Tổng hợp đề thi Đại học môn toán khối B từ 2009 đến 2014

29 703 0
  • Loading ...
1/29 trang

Thông tin tài liệu

Ngày đăng: 26/04/2015, 23:15

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số (1). 4 24yx x=− 2 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Với các giá trị nào của phương trình ,m 22 |2| x xm− = có đúng 6 nghiệm thực phân biệt ? Câu II (2,0 điểm) 1. Giải phương trình 3 sin cos sin 2 3cos3 2(cos4 sin ). x xx x x x++=+ 2. Giải hệ phương trình 22 2 17 (, ). 113 xy x y xy xy xy y ++= ⎧ ∈ ⎨ ++= ⎩ \ Câu III (1,0 điểm) Tính tích phân 3 2 1 3ln . (1) x Id x + = + ∫ x Câu IV (1,0 điểm) Cho hình lăng trụ tam giác .'' ' A BC A B C có ', B Ba= góc giữa đường thẳng ' B B và mặt phẳng bằng tam giác (ABC) 60 ; D A BC vuông tại và C n B AC = 60 . D Hình chiếu vuông góc của điểm ' B lên mặt phẳng () A BC trùng với trọng tâm của tam giác . A BC Tính thể tích khối tứ diện ' A ABC theo .a Câu V (1,0 điểm) Cho các số thực , x y thay đổi và thoả mãn () 3 42.xy xy+≥ Tìm giá trị nhỏ nhất của biểu thức + 4422 22 3( ) 2( ) 1Axyxy xy =++ −++ . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho đường tròn ,Oxy 22 4 ():( 2) 5 Cx y − += và hai đường thẳng 1 :0xy ,Δ −= Xác định toạ độ tâm 2 :70xyΔ−=. K và tính bán kính của đường tròn ( biết đường tròn tiếp xúc với các đường thẳng và tâm 1 );C 1 ()C 12 ,ΔΔ K thuộc đường tròn ().C 2. Trong không gian với hệ toạ độ cho tứ diện ,Oxyz A BCD có các đỉnh và Viết phương trình mặt phẳng đi qua sao cho khoảng cách từ đến bằng khoảng cách từ đến ( (1;2;1), ( 2;1;3), (2; 1;1)AB C−− (0;3;1).D ()P ,AB C ()P D ).P Câu VII.a (1,0 điểm) Tìm số phức thoả mãn: z (2 ) 10zi−+= và . 25.zz= B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho tam giác ,Oxy A BC cân tại A có đỉnh và các đỉnh (1;4)A − , B C thuộc đường thẳng Xác định toạ độ các điểm :4xyΔ−−=0. B và biết diện tích tam giác ,C A BC bằng 18. 2. Trong không gian với hệ toạ độ cho mặt phẳng ,Oxyz (): 2 2 5 0Px y z− +−= và hai điểm (3;0;1),A − Trong các đường thẳng đi qua (1; 1;3).B − A và song song với hãy viết phương trình đường thẳng mà khoảng cách từ (),P B đến đường thẳng đó là nhỏ nhất. Câu VII.b (1,0 điểm) Tìm các giá trị của tham số để đường thẳng m yxm = −+ cắt đồ thị hàm số 2 1x y x − = tại hai điểm phân biệt sao cho ,AB 4.AB = Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh: hoctoancapba.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn thi: TOÁN; Khối: B (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) Khảo sát… • Tập xác định: .D = \ • Sự biến thiên: - Chiều biến thiên: hoặc 3 '8 8;yxx=− '0y = ⇔ 0x = 1.x =± Hàm số nghịch biến trên: và đồng biến trên: và (1 (;1)−∞ − (0;1); (1;0)− ; ).+∞ 0,25 - Cực trị: Hàm số đạt cực tiểu tại đạt cực đại tại y 1, 2; CT xy=± =− 0,x = CĐ 0.= - Giới hạn: lim lim . xx yy →−∞ →+∞ ==+∞ 0,25 - Bảng biến thiên: Trang 1/4 0,25 • Đồ thị: 0,25 2. (1,0 điểm) Tìm m 22 2 x xm−= ⇔ 42 24 2. x xm−= 0,25 Phương trình có đúng nghiệm thực phân biệt khi và chỉ khi đường thẳng cắt đồ thị hàm số 6 2ym= 42 24 y xx=− tại điểm phân biệt. 6 0,25 Đồ thị hàm số 42 24 y xx=− và đường thẳng . 2ym= 0,25 I (2,0 điểm) Dựa vào đồ thị, yêu cầu bài toán được thoả mãn khi và chỉ khi: 02 2m<< ⇔ 01m<< x −∞ 1 − 01 + ∞ + +∞ x y ' − 0 + 0 − 0 y +∞ 2− 2− 0 O y 2 − 2 − 1 − 1 16 2 y O x 2 2 1 − 1 16 2 − 2ym = . 0,25 hoctoancapba.com Trang 2/4 Câu Đáp án Điểm 1. (1,0 điểm) Giải phương trình… Phương trình đã cho tương đương: 2 (1 2sin )sin cos sin 2 3 cos3 2cos4 x xxx x−++= II x ⇔ sin cos2 cos sin 2 3 cos3 2cos4 x xxx x ++= x 0,25 ⇔ sin3 3 cos3 2cos4 x xx += ⇔ cos 3 cos4 . 6 x x π ⎛⎞ −= ⎜⎟ ⎝⎠ 0,25 ⇔ 43 2 6 x xk π π =−+ hoặc 43 2 6 xx k π π =− + + . 0,25 Vậy: 2 6 x k π π =− + hoặc 2 () 42 7 xkk ππ =+ ∈] . 0,25 2. (1,0 điểm) Giải hệ phương trình… Hệ đã cho tương đương: 2 2 1 7 1 13 x x yy x x yy ⎧ ++= ⎪ ⎪ ⎨ ⎪ ++ = ⎪ ⎩ (do không thoả mãn hệ đã cho) 0 y = 0,25 ⇔ 2 1 7 1 13 x x yy x x yy ⎧ ⎛⎞ ++= ⎪ ⎜⎟ ⎝⎠ ⎪ ⎨ ⎛⎞ ⎪ +−= ⎜⎟ ⎪ ⎝⎠ ⎩ ⇔ 2 11 20 0 1 7 xx yy x x yy ⎧ ⎛⎞⎛⎞ ⎪ +++−= ⎜⎟⎜⎟ ⎪ ⎝⎠⎝⎠ ⎨ ⎛⎞ ⎪ =− + ⎜⎟ ⎪ ⎝⎠ ⎩ 0,25 ⇔ 1 5 12 x y x y ⎧ +=− ⎪ ⎨ ⎪ = ⎩ (I) hoặc 1 4 3 x y x y ⎧ += ⎪ ⎨ ⎪ = ⎩ (II). 0,25 (2,0 điểm) (I) vô nghiệm; (II) có nghiệm: 1 (; ) 1; 3 xy ⎛⎞ = ⎜⎟ ⎝⎠ và (; ) (3;1).xy = Vậy: 1 (; hoặc (; ) 1; 3 xy ⎛⎞ = ⎜⎟ ⎝⎠ ) (3;1).xy = 0,25 Tính tích phân… 3ln,ux=+ 2 ; (1) dx dv x = + 1 ,du dx x = 1 . 1 v x =− + 0,25 I 3 3 1 1 3ln 1( 1) x dx xxx + =− + ++ ∫ 0,25 33 11 3ln3 3 1 42 dx dx 1 x x + =− + + − + ∫∫ 0,25 III (1,0 điểm) 33 11 3ln3 1 27 ln ln 1 3 ln . 44 xx − ⎛⎞ =+−+=+ ⎜⎟ ⎝⎠ 16 0,25 Tính thể tích khối chóp… Gọi D là trung điểm và là trọng tâm tam giác AC G ABC ta có '( )B G ABC⊥ ⇒ n 'B BG = 60 D ⇒ n 3 ''.sin' 2 a BG BB BBG== và 2 a BG = ⇒ 3 . 4 a BD = Tam giác có: ABC 3 , 22 A BAB BC AC== ⇒ . 4 AB CD = 0,50 IV (1,0 điểm) 222 B A BCCDBD+= ⇒ 222 6 39 4161 A BAB a += ⇒ 313 , 13 a AB = 313 ; 26 a AC = 2 93 . 104 ABC a S Δ = 0,25 ' B C ' G C ' A D hoctoancapba.com Trang 3/4 Câu Đáp án Điểm Thể tích khối tứ diện ':AABC '' 1 '. 3 A ABC B ABC ABC VV BGS Δ == 3 9 . 208 a = 0,25 Tìm giá trị nhỏ nhất của biểu thức… Kết hợp với 3 ()4xy xy++ ≥2 2 ()4 x yx+≥y suy ra: ⇒ 32 ()()2xy xy+++≥ 1.xy+≥ 0,25 A 4422 22 3( ) 2( ) 1xyxy xy=++ −++ = () 2 22 44 22 33 ()2() 22 xy xy xy ++ +−++1 0,25 ≥ ()() 22 22 22 22 33 2( ) 1 24 xy xy xy ++ +−++ ⇒ ()() 2 22 22 9 21 4 Axy xy ≥+−++. Đặt , ta có 2 tx y=+ 2 2 22 ()1 22 xy xy + +≥ ≥ ⇒ 1 ; 2 t ≥ do đó 2 9 21 4 At t ≥−+ . Xét 2 9 () 2 1; 4 ft t t =−+ 9 '( ) 2 0 2 ft t =−> với mọi 1 2 t ≥ ⇒ 1 ; 2 19 min ( ) . 216 ft f ⎡⎞ +∞ ⎟ ⎢ ⎣⎠ ⎛⎞ == ⎜⎟ ⎝⎠ 0,25 V (1,0 điểm) 9 ; 16 A ≥ đẳng thức xảy ra khi 1 . 2 xy == Vậy, giá trị nhỏ nhất của bằng A 9 . 16 0,25 1. (1,0 điểm) Xác định toạ độ tâm K Gọi ⇔ (;);Kab ()KC∈ 22 4 (2) 5 ab −+= (1); tiếp xúc 1 ()C 1 ,Δ 2 Δ ⇔ VI.a 7 252 ab a b−− = (2). 0,25 (1) và (2), cho ta: 22 5( 2) 5 4 57 ab ab a b ⎧ −+ = ⎪ ⎨ −=− ⎪ ⎩ (I) hoặc (II). ⇔ 22 5( 2) 5 4 5( ) 7 ab ab a b ⎧ −+ = ⎨ −=− ⎩ 22 5( 2) 5 4 5( ) 7 ab ab ba ⎧ −+ = ⎨ −= − ⎩ 0,25 (2,0 điểm) (I) vô nghiệm; (II) ⇔ 2 25 20 16 0 2 aa ba ⎧ −+= ⎨ =− ⎩ ⇔ 2 2 84 (;) ; . 55 25 40 16 0 ab ab bb = ⎧ ⎛⎞ ⇔= ⎨ ⎜⎟ −+= ⎝⎠ ⎩ 0,25 Bán kính 1 ():C 22 . 5 2 ab R − == Vậy: 84 ; 55 K ⎛⎞ ⎜⎟ ⎝⎠ và 22 . 5 R = 0,25 2. (1,0 điểm) Viết phương trình mặt phẳng () P Mặt phẳng () P thoả mãn yêu cầu bài toán trong hai trường hợp sau: Trường hợp 1: () P qua , A B và song song với .CD 0,25 Vectơ pháp tuyến của () :P ,.nABCD ⎡⎤ = ⎣⎦ GJJJGJJJG (3;1;2),AB =− − JJJG JJJG (2;4;0)CD =− ⇒ (8;4;14).n =− − − G Phương trình () P : 427150.xyz++−= 0,25 Trường hợp 2: () P qua , A B và cắt Suy ra .CD () P cắt CD tại trung điểm của vectơ pháp tuyến của I .CD (1;1;1) (0; 1; 0);IAI ⇒ =− JJG (): P , (2;0;3).nA=BAI ⎡⎤ = ⎣⎦ G JJJGJJG 0,25 Phương trình ():2 3 5 0.Pxz+−= Vậy () hoặc :4 2 7 15 0Pxyz++−= ():2 3 5 0.Pxz+−= 0,25 Tìm số phức z Gọi ;zxyi=+ (2 ) ( 2) ( 1) ;zix yi VII.a 22 (2 ) 10 ( 2) ( 1) 10zi x y−+= ⇔− +− = −+=−+− (1). 0,25 22 .25 25zz x y=⇔+= (2). 0,25 (1,0 điểm) Giải hệ (1) và (2) ta được: hoặc (; Vậy: hoặc (; ) (3;4)xy = ) (5;0).xy = 34zi=+ 5.z = 0,50 hoctoancapba.com Trang 4/4 Câu Đáp án Điểm 1. (1,0 điểm) Xác định toạ độ các điểm , B C Gọi là hình chiếu của trên suy ra là trung điểm H A ,Δ H .BC 9 (, ) ; 2 AH d A BC== 2 42. ABC S BC AH Δ == VI.b 2 2 97 . 42 BC AB AC AH== + = 0,25 Toạ độ B và C là nghiệm của hệ: ()( ) 22 97 14 2 40. xy xy ⎧ ++− = ⎪ ⎨ ⎪ −−= ⎩ 0,25 Giải hệ ta được: 11 3 (; ) ; 22 xy ⎛ = ⎜ ⎝⎠ ⎞ ⎟ hoặc 35 (; ) ; . 22 xy ⎛⎞ =− ⎜⎟ ⎝⎠ 0,25 Vậy 11 3 3 5 ;, ; 22 2 2 BC ⎛⎞⎛ − ⎜⎟⎜ ⎝⎠⎝ ⎞ ⎟ ⎠ hoặc 35 113 ;, ; 22 22 BC ⎛⎞⎛ − ⎜⎟⎜ ⎝⎠⎝ . ⎞ ⎟ ⎠ 0,25 2. (1,0 điểm) Viết phương trình đường thẳng… Gọi là đường thẳng cần tìm; nằm trong mặt phẳng qua và song song với Δ Δ ()Q A (). P Phương trình () : 2 2 1 0.Qx y z−++= 0,25 ,K là hình chiếu của H B trên Ta có ,Δ ().Q B KBH≥ nên là đường thẳng cần tìm. AH 0,25 Toạ độ thoả mãn: (;;)Hxyz= 113 122 2210 xyz xyz −+− ⎧ == ⎪ − ⎨ ⎪ −++= ⎩ ⇒ 1117 ;; . 999 H ⎛⎞ =− ⎜⎟ ⎝⎠ 0,25 (2,0 điểm) 26 11 2 ;; . 99 9 AH ⎛ =− ⎜ ⎝⎠ JJJG H B C A Δ B ⎞ ⎟ Vậy, phương trình 31 :. 26 11 2 xyz+− Δ== − 0,25 Tìm các giá trị của tham số m Toạ độ , A B thoả mãn: 2 1x x m x yxm ⎧ − =− + ⎪ ⎨ ⎪ =− + ⎩ ⇔ 2 210,(0) . xmx x yxm ⎧ −−= ≠ ⎨ =− + ⎩ (1) 0,25 Nhận thấy (1) có hai nghiệm thực phân biệt 12 , x x khác 0 với mọi .m Gọi ta có: . 11 2 2 (; ), (; )Ax y Bx y 222 2 12 12 12 ()()2() A Bxx yy xx=− +− = − 0,25 Áp dụng định lí Viet đối với (1), ta được: 2 22 12 12 2( ) 4 4. 2 m AB x x x x ⎡⎤ =+− =+ ⎣⎦ 0,25 VII.b (1,0 điểm) 2 4416 2 2 m AB m=⇔ += ⇔ =± 6. 0,25 Hết Q K A H hoctoancapba.com BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối: B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số 21 1 x y x + = + . 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho. 2. Tìm m để đường thẳng y = − 2x + m cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho tam giác OAB có diện tích bằng 3 (O là gốc tọa độ). Câu II (2,0 điểm) 1. Giải phương trình (sin . 2 cos 2 )cos 2cos 2 sin 0xxx xx++−= 2. Giải phương trình 2 31 6 3 14 8xxxx+− − + − − =0 (x ∈ R ). Câu III (1,0 điểm) Tính tích phân () 2 1 ln d 2ln e x I x xx = + ∫ . Câu IV (1,0 điểm) Cho hình lăng trụ tam giác đều ' có AB = a, góc giữa hai mặt phẳng .''ABC A B C (' ) A BC và () A BC bằng . Gọi G là trọng tâm tam giác . Tính thể tích khối lăng trụ đã cho và tính bán kính mặt cầu ngoại tiếp tứ diện GABC theo a. 60 o 'ABC Câu V (1,0 điểm) Cho các số thực không âm a, b, c thỏa mãn: a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức 22 22 22 2 2 2 3( ) 3( ) 2 M ab bc ca ab bc ca a b c=++++++++ . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho tam giác ABC vuông tại A, có đỉnh C( − 4; 1), phân giác trong góc A có phương trình x + y − 5 = 0. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC bằng 24 và đỉnh A có hoành độ dương. 2. Trong không gian toạ độ Oxyz, cho các điểm A(1; 0; 0), B(0; b; 0), C(0; 0; c), trong đó b, c dương và mặt phẳng (P): y − z + 1 = 0. Xác định b và c, biết mặt phẳng (ABC) vuông góc với mặt phẳng (P) và khoảng cách từ điểm O đến mặt phẳng (ABC) bằng 1 3 . Câu VII.a (1,0 điểm) Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm biểu diễn các số phức z thỏa mãn: (1 )zi iz−= + . B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng toạ độ Oxy, cho điểm A(2; 3 ) và elip (E): 22 1 32 xy + = . Gọi F 1 và F 2 là các tiêu điểm của (E) (F 1 có hoành độ âm); M là giao điểm có tung độ dương của đường thẳng AF 1 với (E); N là điểm đối xứng của F 2 qua M. Viết phương trình đường tròn ngoại tiếp tam giác ANF 2 . 2. Trong không gian toạ độ Oxyz, cho đường thẳng Δ : 1 21 2 x yz − = = . Xác định tọa độ điểm M trên trục hoành sao cho khoảng cách từ M đến Δ bằng OM. Câu VII.b (1,0 điểm) Giải hệ phương trình 2 2 log (3 1) 423 xx yx y − = ⎧ ⎪ ⎨ += ⎪ ⎩ (x, y ∈ R ). Hết Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: ; Số báo danh: hoctoancapba.com Trang 1/4 BỘ GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC ĐÁP ÁN – THANG ĐIỂM ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2010 Môn: TOÁN; Khối B (Đáp án - thang điểm gồm 04 trang) ĐÁP ÁN − THANG ĐIỂM Câu Đáp án Điểm 1. (1,0 điểm) • Tập xác định: R \ {−1}. • Sự biến thiên: - Chiều biến thiên: 2 1 ' (1) y x = + > 0, ∀x ≠ −1. 0,25 Hàm số đồng biến trên các khoảng (− ∞; −1) và (−1; + ∞). - Giới hạn và tiệm cận: lim lim 2 xx yy →−∞ →+∞ = = ; tiệm cận ngang: y = 2. (1) lim x y − →− = +∞ và (1) lim x y + →− = −∞ ; tiệm cận đứng: x = −1. 0,25 - Bảng biến thiên: 0,25 • Đồ thị: 0,25 2. (1,0 điểm) Phương trình hoành độ giao điểm: 21 1 x x + + = −2x + m ⇔ 2x + 1 = (x + 1)(−2x + m) (do x = −1 không là nghiệm phương trình) ⇔ 2x 2 + (4 − m)x + 1 − m = 0 (1). 0,25 ∆ = m 2 + 8 > 0 với mọi m, suy ra đường thẳng y = −2x + m luôn cắt đồ thị (C) tại hai điểm phân biệt A, B với mọi m. 0,25 Gọi A(x 1 ; y 1 ) và B(x 2 ; y 2 ), trong đó x 1 và x 2 là các nghiệm của (1); y 1 = −2x 1 + m và y 2 = −2x 2 + m. Ta có: d(O, AB) = || 5 m và AB = ()() 22 12 12 xx yy −+− = () 2 12 12 520 x xxx +− = 2 5( 8) 2 m + . 0,25 I (2,0 điểm) S OAB = 1 2 AB. d(O, AB) = 2 || 8 4 mm+ , suy ra: 2 || 8 4 mm+ = 3 ⇔ m = ± 2. 0,25 x −∞ −1 + ∞ ' y + + y 2 2 +∞ −∞ 2 −1 O x y 1 hoctoancapba.com Trang 2/4 Câu Đáp án Điểm 1. (1,0 điểm) Phương trình đã cho tương đương với: 2 2sin cos sin cos 2 cos 2cos 2 0 xx x xx x− ++= 0,25 ⇔ cos 2 sin (cos 2)cos 2 0 xx x x+ += ⇔ (sin cos 2)cos 2 0 xx x+ += (1). 0,25 Do phương trình sin cos 2 0 xx++= vô nghiệm, nên: 0,25 (1) ⇔ cos 2 0 x = ⇔ 42 x k π π =+ (k ∈ Z). 0,25 2. (1,0 điểm) Điều kiện: 1 6 3 x−≤≤ . 0,25 Phương trình đã cho tương đương với: 2 (3 1 4) (1 6 ) 3 14 5 0 xxxx+ −+− −+ − −= 0,25 ⇔ 3( 5) 5 ( 5)(3 1) 0 314 6 1 xx xx xx −− ++−+= ++ − + ⇔ x = 5 hoặc 31 310 314 6 1 x xx + ++= ++ − + . 0,25 II (2,0 điểm) 31 1 310 ;6 3 314 6 1 xx xx ⎡ ⎤ +++>∀∈− ⎢ ⎥ ++ − + ⎣ ⎦ , do đó phương trình đã cho có nghiệm: x = 5. 0,25 Đặt 2ln tx=+ , ta có 1 dd tx x = ; x = 1 ⇒ t = 2; x = e ⇒ t = 3. 0,25 3 2 2 2 d t It t − = ∫ 33 2 22 11 d2dtt t t =− ∫∫ . 0,25 3 3 2 2 2 ln t t =+ 0,25 III (1,0 điểm) 13 ln 32 =− + . 0,25 • Thể tích khối lăng trụ. Gọi D là trung điểm BC, ta có: BC ⊥ AD ⇒ BC ⊥ ' A D, suy ra: n '60 ADA = D . 0,25 Ta có: ' A A = AD.tan n ' ADA = 3 2 a ; S ABC = 2 3 4 a . Do đó: 3 .'' ' 33 VS.' 8 ABC A B C ABC a AA == . 0,25 • Bán kính mặt cầu ngoại tiếp tứ diện GABC. Gọi H là trọng tâm tam giác ABC, suy ra: GH // ' A A ⇒ GH ⊥ (ABC). Gọi I là tâm mặt cầu ngoại tiếp tứ diện GABC, ta có I là giao điểm của GH với trung trực của AG trong mặt phẳng (AGH). Gọi E là trung điểm AG, ta có: R = GI = . GE GA GH = 2 2 GA GH . 0,25 IV (1,0 điểm) Ta có: GH = ' 3 A A = 2 a ; AH = 3 3 a ; GA 2 = GH 2 + AH 2 = 2 7 12 a . Do đó: R = 2 7 2.12 a . 2 a = 7 12 a . 0,25 H A B C ' A ' B 'C G D A E H G I hoctoancapba.com Trang 3/4 Câu Đáp án Điểm Ta có: M ≥ (ab + bc + ca) 2 + 3(ab + bc + ca) + 2 12( )ab bc ca−++ . 0,25 Đặt t = ab + bc + ca, ta có: 2 ()1 0 33 abc t ++ ≤≤ = . Xét hàm 2 () 3 2 1 2 f tt t t= ++ − trên 1 0; 2 ⎡ ⎞ ⎟ ⎢ ⎣ ⎠ , ta có: 2 '( ) 2 3 12 ft t t =+− − ; 3 2 ''( ) 2 (1 2 ) ft t =− − ≤ 0, dấu bằng chỉ xảy ra tại t = 0; suy ra '( ) f t nghịch biến. 0,25 Xét trên đoạn 1 0; 3 ⎡ ⎤ ⎢ ⎥ ⎣ ⎦ ta có: 111 '( ) ' 2 3 0 33 ft f ⎛⎞ ≥=−> ⎜⎟ ⎝⎠ , suy ra f(t) đồng biến. Do đó: f(t) ≥ f(0) = 2 ∀t ∈ 1 0; 3 ⎡⎤ ⎢⎥ ⎣⎦ . 0,25 V (1,0 điểm) Vì thế: M ≥ f(t) ≥ 2 ∀t ∈ 1 0; 3 ⎡⎤ ⎢⎥ ⎣⎦ ; M = 2, khi: ab = bc = ca, ab + bc + ca = 0 và a + b + c = 1 ⇔ (a; b; c) là một trong các bộ số: (1; 0; 0), (0; 1; 0), (0; 0; 1). Do đó giá trị nhỏ nhất của M là 2. 0,25 1. (1,0 điểm) Gọi D là điểm đối xứng của C(− 4; 1) qua d: x + y − 5 = 0, suy ra tọa độ D(x; y) thỏa mãn: (4)(1)0 41 50 22 xy xy + −−= ⎧ ⎪ ⎨− + + −= ⎪ ⎩ ⇒ D(4; 9). 0,25 Điểm A thuộc đường tròn đường kính CD, nên tọa độ A(x; y) thỏa mãn: 22 50 (5)32 xy xy +−= ⎧ ⎪ ⎨ + −= ⎪ ⎩ với x > 0, suy ra A(4; 1). 0,25 ⇒ AC = 8 ⇒ AB = 2S A BC A C = 6. B thuộc đường thẳng AD: x = 4, suy ra tọa độ B(4; y) thỏa mãn: (y − 1) 2 = 36 ⇒ B(4; 7) hoặc B(4; − 5). 0,25 Do d là phân giác trong của góc A, nên A B JJJG và A D JJJG cùng hướng, suy ra B(4; 7). Do đó, đường thẳng BC có phương trình: 3x − 4y + 16 = 0. 0,25 2. (1,0 điểm) Mặt phẳng (ABC) có phương trình: 1 1 xyz bc + += . 0,25 Mặt phẳng (ABC) vuông góc với mặt phẳng (P): y − z + 1 = 0, suy ra: 1 b − 1 c = 0 (1). 0,25 Ta có: d(O, (ABC)) = 1 3 ⇔ 22 1 11 1 bc ++ = 1 3 ⇔ 2 1 b + 2 1 c = 8 (2). 0,25 VI.a (2,0 điểm) Từ (1) và (2), do b, c > 0 suy ra b = c = 1 2 . 0,25 Biểu diễn số phức z = x + yi bởi điểm M(x; y) trong mặt phẳng tọa độ Oxy, ta có: | z − i | = | (1 + i)z | ⇔ | x + (y − 1)i | = | (x − y) + (x + y)i | 0,25 ⇔ x 2 + (y − 1) 2 = (x − y) 2 + (x + y) 2 0,25 ⇔ x 2 + y 2 + 2y − 1 = 0. 0,25 VII.a (1,0 điểm) Tập hợp điểm M biểu diễn các số phức z là đường tròn có phương trình: x 2 + (y + 1) 2 = 2. 0,25 d A B D C hoctoancapba.com Trang 4/4 Câu Đáp án Điểm 1. (1,0 điểm) Nhận thấy: F 1 (−1; 0) và F 2 (1; 0). Đường thẳng AF 1 có phương trình: 1 3 3 x y+ = . 0,25 M là giao điểm có tung độ dương của AF 1 với (E), suy ra: 23 1; 3 M ⎛⎞ = ⎜⎟ ⎜⎟ ⎝⎠ ⇒ MA = MF 2 = 23 3 . 0,25 Do N là điểm đối xứng của F 2 qua M nên MF 2 = MN, suy ra: MA = MF 2 = MN. 0,25 Do đó đường tròn (T) ngoại tiếp tam giác ANF 2 là đường tròn tâm M, bán kính MF 2 . Phương trình (T): () 2 2 23 4 1 33 xy ⎛⎞ −+− = ⎜⎟ ⎜⎟ ⎝⎠ . 0,25 2. (1,0 điểm) Đường thẳng ∆ đi qua điểm A(0; 1; 0) và có vectơ chỉ phương v G = (2; 1; 2). Do M thuộc trục hoành, nên M có tọa độ (t; 0; 0), suy ra: A M JJJJG = (t; −1; 0) ⇒ ,vAM ⎡⎤ ⎣⎦ GJJJJG = (2; 2t; − t − 2) 0,25 ⇒ d(M, ∆) = ,vAM v ⎡ ⎤ ⎣ ⎦ G JJJJG G = 2 548 3 tt+ + . 0,25 Ta có: d(M, ∆) = OM ⇔ 2 548 3 tt+ + = | t | 0,25 VI.b (2,0 điểm) ⇔ t 2 − t − 2 = 0 ⇔ t = − 1 hoặc t = 2. Suy ra: M(−1; 0; 0) hoặc M(2; 0; 0). 0,25 Điều kiện y > 1 3 , phương trình thứ nhất của hệ cho ta: 3y − 1 = 2 x . 0,25 Do đó, hệ đã cho tương đương với: 22 312 (3 1) 3 1 3 x y yyy ⎧ −= ⎪ ⎨ −+−= ⎪ ⎩ ⇔ 2 312 630 x y yy ⎧ −= ⎪ ⎨ − = ⎪ ⎩ 0,25 ⇔ 1 2 2 1 2 x y ⎧ = ⎪ ⎪ ⎨ ⎪ = ⎪ ⎩ 0,25 VII.b (1,0 điểm) ⇔ 1 1 . 2 x y = − ⎧ ⎪ ⎨ = ⎪ ⎩ 0,25 Hết M y x A F 1 F 2 O N hoctoancapba.com [...]... của AC và BD ⇒ A1O ⊥ (ABCD) Gọi E là trung điểm AD ⇒ OE ⊥ AD và A1E ⊥ AD 0,25 0,25 ⇒ A1 EO là góc giữa hai mặt phẳng (ADD1A1) và (ABCD) ⇒ A1 EO = 60 B1 C1 D1 A1 B A E O H a 3 AB tan A1 EO = 2 2 Diện tích đáy: SABCD = AB.AD = a 2 3 Ta có: B1 C // A1D ⇒ B1 C // (A1BD) ⇒ d (B1 , (A1BD)) = d(C, (A1BD)) Hạ CH ⊥ BD (H ∈ BD) ⇒ CH ⊥ (A1BD) ⇒ d(C, (A1BD)) = CH B B B CD.CB Suy ra: d (B1 , (A1BD)) = CH = B V (1,0... VABCD A 1B1 C1D1 = SABCD.A1O = 2 C D ⇒ A1O = OE tan A1 EO = CD 2 + CB 2 = a 3 2 0,25 0,25 Với a, b dương, ta có: 2(a2 + b2 ) + ab = (a + b) (ab + 2) 2 2 2 ⎛a b ⎛1 1⎞ + ⎟ + 1 = (a + b) + 2 ⎜ + ⎟ b a⎠ ⎝a b 2 ⇔ 2(a + b ) + ab = a b + ab + 2(a + b) ⇔ 2 ⎜ Trang 2/4 0,25 hoctoancapba.com Câu Điểm Đáp án ⎛1 1⎞ ⎛1 1⎞ ⎞ ⎛a b (a + b) + 2 ⎜ + ⎟ ≥ 2 2(a + b) ⎜ + ⎟ = 2 2 ⎜ + + 2 ⎟ , suy ra: ⎝a b b a ⎠ ⎝a b ... ) = 0 ⇔ t = 4 B ng biến thi< /b> n: t 2 4 +∞ f '(t ) + 0 5 8 f (t ) −∞ − 0,25 0 5 Từ b ng biến thi< /b> n ta được P ≤ 8 5 5 Khi a = b = c = 2 ta có P = Vậy giá trị lớn nhất của P là 8 8 7.a (1,0 điểm) B 0,25 Gọi I là giao điểm của AC và BD ⇒ IB = IC C Mà IB ⊥ IC nên ΔIBC vng cân tại I ⇒ ICB = 45o BH ⊥ AD ⇒ BH ⊥ BC⇒ ΔHBC vng cân tại B I 0,25 ⇒ I là trung điểm của đoạn thẳng HC H A D Do CH ⊥ BD và trung điểm... trên mặt phẳng (ABCD) trùng với giao điểm của AC và BD Góc giữa hai mặt phẳng (ADD1A1) và (ABCD) b ng 60o Tính thể tích khối < /b> lăng trụ đã cho và khoảng cách từ điểm B1 đến mặt phẳng (A1BD) theo a Câu V (1,0 điểm) Cho a và b là các số thực dương thỏa mãn 2(a2 + b2 ) + ab = (a + b) (ab + 2) ⎛ a 3 b3 ⎞ ⎛ a 2 b2 ⎞ Tìm giá trị nhỏ nhất của biểu thức P = 4 ⎜ 3 + 3 ⎟ − 9 ⎜ 2 + 2 ⎟ ⋅ a ⎠ a ⎠ b b PHẦN RIÊNG (3,0... = Đối chiếu điều kiện (∗) và kết hợp < /b> trường hợp < /b> trên, ta được 2 √ √ 1 + 5 −1 + 5 nghiệm (x; y) của hệ đã cho là (3; 1) và ; 2 2 a 2a ≥ b+ c a +b+ c 2(a + b) c 2(a + b) a +b+ c 1 Do đó P ≥ + = + − a + b + c 2(a + b) a +b+ c 2(a + b) 2 ≥2− 1 3 = 2 2 Khi a = 0, b = c, b > 0 thì P = 0,25 0,25 = 0 (3) Do √ 9 Ta có a + b + c ≥ 2 a (b + c) Suy ra (1,0đ) b 2b Tương tự, ≥ a+c a +b+ c 0,25 0,25   y≥0 Điều kiện:... 1 = 0 ⇔ a – bi – z a + bi Trang 3/4 0,25 hoctoancapba.com Câu Điểm Đáp án 2 2 2 2 ⇔ a + b – 5 – i 3 – a – bi = 0 ⇔ (a + b – a – 5) – (b + 3 )i = 0 ⎧a 2 + b2 − a − 5 = 0 ⎪ ⇔ ⎨ b + 3 = 0 ⎩ (2,0 điểm) 0,25 b = − 3 ⎩ ⇔ (a; b) = (– 1; – VI .b ⎧a 2 − a − 2 = 0 ⎪ ⇔ ⎨ 3 ) hoặc (a; b) = (2; – 0,25 3 ) Vậy z = – 1 – i 3 hoặc z = 2 – i 3 0,25 1 (1,0 điểm) ⎛5 ⎞ BD = ⎜ ; 0 ⎟ ⇒ BD // EF ⇒ tam giác ABC cân tại A;... hoctoancapba.com B GIÁO DỤC VÀ ĐÀO TẠO −−−−− − − − −− ĐỀ CHÍNH THỨC ĐỀ THI < /b> TUYỂN SINH ĐẠI HỌC NĂM 2013 Môn:< /b> TOÁN; Khối < /b> B Thời gian làm b i: 180 phút, không kể thời gian phát đề < /b> −−−−−−−−−− −−−−−−−−− I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số y = 2x3 − 3(m + 1)x2 + 6mx (1), với m là tham số thực a) Khảo sát sự biến thi< /b> n và vẽ đồ thò của hàm số (1) khi m = −1 b) Tìm m để... ; Số b o danh: hoctoancapba.com ĐÁP ÁN – THANG ĐIỂM ĐỀ THI < /b> TUYỂN SINH ĐẠI HỌC NĂM 2013 Mơn: TỐN; Khối < /b> B (Đáp án - thang điểm gồm 04 trang) B GIÁO DỤC VÀ ĐÀO TẠO ⎯⎯⎯⎯⎯⎯⎯⎯ ĐỀ CHÍNH THỨC Câu 1 (2,0 điểm) Đáp án Điểm a (1,0 điểm) Khi m = −1 ta có y = 2 x3 − 6 x • Tập xác định: D = 0,25 • Sự biến thi< /b> n: - Chiều biến thi< /b> n: y ' = 6 x 2 − 6; y ' = 0 ⇔ x = ±1 Các khoảng đồng biến: (−∞;... hoctoancapba.com B GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI < /b> TUYỂN SINH ĐẠI HỌC NĂM 2012 Mơn: TỐN; Khối < /b> B Thời gian làm b i: 180 phút, khơng kể thời gian phát đề < /b> ĐỀ CHÍNH THỨC I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu 1 (2,0 điểm) Cho hàm số y = x3 − 3mx 2 + 3m3 (1), m là tham số thực a) Khảo sát sự biến thi< /b> n và vẽ đồ thị của hàm số (1) khi m = 1 b) Tìm m để đồ thị hàm số (1) có hai điểm cực trị A và B sao cho... qua A, vng góc với AB và Δ có phương trình là: 9 .b (1,0 điểm) ⎧ x2 − 2x − 3 = 0 ⇔⎨ ⎩y = x−2 ⎡ x = −1, y = −3 ⇔⎢ ⎣ x = 3, y = 1 Đối chiếu điều kiện ta được nghiệm ( x; y ) của hệ đã cho là (3;1) - Hết - Trang 4/4 0,25 0,25 0,25 0,25 0,25 hoctoancapba.com B GIÁO DỤC VÀ ĐÀO TẠO −−−−− − − − −− ĐỀ CHÍNH THỨC ĐỀ THI < /b> TUYỂN SINH ĐẠI HỌC NĂM 2014 Môn:< /b> TOÁN; Khối < /b> B Thời gian làm b i: 180 phút, không . d (B B 1 , (A 1 BD)) = CH = 22 .CD CB CD CB+ = 3 . 2 a 0,25 V (1,0 điểm) Với a, b dương, ta có: 2(a 2 + b 2 ) + ab = (a + b) (ab + 2) ⇔ 2(a 2 + b 2 ) + ab = a 2 b + ab 2 + 2(a + b) . 3 . 4 a BD = Tam giác có: ABC 3 , 22 A BAB BC AC== ⇒ . 4 AB CD = 0,50 IV (1,0 điểm) 222 B A BCCDBD+= ⇒ 222 6 39 4161 A BAB a += ⇒ 313 , 13 a AB = 313 ; 26 a AC = 2 93 . 104 ABC a S Δ = . B GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: B Thời gian làm b i: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO
- Xem thêm -

Xem thêm: Tổng hợp đề thi Đại học môn toán khối B từ 2009 đến 2014, Tổng hợp đề thi Đại học môn toán khối B từ 2009 đến 2014, Tổng hợp đề thi Đại học môn toán khối B từ 2009 đến 2014

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay