bài giảng sơ lược về thép

9 562 0
bài giảng sơ lược về thép

Đang tải... (xem toàn văn)

Thông tin tài liệu

Lịch sử Thép không gỉ gắn liền với tên tuổi của một chuyên gia ngành thép người Anh là ông Harry Brearley. Khi vào năm 1913, ông đã sáng chế ra một loại thép đặc biệt có khả năng chịu mài mòn cao, bằng việc giảm hàm lượng carbon xuống và cho crôm vào trong thành phần thép (0.24% C và 12.8% Cr). Sau đó hãng thép Krupp ở Đức tiếp tục cải tiến loại thép này bằng việc cho thêm nguyên tố niken vào thép để tăng khả năng chống ăn mòn axit và làm mềm hơn để dễ gia công. Trên cơ sở hai phát minh này mà 2 loại mác thép 400 và 300 ra đời ngay trước Chiến tranh thế giới lần thứ nhất. Sau chiến tranh, những năm 20 của thế kỷ 20, một chuyên gia ngành thép người Anh là ông W. H Hatfield tiếp tục nghiên cứu, phát triển các ý tưởng về thép không gỉ. Bằng việc kết hợp các tỉ lệ khác nhau giữa ni ken và crôm trong thành phần thép, ông đã cho ra đời một loại thép không gỉ mới 18/8 với tỉ lệ 8% Ni và 18% Cr, chính là mác thép 304 quen thuộc ngày nay. Ông cũng là người phát minh ra loại thép 321 bằng cách cho thêm thành phần titan vào thép có tỉ lệ 18/8 nói trên. Trải qua gần một thế kỷ ra đời và phát triển, ngày nay thép không gỉ đã được dùng rộng rãi trong mọi lĩnh vực dân dụng và công nghiệp với hơn 100 mác thép khác nhau. Trong ngành luyện kim, thuật ngữ thép không gỉ (inox) được dùng để chỉ một dạng hợp kim sắt chứa tối thiểu 10,5% crôm. Tên gọi là "thép không gỉ" nhưng thật ra nó chỉ là hợp kim của sắt không bị biến màu hay bị ăn mòn dễ dàng như là các loại thép thông thường khác. Vật liệu này cũng có thể gọi là thép chống ăn mòn. Thông thường, có nhiều cách khác nhau để ứng dụng inox cho những bề mặt khác nhau để tăng tuổi thọ của vật dụng. Trong đời sống, chúng xuất hiện ở khắp nơi như những lưỡi dao cắt hoặc dây đeo đồng hồ Thép không gỉ có khả năng chống sự ôxy hoá và ăn mòn rất cao, tuy nhiên sự lựa chọn đúng chủng loại và các thông số kỹ thuật của chúng để phù hợp vào từng trường hợp cụ thể là rất quan trọng. Khả năng chống lại sự oxy hoá từ không khí xung quanh ở nhiệt độ thông thường của thép không gỉ có được nhờ vào tỷ lệ crôm có trong hợp kim (nhỏ nhất là 13% và có thể lên đến 26% trong trường hợp làm việc trong môi trường làm việc khắc nghiệt). Trạng thái bị oxy hoá của crôm thường là crôm ôxit(III). Khi crôm trong hợp kim thép tiếp xúc với không khí thì một lớp chrom III oxit rất mỏng xuất hiện trên bề mặt vật liệu; lớp này mỏng đến mức không thể thấy bằng mắt thường, có nghĩa là bề mặt kim loại vẫn sáng bóng. Tuy nhiên, chúng lại hoàn toàn không tác dụng với nước và không khí nên bảo vệ được lớp thép bên dưới. Hiện tượng này gọi là sự oxi hoá chống gỉ bằng kỹ thuật vật liệu. Có thể thấy hiện tượng này đối với một số kim loại khác như ở nhôm và kẽm. Khi những vật thể làm bằng inox được liên kết lại với nhau với lực tác dụng như bu lông và đinh tán thì lớp ôxit của chúng có thể bị bay mất ngay tại các vị trí mà chúng liên kết với nhau. Khi tháo rời chúng ra thì có thể thấy các vị trí đó bị ăn mòn. Niken cũng như mô-lip-đen và vanađi cũng có tính năng oxy hoá chống gỉ tương tự nhưng không được sử dụng rộng rãi. Bên cạnh crôm, niken cũng như mô-lip-đen và ni tơ cũng có tính năng oxi hoá chống gỉ tương tự. Niken (Ni) là thành phần thông dụng để tăng cường độ dẻo, dễ uốn, tính tạo hình của thép không gỉ. Mô-lip-đen (Mo) làm cho thép không gỉ có khả năng chịu ăn mòn cao trong môi trường axit. Ni tơ (N) tạo ra sự ổn định cho thép không gỉ ở nhiệt độ âm (môi trường lạnh). Sự tham gia khác nhau của các thành phần crôm, niken, mô-lip-đen, ni tơ dẫn đến các cấu trúc tinh thể khác nhau tạo ra tính chất cơ lý khác nhau của thép không gỉ. Phân loại Có bốn loại thép không gỉ chính: Austenitic, Ferritic,Austenitic-Ferritic (Duplex), và Martensitic. • Austenitic là loại thép không gỉ thông dụng nhất. Thuộc dòng này có thể kể ra các mác thép SUS 301, 304, 304L, 316, 316L, 321, 310s… Loại này có chứa tối thiểu 7% ni ken, 16% crôm, carbon (C) 0.08% max. Thành phần như vậy tạo ra cho loại thép này có khả năng chịu ăn mòn cao trong phạm vi nhiệt độ khá rộng, không bị nhiễm từ, mềm dẻo, dễ uốn, dễ hàn. Loai thép này được sử dụng nhiều để làm đồ gia dụng, bình chứa, ống công nghiệp, tàu thuyền công nghiệp, vỏ ngoài kiến trúc, các công trình xây dựng khác… • Ferritic là loại thép không gỉ có tính chất cơ lý tương tự thép mềm, nhưng có khả năng chịu ăn mòn cao hơn thép mềm (thép carbon thấp). Thuộc dòng này có thể kể ra các mác thép SUS 430, 410, 409 Loại này có chứa khoảng 12% - 17% crôm. Loại này, với 12%Cr thường được ứng dụng nhiều trong kiến trúc. Loại có chứa khoảng 17%Cr được sử dụng để làm đồ gia dụng, nồi hơi, máy giặt, các kiến trúc trong nhà • Austenitic-Ferritic (Duplex) Đây là loại thép có tính chất “ở giữa” loại Ferritic và Austenitic có tên gọi chung là DUPLEX. Thuộc dòng này có thể kể ra LDX 2101, SAF 2304, 2205, 253MA. Loại thép duplex có chứa thành phần Ni ít hơn nhiều so với loại Austenitic. DUPLEX có đặc tính tiêu biểu là độ bền chịu lực cao và độ mềm dẻo được sử dụng nhiều trong ngành công nghiệp hoá dầu, sản xuất giấy, bột giấy, chế tạo tàu biển Trong tình hình giá thép không gỉ leo thang do ni ken khan hiếm thì dòng DUPLEX đang ngày càng được ứng dụng nhiều hơn để thay thế cho một số mác thép thuộc dòng thép Austenitic như SUS 304, 304L, 316, 316L, 310s… • Martensitic Loại này chứa khoảng 11% đến 13% Cr, có độ bền chịu lực và độ cứng tốt, chịu ăn mòn ở mức độ tương đối. Được sử dụng nhiều để chế tạo cánh tuabin, lưỡi dao MOLYBDEN • Molypden là một kim loại chuyển tiếp với độ âm điện 1,8 trên thang Pauling và nguyên tử lượng 95,9 g/mol. Nó không phản ứng với ôxy hay nước ở nhiệt độ phòng. Ở nhiệt độ cao hơn, triôxít molypden được tạo ra theo phản ứng: 2Mo + 3O 2 → 2MoO 3 Ở dạng kim loại nguyên chất, molypden có màu xám trắng bạc và rất cứng, mặc dù nó hơi mềm hơn vonfram. Dạng bột màu xám sẫm hoặc đen, nó có điểm nóng chảy là 2.623 °C, cao hàng thứ sáu trong số các nguyên tố đã biết, và chỉ có cacbon cùng các kim loại như vonfram, rheni, osmi và tantali là có nhiệt độ nóng chảy cao hơn, theo trật tự như trên đây. Molypden bắt cháy ở nhiệt độ trên 600 °C. Nó cũng có hệ số giãn nở nhiệt thấp nhất trong số các kim loại sử dụng ở quy mô thương mại (4,8 µm/m•K ở 25 °C) • Khả năng của molypden trong việc chịu đựng được nhiệt độ cao mà không có sự giãn nở hay mềm đi đáng kể làm cho nó là hữu ích trong các ứng dụng có sức nóng mãnh liệt, bao gồm sản xuất các bộ phận của máy bay, tiếp điểm điện, động cơ công nghiệp và dây tóc đèn. Molypden cũng được sử dụng trong các hợp kim vì khả năng chống ăn mòn cũng như khả năng hàn được khá cao của nó. [10][24] Phần lớn các hợp kim thép sức bền cao chứa khoảng 0,25% tới 8% molypden. [3] Mặc dù chỉ sử dụng ở những tỷ lệ thấp như vậy, nhưng trên 43.000 tấn molypden đã được sử dụng như là tác nhân tạo hợp kim mỗi năm trong sản xuất thép không gỉ, thép công cụ, gang cùng các siêu hợp kim chịu nhiệt. • Do có trọng lượng riêng nhỏ hơn cùng giá cả ổn định hơn so với vonfram, nên molypden được bổ sung vào vị trí của vonfram. Molypden có thể được bổ sung trong vai trò của cả tác nhân tạo hợp kim lẫn làm vật liệu phủ chịu nhiệt cho các kim loại khác. Mặc dù điểm nóng chảy của nó là 2.623 °C, nhưng molypden nhanh chónh bị ôxi hóa ở nhiệt độ trên 760 °C, làm cho nó phù hợp tốt hơn để sử dụng trong môi trường chân không. Mangan, là nguyên tố hóa học trong bảng tuần hoàn có ký hiệu Mn và số nguyên tử 25. Nó được tìm thấy ở dạng tự do trong tự nhiên (đôi khi kết hợp với sắt), và trong một số loại khoáng vật. Ở dạng nguyên tố tự do, mangan là kim loại quan trọng trong các hợp kim công nghiệp, đặc biệt là thép không gỉ. Mangan phosphat được dùng để xử lý gỉ và chống ăn mòn trên thép Mangan là kim loại màu trắng xám, giống sắt. Nó là kim loại cứng và rất giòn, khó nóng chảy, nhưng lại bị ôxi hóa dễ dàng. Mangan kim loại chỉ có từ tính sau khi đã qua xử lý đặc biệt. Kim loại mangan và các ion phổ biến của nó có tính chất thuận từ Trạng thái ôxi hóa phổ biến của nó là +2, +3, +4, +6 và +7, mặc dù trạng thái ôxi hóa từ +1 đến +7 đã được ghi nhận. Mn 2+ thường tương tác với Mg 2+ trong các hệ thống sinh học, và các hợp chất có mangan mang trạng thái ôxi hóa +7 là những tác nhân ôxi hóa mạnh như Mn 2 O 7 . Các hợp chất có trạng thái ôxy hóa +5 (lam) và +6 (lục) là các chất ôxy hóa mạnh. Mangan có vai trò quan trọng trong sản xuất sắt thép vì có tác dụng khử lưu huỳnh, khử ôxi, và mang những đặc tính của hợp kim. Luyện thép, và cả luyện sắt, sử dụng nhiều mangan nhất (chiếm khoảng 85-90% tổng nhu cầu). Trong những mục đích khác, mangan là thành phần chủ yếu trong việc sản xuất thép không rỉ với chi phí thấp, và có trong hợp kim nhôm . tưởng về thép không gỉ. Bằng việc kết hợp các tỉ lệ khác nhau giữa ni ken và crôm trong thành phần thép, ông đã cho ra đời một loại thép không gỉ mới 18/8 với tỉ lệ 8% Ni và 18% Cr, chính là mác thép. và cho crôm vào trong thành phần thép (0.24% C và 12.8% Cr). Sau đó hãng thép Krupp ở Đức tiếp tục cải tiến loại thép này bằng việc cho thêm nguyên tố niken vào thép để tăng khả năng chống ăn mòn. thép không gỉ có tính chất cơ lý tương tự thép mềm, nhưng có khả năng chịu ăn mòn cao hơn thép mềm (thép carbon thấp). Thuộc dòng này có thể kể ra các mác thép SUS 430, 410, 409 Loại này có chứa

Ngày đăng: 29/07/2015, 10:54

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan