH3), 1.48-1.56 (m, 2H; CH2), 1.75 (s, 1H; NH), 2.60 (t, 3JHH = 7.24 Hz, 2H; CH2) 3.38-3.40 (m, 2H; CH2), 6.26-6.31 (m, 1H; CH), 6.51 (d, 3JHH = 15.87 Hz, 1H; CH), 7.18-7.35 ppm (m, 5H; ArH). 13 C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 11.76, 23.20, 51.35, 51.87, 126.24, 127.29, 128.50, 128.59, 131.18, 137.17 ppm. FT-IR (KBr): νmax = 3307, 3059, 3025, 2958, 2929, 2872, 2813, 1494, 1448, 966, 742 cm-1. MS (EI): m/z (%) 175[M]+ (20), 117 (100), 84 (25), 146 (20), 77 (5). N-(3-(furan-2-yl)-2-methylallyl)aniline (entry 17, Table 6.2):1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ =2.03 (s, 3H; CH3), 3.80 (s, 2H; CH2), 3.98 (s, 1H; NH), 2.60 (t, 3JHH = 7.24 Hz, 2H; CH2), 6.22 (s, 1H; CH), 6.32-6.69 (m, 5H; ArH), 7.14-7.35 119    ppm (m, 3H; Furan-H). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3) : δ = 16.78, 52.08, 108.42, 111.06, 112.86, 114.21, 117.50, 129.23, 134.67, 141.04, 148.13, 153.24 ppm. FT-IR (KBr): νmax = 3420, 3051, 3030, 2911, 2851, 1602, 1507, 1310, 1266 cm-1. MS (EI): m/z (%) 213 [M]+ (90), 121 (100), 93 (85), 198 (20), 77 (90). N-cyclohexylaniline (entry 18, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 1.10-2.05 (m, 10H; CH), 3.24 (s, 1H; CH), 3.48 (s, H; NH) 6.58-6.64 (m, 3H; ArH), 7.13 (m, 2H; ArH). 13 C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 25.00, 25.94, 33.50, 51.69, 113.144, 116.82, 129. 23, 147.42 ppm. FT-IR (KBr): νmax = 3404, 3052, 3019, 2958, 2929, 2859, 1601 cm-1. MS (EI): m/z (%) 175 [M]+ (20), 132 (100), 106 (10), 93 (15), 77 (10). N-benzylcyclohexanamine (entry 19, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 o C; TMS): δ = 1.10-1.89 (m, 13H; CH), 2.46 (s, 1H; NH), 3.79 (s, 2H; CH2), 7.32-7.29 (m, 5H; ArH). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ = 25.00, 26.19, 33.56, 51.04, 56.17, 126.75, 128.06, 128.36, 141.01ppm. FT-IR (KBr): νmax = 3404, 3052, 3019, 2958, 2929, 2859, 1601 cm-1. MS (EI): m/z (%) 189 [M]+ (30), 91 (100), 146 (90), 160 (10), 77 (1). N-(hexan-2-yl)aniline (entry 20, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 0.90-1.34 (m, 11H; CH), 3.44 (s, 1H; NH), 6.57-6.6 (m, 3H; ArH), 7.15 (m, 2H; ArH). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ =14.06, 20.80, 22.76, 28.36, 36.96, 48.46, 113.08, 116.75, 129.25, 147.76 ppm. FT-IR (KBr): νmax = 3404, 3052, 3019, 2958, 2929, 2859, 1601, 1505, 1318 cm-1. MS (EI): m/z (%) 177 [M]+ (20), 120 (100), 162 (10), 106 (5), 77 (10). N-benzylhexan-2-amine (entry 21, Table 6.2): 1H NMR (500 MHz, CDCl3, 25 oC; TMS): δ = 0.88-1.28 (m, 13H; CH), 2.62 (s, 1H; NH), 3.70-3.82 (m, 2H; CH2), 7.22-7.29 (m, 5H; ArH). 13C NMR (126 MHz, CDCl3, 25oC; CDCl3): δ =14.04, 20.29, 22.88, 28.19, 36.79, 51.39, 52.54, 126.77, 128.10, 128.35, 140.89 ppm. FT-IR (KBr): νmax = 3312, 3063, 3027, 2958, 2957, 3858, 1454, 1376 cm-1. MS (EI): m/z (%) 191 [M]+ (5), 117 (100), 84 (80), 91 (70), 175 (60). 120    Chapter 7. Conclusion and future work 7.1 Conclusion The motivation of this research is to study the properties of AB and MABs in organic reductions. Therefore, the objectives are to utilize AB and MABs in reducing typical organic functional groups, to examine reactivities of these materials toward reduction, and to investigate the reduction mechanism. In the first part of this study, AB was found to possess high reactivities in reducing aldehydes at ambient temperature and in reducing ketones at 65 oC. Based on the in-situ FT-IR and NMR measurements, we found that not only the hydridic hydrogens of AB transferred to carbonyl groups, but also the protic hydrogens of AB participated in reaction. This finding provides a new perspective in defining the role of AB in organic reduction. In 1980, AB was first reported as a reducing reagent but only contributed its hydridic hydrogen in the reduction.[103] The reduction was via a two-step process including hydroboration and the follow-up hydrolysis or solvolysis. However, our experimental results challenge such a commonly accepted explanation in that AB is not only a hydride transfer agent but also a double hydrogen transfer agent. In order to understand the mechanism on how AB transfers two different hydrogens to unsaturated functional groups, kinetic study and DFT calculations have been carried out. Those results show that 1) the reaction between AB and carbonyl obeys a second-order rate law, being first order of each reactant; 2) the dissociations of both N-H and B-H bonds are involved in the rate determining step; 3) concerted double-H-transfer pathway is more kinetic favorable than step-wised pathway and 121    agrees with the kinetic results. Therefore, it should be the dominant path in the reduction. The simulation results are similar to the pathway proposed by Berke et al on AB reducing imines.[164] However, there are several limitations in this part of study. Firstly, only aldehydes and ketones were utilized as substrates to react with AB. Other unsaturated functional groups such as ester and amides were not considered in this thesis. It should be noted that this is not a critical issue since the results of reducing other unsaturated functional groups can be deduced from the present results. The reactions between AB and aldehydes or ketones are simpler than reactions of reducing esters or amides. Therefore, the simulation results of those reactions may be more accurate. A second limitation is that the difference of energy barrier between concerted and step-wised pathway is only 3.1 kcal/mol. Therefore, the dominated pathway cannot be clearly distinguished. However, the limitation is also not a critical one because both pathways show that double hydrogen transfer procedure is applicable. The overall process may be the combination of both pathways. In the second part of this study MABs, including LiAB, NaAB and CaAB, were utilized to react with compounds of unsaturated functional groups. It was found that MABs had higher reactivity toward unsaturated functional groups than AB: carbonyl compounds and imines can be reduced by MABs within 1hr at ambient temperature. Such a high reactivity can be attributed to the weaker B-H bond in MABs than that in AB. Moreover, the protic hydrogens of MABs participated in the reduction and transferred to unsaturated functional groups as evidenced by in situ FT-IR and NMR characterizations. This finding is significant because MABs are regarded as novel 122    hydrogen storage materials recently due to their high hydrogen contents. Few literatures on their reducing reactivity were reported. Therefore, this work provides a new perspective in the application of MABs in organic reduction. In order to understand the mechanism of how MABs transfer two different hydrogens to unsaturated functional groups, kinetics study and DFT calculations were also carried out. In addition, LiAB was used as representative of MABs. These results show that 1) the reaction between LiAB and carbonyl or imines obeys a first-order rate law, being first order of LiAB;2) the rate-determining step of reduction is the elimination of LiH from LiAB followed by the transfer of H(Li) to C site of unsaturated bond.[168] In addition, MABs were also found to be highly chemoselective reagents for the reduction of -unsaturated ketones to allylic alcohols and to be reducing reagents for reductive amination. These two applications evidence that MABs are attractive reagents for organic reductions. However, it should be pointed out that there are still some limitations in this part of work. Firstly, the MABs studied in this thesis are restricted to LiAB, NaAB and CaAB. Other MAB such as KAB and YAB are excluded. It should be noted that this is not a critical issue since LiAB, NaAB and CaAB are three representatives for MABs in hydrogen storage research and these three compounds are stable. The second limitation is that solid residues of MABs after reaction are unknown. The reason is that those residues are amorphous, insoluble in most aprotic solvents and sensitive to air and moisture. Therefore, the products are difficult to be characterized by XRD and/or NMR. 123    7.2 Future work There are several interesting directions for future work and applications in areas of research presented in this thesis: One possible avenue for future work is to extend the application of MABs in other organic reductions. Since MABs are demonstrated to be strong reducing reagents in this study, they may be used to reduce other organic unsaturated functional groups such as olefin, nitrile, amide and ester. The research on using borohydrides in those reductions has been carried out over one century. Therefore, the future work on application of MABs in those reductions should be feasible and straightforward based on the previous experiences. In addition, the instability of MABs should be taken into consideration in the experiments. Another interesting area for future research is to utilize AB and MABs as hydrogen donor in transfer hydrogen reaction. Generally speaking, there are three commonly used hydrogen donors: 2-propanol, formic acid and its salts, and Hantzsch ester. Although they are stable and inexpensive, they transfer double hydrogen under vigorous condition or with the aid of catalysts. However, AB and MABs can release hydrogen without any catalyst at temperature below 100 oC. Therefore, these two materials may be good alternatives for tradition hydrogen donors in transfer hydrogen reaction. 124    Reference [1] H. C. Brown, H. I. Schlesinger and A. B. Burg, Journal of the American Chemical Society 1939, 61, 673. [2] R. F. Nystrom and W. G. Brown, Journal of the American Chemical Society 1947, 69, 1197. [3] A. Staubitz, A. Robertson, M. Sloan and I. Manners, Chemical Reviews 2010, 110, 4023. [4] R. Hutchins, K. Learn, B. Nazer, D. Pytlewski and A. Pelter, Organic Preparations and Procedures International 1984, 16, 335. [5] F. H. Stephens, V. Pons and R. T. Baker, Dalton Transactions 2007, 2613. [6] Y. S. Chua, P. Chen, G. Wu and Z. Xiong, Chemical Communications 2011, 47, 5116. [7] M. Freifelder, Catalytic Hydrogenation in Organic Synthesis, Wiley-Interscience, New York, 1978. [8] L. Cerveny., Catalytic hydrogenation, Elsevier Science Pub. Co., New York, 1986. [9] R. E. Harmon, S. K. Gupta and D. J. Brown, Chemical Reviews 1973, 73, 21. [10] P. Rylander., Catalytic hydrogenation in organic syntheses, Academic Press, New York, 1979. [11] H. Adkins and H. R. Billica, Journal of the American Chemical Society 1948, 70, 3118. [12] H. Adkins and H. R. Billica, Journal of the American Chemical Society 1948, 70, 3121. [13] L. Ubbelohde and L. Svanoe, Angewandte Chemie 1919, 32, 257. [14] H. M, Journal of Fluorine Chemistry 1979, 14, 189. [15] A. Skita and A. Schneck, Chemische Berichte 1922, 55, 144. [16] M. Hudlicky, Reductions in Organic Chemistry, American Chemical Society, Washington, DC, 1996. [17] Y. Senda, Chirality 2002, 14, 110. [18] F. Glorius, Organic and Biomolecular Chemistry 2005, 3, 4171. [19] J. P. Genet, Accounts of Chemistry Research 2003, 36, 908. [20] V. Rautenstrauch and M. Geoffroy, Journal of the American Chemical Society 1977, 99, 6280. [21] J. W. Huffman and W.W.McWhorter, Journal of Organic Chemistry 1979, 44, 594. [22] J. W. Huffman, P. C. Desai and J. E. LaPrade, Journal of Organic Chemistry 1983, 48, 1474. [23] A. J. Birch and G. S. Rao, Advanced Organic Chemistry 1986, 8, 1. [24] R. G. Harvey, Synthesis 1980, 161. [25] P. W. Rabideau, Tetrahedron 1989, 45, 1599. [26] A. J. Birch, Pure and Applied Chemistry 1996, 68, 533. [27] D. Caine, S. T. Chao and H. A. Smith, Organic Synthesis 1977, 56, 52. [28] G. Stork, P. Rosen and N. L. Goldman, Journal of the American Chemical Society 1961, 83, 2965. [29] E. Knoevenagel and B. Bergdolt, Chemische Berichte 1903, 36, 2857. [30] K. G. Akamanchi and V. R. Noorani, Tetrahedron Letters 1995, 36, 5085. [31] C. Wang, X. Wu and J. Xiao, Chemistry – An Asian Journal 2008, 3, 1750. [32] A. Daimon, T. Kamitanaka, N. Kishida, T. Matsuda and T. Harada, The Journal of supercritical fluids 2006, 37, 215. [33] T. Kamitanaka, T. Matsuda and T. Harada, Tetrahedron 2007, 63, 1429. [34] S. H. Kwak, D. M. Lee and K. I. Lee, Tetrahedron-Asymmetry 2009, 20, 2639. [35] S.-L. You, Chemistry – An Asian Journal 2007, 2, 820. [36] Modern Reduction Methods, WILEY-VCH, Weinheim, 2008. [37] G. Zassinovich, R. Bettella, G. Mestroni, N. Bresciani-Pahor, S. Geremia and L. Randaccio, Journal of Organometallic Chemistry 1989, 370, 187. 125    [38] D. G. I. Petra, P. C. J. Kamer, A. L. Spek, H. E. Schoemaker and P. W. N. M. van Leeuwen, The Journal of Organic Chemistry 2000, 65, 3010. [39] J.-W. Handgraaf, J. N. H. Reek and E. J. Meijer, Organometallics 2003, 22, 3150. [40] J. S. M. Samec and J. E. Backvall, Chemistry-a European Journal 2002, 8, 2955. [41] J. S. M. Samec, J. E. Backvall, P. G. Andersson and P. Brandt, Chemical Society Reviews 2006, 35, 237. [42] R. Noyori and S. Hashiguchi, Accounts of Chemical Research 1997, 30, 97. [43] W. W. Wang and Q. R. Wang, Chemical Communications 2010, 46, 4616. [44] C. Sandoval, Y. Li, K. Ding and R. Noyori, Chemistry-An Asian Journal 2008, 3, 1801. [45] X. H. Li, J. Blacker, I. Houson, X. F. Wu and J. L. Xiao, Synlett 2006, 1155. [46] Y. B. Shen, Q. Chen, L. L. Lou, K. Yu, F. Ding and S. X. Liu, Catalysis Letters 2010, 137, 104. [47] X. F. Wu, X. H. Li, A. Zanotti-Gerosa, A. Pettman, J. K. Liu, A. J. Mills and J. L. Xiao, Chemistry-a European Journal 2008, 14, 2209. [48] D. S. Matharu, J. E. D. Martins and M. Wills, Chemistry-an Asian Journal 2008, 3, 1374. [49] A. E. Finholt, A. C. Bond and H. I. Schlesinger, Journal of the American Chemical Society 1947, 69, 1199. [50] H. I. Schlesinger, H. C. Brown and A. E. Finholt, Journal of the American Chemical Society 1953, 75, 205. [51] F. A. Carey, Organic Chemistry, McGraw-Hill, New York, 2006. [52] S. Chaikin and W. Brown, Journal of the American Chemical Society 1949, 71, 122. [53] H. C. Brown, Hydroboration, W. A. Benjamin, New York, 1962. [54] H. C. Brown, E. J. Mead and B. C. S. Rao, Journal of the American Chemical Society 1955, 77, 6209. [55] S. B. Mandal, B. Achari and S. Chattopadhyay, Tetrahedron Letters 1992, 33, 1647. [56] M. S. Brown and H. Rapoport, The Journal of Organic Chemistry 1963, 28, 3261. [57] J. V. B. Kanth and M. Periasamy, The Journal of Organic Chemistry 1991, 56, 5964. [58] H. C. Brown and B. C. S. Rao, Journal of the American Chemical Society 1956, 78, 2582. [59] S.-e. Yoo and S.-h. Lee, Synlett 1990, 1990, 419. [60] C. Lane, Chemical Reviews 1976, 76, 773. [61] B. Rice, J. A. Livasy and G. W. Schaeffer, Journal of the American Chemical Society 1955, 77, 2750. [62] W. D. Phillips, H. C. Miller and E. L. Muetterties, Journal of the American Chemical Society 1959, 81, 4496. [63] A. Fratiello, T. P. Onak and R. E. Schuster, Journal of the American Chemical Society 1968, 90, 1194. [64] A. B. Burg and R. I. Wagner, Journal of the American Chemical Society 1954, 76, 3307. [65] R. O. Hutchins and F. Cistone, Organic Preparations And Procedures Int. 1981, 13, 225. [66] H. C. Brown, Boranes in Organic Chemistry, Cornell Univeristy Press, New Yoek, 1972. [67] H. C. Brown and K. Murray, Journal of the American Chemical Society 1959, 81, 4108. [68] C. F. Lane, The Journal of Organic Chemistry 1974, 39, 1437. [69] L. P. Kuhn and J. O. Doali, Journal of the American Chemical Society 1970, 92, 5475. [70] C. Eckhardt, H. Jockel and R. Schmidt, Journal of the Chemical Society, Perkin Transactions 1999, 2155. [71] E. J. Corey and C. J. Helal, Angewandte Chemie, International Edition in English 1998, 1986. 126    [72] H. C. Brown and B. C. S. Rao, Journal of the American Chemical Society 1960, 82, 681. [73] D. J. Pasto, C. C. Cumbo and J. Hickman, Journal of the American Chemical Society 1966, 88, 2201. [74] H. C. Brown and N. M. Yoon, Journal of the American Chemical Society 1968, 90, 2686. [75] H. C. Brown and N. M. Yoon, Chemical Communications 1968, 1549. [76] H. C. Brown, P. Heim and N. M. Yoon, Journal of the American Chemical Society 1970, 92, 1637. [77] C. F. Lane, Aldrichimica Acta 1975, 8, 20. [78] H. C. Brown, Y. M. Choi and S. Narasimhan, Journal of Organic Chemistry 1982, 47, 3153. [79] S. Daito, T. Hasegawa, M. Inaba, R. Nishida, T. Fujii, S. Nomizu and T. Moriwake, Chemistry Letters. 1984, 1389. [80] S. Saito, T. Ishikawa, A. Kuroda, K. Koga and T. Moriwake, Tetrahedron Lett. 1992, 48, 4067. [81] S. Ikegami and S. Yamada, Chemical & Pharmaceutical Bulletin 1966, 14, 1389. [82] S. Yamada and S. Ikegami, Chemical & Pharmaceutical Bulletin 1966, 14, 1382. [83] N. M. Yoon, C. S. Pak, C. Brown Herbert, S. Krishnamurthy and T. P. Stocky, The Journal of Organic Chemistry 1973, 38, 2786. [84] C. F. Lane, Aldrichimica Acta 1974, 7, 7. [85] B. C. S. Rao and G. P. Thakar, Current Science 1963, 404. [86] C. F. Lane, H. L. Myatt, J. Daniels and H. B. Hopps, The Journal of Organic Chemistry 1974, 39, 3052. [87] A. B. Burg and H. I. Schlesinger, Journal of the American Chemical Society 1937, 59, 780. [88] W. Buchner and H. Niederpruem, Pure and Applied Chemistry 1977, 49, 733. [89] C. Brown Herbert, N. M. Yoon and A. K. Mandel, Journal of Organometallic Chemistry 1977, 135, 10. [90] A. Pelter, D. J. Ryder and J. H. Sheppard, Tetrahedron Lett. 1978, 1978, 4715. [91] C. Lane, Aldrichim. Acta 1973, 6, 51-58. [92] R. Koster, Angewandte Chemie 1957, 69, 684. [93] F. Hawthorne, The Journal of Organic Chemistry 1958, 23, 1788. [94] M. J. S. Dewar, G. J. Gleicher and B. P. Robinson, Journal of the American Chemical Society 1964, 86, 5698. [95] L. T. Murray Ph. D.Thesis Purdue University, Lafayette, Indiana, 1963. [96] A. Pelter, R. Rosser and S. Mills, Journal of the Chemical Society, Chemical Communications 1981, 1014. [97] R. P. Barnes, J. H. Graham and M. D. Taylor, Journal of Organic Chemistry 1958, 23, 1561. [98] H. Noth and H. Beyer, Chemische Berichte. 1960, 93, 1078. [99] W. M. Jones, Journal of the American Chemical Society 1960, 82, 2528. [100] H. C. Kelly, M. B. Giusto and F. R. Marchello, Journal of the American Chemical Society 1964, 86, 3882. [101] G. C. Andrews and T. C. Crawford, Tetrahedron Letters 1980, 21, 693. [102] B. L. Allwood, H. Shahriarizavareh, J. F. Stoddart and D. J. Williams, Journal of the Chemical Society-Chemical Communications 1984, 1461. [103] G. C. Andrews, Tetrahedron Letters 1980, 21, 697. [104] J. Billman and J. McDowell, The Journal of Organic Chemistry 1961, 26, 1437. [105] J. Billman and J. McDowell, The Journal of Organic Chemistry 1962, 27, 2640. [106] R. O. Hutchins, W. Y. Su, R. Sivakumar, F. Cistone and Y. P. Stercho, Journal of Organic 127    Chemistry 1983, 48, 3412. [107] J. Berger, Synthesis 1974, 508. [108] Y. Kikugawa, Journal of Chemical Research Synopsis 1977, 212. [109] V. D. Aftandilian, H. C. Miller and E. L. Muetterties, Journal of the American Chemical Society 1961, 83, 2471. [110] R. O. Hutchins, K. Learn, F. Eltelbany and Y. P. Stercho, Journal of Organic Chemistry 1984, 49, 2438. [111] E. R. H. Walker, Chemical Society Reviews 1976, 5, 23. [112] G. B. Fisher, J. Harrison, J. C. Fuller, C. T. Goralski and B. Singaram, Tetrahedron Letters 1992, 33, 4533. [113] L. Pasumansky, C. T. Goralski and B. Singaram, Organic Process Research & Development 2006, 10, 959. [114] L. Pasumansky, B. Singaram and C. T. Goralski, Aldrichimica Acta 2005, 38, 61. [115] G. B. Fisher, J. C. Fuller, J. Harrison, S. G. Alvarez, E. R. Burkhardt, C. T. Goralski and B. Singaram, Journal of Organic Chemistry 1994, 59, 6378. [116] J. Harrison, J. C. Fuller, C. T. Goralski and B. Singaram, Tetrahedron Letters 1994, 35, 5201. [117] C. J. Collins, G. B. Fisher, A. Reem, C. T. Goralski and B. Singaram, Tetrahedron Letters 1997, 38, 529. [118] A. G. Myers, B. H. Yang and D. J. Kopecky, Tetrahedron Letters 1996, 37, 3623. [119] S. Thomas, C. J. Collins, J. R. Cuzens, D. Spiciarich, C. T. Goralski and B. Singaram, Journal of Organic Chemistry 2001, 66, 1999. [120] E. R. Garrett and D. A. Lyttle, Journal of the American Chemical Society 1953, 75, 6051. [121] D. C. Wigfield, Tetrahedron 1979, 35, 449. [122] H. I. Schlesinger, H. C. Brown, H. R. Hoekstra and L. R. Rapp, Journal of the American Chemical Society 1953, 75, 199. [123] D. C. Wigfield and D. J. Phelps, Canadian Journal of Chemistry 1972, 50, 388. [124] O. R. Vail and D. M. S. Wheeler, Journal of Organic Chemistry 1962, 27, 3803. [125] D. C. Wigfield and F. W. Gowland, Tetrahedron Letters 1976, 17, 3373. [126] H. O. House, Modern synthetic reaction, W.A. Benjamin, Inc., 1973, p. 52. [127] A. Staubitz, A. P. M. Robertson and I. Manners, Chemical Reviews 2010, 110, 4079. [128] M. G. Hu, R. A. Geanangel and W. W. Wendlandt, Thermochimica Acta 1978, 23, 249. [129] G. Wolf, J. Baumann, F. Baitalow and F. P. Hoffmann, Thermochimica Acta 2000, 343, 19. [130] M. C. Denney, V. Pons, T. J. Hebden, D. M. Heinekey and K. I. Goldberg, Journal of the American Chemical Society 2006, 128, 12048. [131] T. He, Z. T. Xiong, G. T. Wu, H. L. Chu, C. Z. Wu, T. Zhang and P. Chen, Chemistry of Materials 2009, 21, 2315. [132] S. K. Kim, W. S. Han, T. J. Kim, T. Y. Kim, S. W. Nam, M. Mitoraj, Piekos , A. Michalak, S. J. Hwang and S. O. Kang, Journal of the American Chemical Society 2010. [133] C. Jaska, K. Temple, A. Lough and I. Manners, Journal of the American Chemical Society 2003, 125, 9424. [134] A. Gutowska, L. Li, Y. Shin, C. Wang, X. Li, J. Linehan, R. Smith, B. Kay, B. Schmid and W. Shaw, Angewandte Chemie International Edition 2005, 44, 3578. [135] D. W. Himmelberger, L. R. Alden, M. E. Bluhm and L. G. Sneddon, Inorganic Chemistry 2009, 48, 9883. 128    [136] M. E. Bluhm, M. G. Bradley, R. Butterick, U. Kusari and L. G. Sneddon, Journal of the American Chemical Society 2006, 128, 7748. [137] Q. Xu and M. Chandra, Journal of Power Sources 2006, 163, 364. [138] M. Chandra and Q. Xu, Journal of Power Sources 2006, 156, 190. [139] U. B. Demirci and P. Miele, Journal of Power Sources 2010, 195, 4030. [140] Z. T. Xiong, C. K. Yong, G. T. Wu, P. Chen, W. Shaw, A. Karkamkar, T. Autrey, M. O. Jones, S. R. Johnson, P. P. Edwards and W. I. F. David, Nature Materials 2008, 7, 138. [141] C. Z. Wu, G. T. Wu, Z. T. Xiong, W. I. F. David, K. R. Ryan, M. O. Jones, P. P. Edwards, H. L. Chu and P. Chen, Inorganic Chemistry 2010, 49, 4319. [142] Z. Xiong, G. Wu, Y. S. Chua, J. Hu, T. He, W. Xu and P. Chen, Energy & Environmental Science 2008, 1, 360. [143] Z. T. Xiong, Y. S. Chua, G. T. Wu, W. L. Xu, P. Chen, W. Shaw, A. Karkamkar, J. Linehan, T. Smurthwaite and T. Autrey, Chemical Communications 2008, 5595. [144] H. V. K. Diyabalanage, R. P. Shrestha, T. A. Semelsberger, B. L. Scott, M. E. Bowden, B. L. Davis and A. K. Burrell, Angewandte Chemie International Edition 2007, 46, 8995. [145] H. Wu, W. Zhou and T. Yildirim, Journal of the American Chemical Society 2008, 130, 14834. [146] Y. S. Chua, G. T. Wu, Z. T. Xiong, T. He and P. Chen, Chemistry of Materials 2009, 21, 4899. [147] J. Spielmann, G. Jansen, H. Bandmann and S. Harder, Angewandte Chemie International Edition 2008, 47, 6290. [148] H. V. K. Diyabalanage, T. Nakagawa, R. P. Shrestha, T. A. Semelsberger, B. L. Davis, B. L. Scott, A. K. Burrell, W. I. F. David, K. R. Ryan, M. O. Jones and P. P. Edwards, Journal of the American Chemical Society 2010, 132, 11836. [149] Q. Zhang, C. Tang, C. Fang, F. Fang, D. Sun, L. Ouyang and M. Zhu, The Journal of Physical Chemistry C 2010, 114, 1709. [150] R. V. Genova, K. J. Fijalkowski, A. Budzianowski and W. Grochala, Journal of Alloys and Compounds 2010, 499, 144. [151] K. Graham, T. Kemmitt and M. Bowden, Energy & Environmental Science 2009, 2, 706. [152] X. Kang, Z. Fang, L. Kong, H. Cheng, X. Yao, G. Lu and P. Wang, Advanced Materials 2008, 20, 2756. [153] M. B. Smith and J. March in March's advanced organic chemistry : reactions, mechanisms, and structure, John Wiley & Sons, 2007. [154] F. A. Carey and R. J. Sundberg, Advanced organic chemistry, Springer Science, 2007. [155] G. H. Penner, Y. C. P. Chang and J. Hutzal, Inorganic Chemistry 1999, 38, 2868. [156] A. Gutowska, L. Y. Li, Y. S. Shin, C. M. M. Wang, X. H. S. Li, J. C. Linehan, R. S. Smith, B. D. Kay, B. Schmid, W. Shaw, M. Gutowski and T. Autrey, Angewandte Chemie-International Edition 2005, 44, 3578. [157] R. J. Keaton, J. M. Blacquiere and R. T. Baker, Journal of the American Chemical Society 2007, 129, 1844. [158] K. Nishide and M. Node, Chirality 2002, 14, 759. [159] V. Polshettiwar and R. S. Varma, Green Chemistry 2009, 11, 1313. [160] Z. H. Gao, J. Y. Gu and X. D. Bai, Pigment & Resin Technology 2007, 36, 90. [161] N. B. Cramer and C. N. Bowman, Journal of Polymer Science Part a-Polymer Chemistry 2001, 39, 3311. [162] S. G. Sun and Y. Lin, Journal of Electroanalytical Chemistry 1994, 375, 401. 129    [163] H. Yamataka and T. Hanafusa, Journal of the American Chemical Society 1986, 108, 6643. [164] X. H. Yang, L. L. Zhao, T. Fox, Z. X. Wang and H. Berke, Angewandte Chemie-International Edition 2010, 49, 2058. [165] X. Yang, T. Fox and H. Berke, Chemical Communications 2011. [166] G. Ménard and D. W. Stephan, Journal of the American Chemical Society 2010, 132, 1796. [167] P. M. Zimmerman, Z. Zhang and C. B. Musgrave, Inorganic Chemistry 2010, 49, 8724. [168] D. Kim, N. Singh, H. Lee and K. Kim, Chemistry-A European Journal 2009, 15, 5598. [169] S. Lee, X. Kang, P. Wang, H. Cheng and Y. Lee, ChemPhysChem 2009, 10, 1825. [170] A. T. Luedtke and T. Autrey, Inorganic Chemistry 2010, 49, 3905. [171] Y. Q. Cao, Z. Dai, B. H. Chen and R. Liu, Journal of Chemical Technology and Biotechnology 2005, 80, 834. [172] G. Merino, V. I. Bakhmutov and A. Vela, The Journal of Physical Chemistry A 2002, 106, 8491. [173] F. Kazemi, A. R. Kiasat and E. Sarvestani, Chinese Chemical Letters 2008, 19, 1167. [174] P. Grenga, B. Sumbler, F. Beland and R. Priefer, Tetrahedron Letters 2009, 50, 6658. [175] R. Hutchins and D. Kandasamy, The Journal of Organic Chemistry 1975, 40, 2530. [176] G. W. Gribble, P. D. Lord, Skotnick.J, S. E. Dietz, J. T. Eaton and J. L. Johnson, Journal of the American Chemical Society 1974, 96, 7812. [177] G. W. Gribble, Chemical Society Reviews 1998, 27, 395. [178] G. W. Gribble, Organic Process Research & Development 2006, 10, 1062. [179] R. Adams, L. Braun, R. Braun, H. Crissman and M. Opprman, The Journal of Organic Chemistry 1971, 36, 2388. [180] D. Crich and S. Neelamkavil, Organic Letters 2002, 4, 4175. [181] Y. Kawanami, Y. Mikami, K. Hoshino, M. Suzue and I. Kajihara, Chemistry Letters 2009, 38, 722. [182] S. Goushi, K. Funabiki, M. Ohta, K. Hatano and M. Matsui, Tetrahedron 2007, 63, 4061. [183] A. Heydari, A. Arefi and M. Esfandyari, Journal of Molecular Catalysis A: Chemical 2007, 274, 169. [184] R. F. Borch, M. D. Bernstein and H. D. Durst, Journal of the American Chemical Society 1971, 93, 2897. [185] G.-M. Chen and H. C. Brown, Journal of the American Chemical Society 2000, 122, 4217. [186] A. Luedtke and T. Autrey, Inorganic Chemistry 2010, 49, 3905. [187] J. McMurry, Organic Chemistry, Brooks Cole, 2007. [188] A. J. Birch and H. Smith, Quarterly Reviews, Chemical Society 1958, 12, 17. [189] A. J. Birch and G. Subba-Rao, Advances in Organic Chemistry, Wiley, New York, 1972. [190] F. Johnson, Chemical Reviews 1968, 68, 375. [191] H. Smith, Organic Reactions in Liquid Ammonia, Wiley, New York, 1963. [192] D. Caine, Organic Reactions. 1976, 23, 1. [193] L. H. Knox, E. Blossy, H. Carpio, L. Cervantes, P. Crabbe, E. Velarde and J. A. Edwards, The Journal of Organic Chemistry 1965, 30, 2198. [194] H. E. Zimmerman, Journal of the American Chemical Society 1956, 78, 1168. [195] B. R. James, Homogeneous Hydrogenation, Wiley-Interscience, New York, 1973. [196] P. S. Rylander, Hydrogenation Methods, Academic Press, London, 1985. [197] J. S. Cha, Bulletin of the Korean Chemical Society 2011, 32, 1808. [198] X. F. Li, L. C. Li, Y. F. Tang, L. Zhong, L. F. Cun, J. Zhu, J. Liao and J. G. Deng, Journal of 130    Organic Chemistry 2010, 75, 2981. [199] A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chemical Reviews 1985, 85, 129. [200] M. Johnson and B. Rickborn, The Journal of Organic Chemistry 1970, 35, 1041. [201] S. Kadin, The Journal of Organic Chemistry 1966, 31, 620. [202] W. R. Jackson and Z. Zurquiyah, Journal of the Chemical Society, Chemical Communications 1965, 5280. [203] A. Aramini, L. Brinchi, R. Germani and G. Savelli, European Journal of Organic Chemistry 2000, 2000, 1793. [204] A. L. Gemal and J. L. Luche, Journal of the American Chemical Society 1981, 103, 5454. [205] J. L. Luche, Journal of the American Chemical Society 1978, 100, 2226. [206] H. Fujii, K. Oshima and K. Utimoto, Chemistry Letters 1991, 1847. [207] J. C. Fuller, S. M. Williamson and B. Singaram, Journal of Fluorine Chemistry 1994, 68, 265. [208] H. Shalbaf, Asian Journal of Chemistry 2010, 22, 6761. [209] J. C. Fuller, E. L. Stangeland, C. T. Goralski and B. Singaram, Tetrahedron Letters 1993, 34, 257. [210] J. Bottin, O. Eisenstein, C. Minot and N. T. Anh, Tetrahedron Lett. 1972, 3015. [211] M. E. Cain., Journal of the Chemical Society 1964, 3532. [212] M. F. Semmelhack, R. D. Stauffer and A. Yamashita, The Journal of Organic Chemistry 1977, 42, 3180. [213] R. P. Tripathi, S. S. Verma, J. Pandey and V. K. Tiwari, Current Organic Chemistry 2008, 12, 1093. [214] J. W. Kang, K. Moseley and P. M. Maitlis, Journal of the American Chemical Society 1969, 91, 5970. [215] D.Gnanamgari, A.Moores, E.Rajaseelan and R. H. Crabtree, Orgaometallics 2007, 26, 1226. [216] G. Dutheuil, S. C. Bonnaire and X. Pannecoucke, Angewandte Chemie, International Edition in English 2007, 46, 1290. [217] R. F. Borch and A. I. Hassid, The Journal of Organic Chemistry 1972, 37, 1673. [218] A. F. Abdel-Magid and S. J. Mehrman, Organic Process Research & Development 2006, 10, 971. [219] A. F. Abdel-Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and R. D. Shah, The Journal of Organic Chemistry 1996, 61, 3849. [220] J. W. Bae, S. H. Lee, Y. J. Cho and C. M. Yoon, Journal of the Chemical Society, Perkin Transactions 2000, 145. [221] S. Bhattacharyya, A. Chatterjee and J. S. Williamson, Synthetic Communications 1997, 27, 4265. [222] S. Bhattacharyya, K. A. Neidigh, M. A. Avery and J. S. Williamson, Synlett 1999, 1781. [223] A. Heydari, S. Khaksar, M. Esfandyari and M. Tajbakhsh, Tetrahedron 2007, 63, 3363. [224] B. C. Ranu, A. Majee and A. Sarkar, The Journal of Organic Chemistry 1998, 63, 370. [225] E. R. Burkhardt and B. M. Coleridge, Tetrahedron Letters 2008, 49, 5152. [226] S. Uchiyama, Y. Inaba, M. Matsumoto and G. Suzuki, Analytical Chemistry 2008, 81, 485. [227] A. Heydari, H. Tavakol, S. Aslanzadeh, J. Azarnia and N. Ahmadi, Synthesis 2005, 627. [228] M. A. Peterson, A. Bowman and S. Morgan, Synthetic Communications. 2002, 443. [229] A. Heydari, S. Khaksar, J. Akbari, M. Esfandyari, M. Pourayoubi and M. Tajbakhsh, Tetrahedron Letters 2007, 48, 1135. [230] B. T. Cho and S. K. Kang, Tetrahedron 2005, 61, 5725. [231] P. V. Ramachandran, P. D. Gagare, K. Sakavuyi and P. Clark, Tetrahedron Letters 2010, 51, 3167. 131    [...]... for the application of new borohydrides in organic reductions In the following sections of this chapter, the traditional methods in organic reduction , the applications of various typical borohydrides in reducing reactions and its corresponding reaction mechanisms, and the developments & applications of AB and MABs in hydrogen storage research will be reviewed 1.1 Review on methods for organic reduction. .. Dissolving Metal Reduction Dissolving metal reductions is one of the first reductions of organic compounds discovered hundred years ago.[17-19] This reduction is defined as acceptance of electrons The reaction of reducing carbonyl is illustrated in scheme 1.1 as an example to explain the mechanism[20-21]: when a metal is dissolved in a solvent such as liquid ammonia, it gives away electrons and becomes... the reduction of -unsaturated ketones to allylic alcohols and reducing agents for reductive amination These two applications provide strong evidences that MABs are promising candidates for organic reduction In conclusion, this study has achieved a ready entry to investigate the reducing capabilities of AB and MABs in organic reaction The results of this thesis may provide guidelines for utilizing... but reduction occurs rapidly in the presence of trimethyl borate.[86] 1.2.3 Amine borane In 1937, the first amine borane, Me3N-BH3, was reported by Schlesinger and his 19    co-workers[87] This complex was formed by the direct reaction of trimethylamine and diborane (scheme 1.20) This initial discovery paved an innovative way to synthesize numerous amine boranes by treating primary, secondary, and. .. amine with diborane.[88] In general, stable amine borane complexes will form if the pKa of the amine is above 5.0-5.5.[4] This means that ammonia and nearly all aliphatic amines form stable complexes with BH3 The major exceptions are branched chain tertiary amines, such as tri-isobutylamine, where steric hindrance of the alkyl groups prevents stable bonding.[4] Amine boranes are capable of reducing... because of their high solubility in organic solvents and reduced sensitivity to acid.[89-90] Furthermore, the reducing ability of amine borane is greatly dependent on the base strength of the amine moiety: the lower the pKa of the amine, the stronger the reducing agent.[91] For example, in aliphatic amine boranes, the reducing capabilities decrease in the order of NH3BH3> RNH2BH3> R2NHBH3> R3NBH3.[3] In. .. R3NBH3.[3] In addition, the activity of amine borane is always enhanced under acidic conditions.[3] Applications of amine boranes in reducing various functional group are discussed below 2 Me 3N + B2 H 6 2 Me3 N BH 3 Scheme 1.20 Formation of Me3N-BH3 by the direct reaction of trimethylamine and diborane 1.2.3.1 Reducing olefins to organoboranes The use of amine borane has attracted considerable attention... high solubility in a series of organic solvents and low sensitivity to acid.[3] Therefore, amine boranes are widely utilized in reducing reaction Related works have been systematically reviewed by Hutchins and his co-workers in 1984.[4] In addition, with the recent rapid development of hydrogen storage research, many researchers show their keen interests in amine boranes, such as ammonia borane (NH3BH3,...participate in the reduction and transfer to the unsaturated functional groups In addition, kinetic study and DFT calculations reveal that the reaction between MAB and carbonyl or imines obeys a first-order rate law, being first order of MAB The rate-determining step of reduction is the elimination of MH from MAB followed by the transfer of H(M) to C site of unsaturated bond MABs are... AB for short)[5], and cationic modified amine boranes, such as metal amidoborane (M(NH2BH3)n, or MAB for short) due to their high hydrogen capacities and low hydrogen releasing temperatures.[6] However, the research on AB and MABs is somehow limited in 1    hydrogen storage field Therefore, it would be an interesting topic to investigate the properities of AB and MAB in reducing organic compounds, . APPLICATION OF AMMONIA BORANE AND METAL AMIDOBORANES IN ORGANIC REDUCTION XU WEILIANG (B.Sci., Soochow University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. methods in organic reduction , the applications of various typical borohydrides in reducing reactions and its corresponding reaction mechanisms, and the developments & applications of AB and. Dissolving Metal Reduction Dissolving metal reductions is one of the first reductions of organic compounds discovered hundred years ago. [17-19] This reduction is defined as acceptance of electrons.

Ngày đăng: 09/09/2015, 18:48

Từ khóa liên quan

Mục lục

  • thesis cover

  • thesis 1st part

  • thesis-wu endote

Tài liệu cùng người dùng

Tài liệu liên quan