Đề thi thử Đại học số 4 Thầy Lê Bá Trần Phương

2 326 1
  • Loading ...
1/2 trang

Thông tin tài liệu

Ngày đăng: 27/07/2015, 23:04

wWw.kenhdaihoc.com Khóa học Luyện ñề thi ñại học môn Toán – Thầy Lê Bá Trần Phương ðề thi tự luyện số 0 4 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 1 - PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7, 0 ðIỂM) Câu I. ( 2,0 ñiểm) Cho hàm số 4 2 1 5 3 ( ) 2 2 y x x C = − + 1. Khảo sát sự biến thiên và vẽ ñồ thị (C) của hàm số ñã cho. 2. Tìm m ñể phương trình: ( ) 4 2 6 5 2 2 x x m m − + = − có 8 nghiệm phân biệt. Câu II. ( 2,0 ñiểm) 1. Giải phương trình: ( ) 3 2 2cos sin os2 2 1 1 sin 2 x x c x x − + − = − 2. Giải hệ phương trình: 3 5 3 5 x y x y  + =   + + + =   Câu III. ( 1,0 ñiểm) Tính tích phân: 2 2 2 0 1 .ln( 2) 2 x x I dx x + + = + ∫ . Câu IV. (1,0 ñiểm) Cho hình chóp S.ABCD, ñáy ABCD là hình vuông cạnh a, mặt phẳng (SAB) vuông góc với mặt phẳng (ABCD), tam giác ASB cân tại S, góc giữa ñường thẳng SC và mặt phẳng (ABCD) bằng 45 0 , M là trung ñiểm của cạnh SC. Tính thể tích khối chóp MBCD và khoảng cách từ ñiểm B ñến mặt phẳng (SCD) theo a. Câu V. (1,0 ñiểm) Tìm giới hạn sau: 2 2 2 2 0 3 lim ln(1 ) x x x e L x − → − = + PHẦN RIÊNG (3,0 ñiểm): Thí sinh chỉ ñược làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn: Câu VI.a. ( 2,0 ñiểm) 1. Trong mặt phẳng tọa ñộ vuông góc O x y, cho hình vuông ABCD biết A(-1; 3), C(6; 2). Tìm tọa ñộ ñiểm M thuộc ñường chéo BD ñể 35 35 ; 9 9 G       là trọng tâm của tam giác BMC, biết tung ñộ của ñiểm B dương. 2. Trong không gian với hệ tọa ñộ Oxyz , cho ñường thẳng 1 1 : 2 1 1 x y z − + ∆ = = − và ñiểm A(0; 1; 2). Viết phương trình ñường thẳng d ñi qua ñiểm A, cắt ñường thẳng ∆ và song song với mặt phẳng ( ) Oxy . Câu VII.a. ( 1,0 ñiểm) Tìm môñun của số phức z biết : 25 8 6 z i z + = − . B. Theo chương trình Nâng cao Câu VI.b. ( 2,0 ñiểm) ðỀ TỰ LUYỆN THI THỬ ðẠI HỌC SỐ 04 MÔN: TOÁN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Thời gian làm bài: 180 phút wWw.kenhdaihoc.com Khóa học Luyện ñề thi ñại học môn Toán – Thầy Lê Bá Trần Phương ðề thi tự luyện số 0 4 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900 58-58-12 - Trang | 2 - 1. Trong mặt phẳng tọa ñộ vuông góc Oxy , cho elip (E): 2 2 1 9 4 x y + = và ñường thẳng d: 2 3 0 x y + = . Gọi A và B là hai giao ñiểm của d với (E). Tìm ñiểm C thuộc (E) sao cho diện tích tam giác ABC lớn nhất, biết C có hoành ñộ và tung ñộ ñều dương. 2. Trong không gian với hệ tọa ñộ Oxyz cho ñường thẳng 2 8 5 : 3 5 4 x y z + − + ∆ = = − và tứ diện ABCD có A(-2; 1; 2), B(0; 4; 1), C(5; -1; 5) còn D thuộc ∆ sao cho thể tích tứ diện ABCD bằng 98 3 và cao ñộ ñiểm D âm. Viết phương trình mặt phẳng (P) cắt các trục tọa ñộ tại 3 ñiểm M, N, P sao cho D là trực tâm của tam giác MNP. Câu VII.b. (1,0 ñiểm) Tìm giá trị lớn nhất, nhỏ nhất của hàm số : 2 4 x y x = + . Giáo viên: Lê Bá Trần Phương Nguồn : Hocmai.vn . LUYỆN THI THỬ ðẠI HỌC SỐ 04 MÔN: TOÁN Giáo viên: LÊ BÁ TRẦN PHƯƠNG Thời gian làm bài: 180 phút wWw.kenhdaihoc.com Khóa học Luyện ñề thi ñại học môn Toán – Thầy Lê Bá Trần Phương ðề thi tự. wWw.kenhdaihoc.com Khóa học Luyện ñề thi ñại học môn Toán – Thầy Lê Bá Trần Phương ðề thi tự luyện số 0 4 Hocmai.vn – Ngôi trường chung của học trò Việt Tổng ñài tư vấn: 1900. ðIỂM) Câu I. ( 2,0 ñiểm) Cho hàm số 4 2 1 5 3 ( ) 2 2 y x x C = − + 1. Khảo sát sự biến thi n và vẽ ñồ thị (C) của hàm số ñã cho. 2. Tìm m ñể phương trình: ( ) 4 2 6 5 2 2 x x m m − + = − có
- Xem thêm -

Xem thêm: Đề thi thử Đại học số 4 Thầy Lê Bá Trần Phương, Đề thi thử Đại học số 4 Thầy Lê Bá Trần Phương, Đề thi thử Đại học số 4 Thầy Lê Bá Trần Phương

Tài liệu mới bán

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay