Chuyên đề Tích phân Luyện thi ĐH

33 685 0
  • Loading ...
1/33 trang

Thông tin tài liệu

Ngày đăng: 27/11/2014, 07:11

Hướng dẫn giải CDBT từ các ĐTQG Toán học – 124  Chuyên đề 4: TÍCH PHÂN  Vấn đề 1: BIẾN ĐỔI VỀ TỔNG – HIỆU CÁC TÍCH PHÂN CƠ BẢN A. PHƯƠNG PHÁP GIẢI Sử dụng ba tích chất sau để biến đổi tích phân cần tính thành tổng – hiệu các tích phân cơ bản 1/   bb aa k.f(x)dx k f(x)dx 2/         b b b a a a f(x) g(x) dx f(x)dx g(x)dx 3/     b c b a a c f(x)dx f(x)dx f(x)dx BẢNG NGUYÊN HÀM CƠ BẢN Nguyên hàm của các hàm số sơ cấp Nguyên hàm của các hàm số hợp 1.      dx x c; kdx kx c 2.          1 x x dx c, ( 1) 1 3.   dx ln x c x 4.   xx e dx e c 5.      x x a a dx c (0 a 1) lna 6.   cosxdx sinx c 7.     sinxdx cosx c 8.   2 dx tanx c cos x 9.     2 dx cotx c sin x 10.     tanxdx ln cosx c 11.   cotxdx ln sinx c (u = u(x)) 1.          1 u u u'dx c ; ( 1) 1 2.   u' dx ln u c u 3.   uu e u'dx e c 4.      u u a a u'dx c (0 a 1) lna 5.   u'cosudx sinu c 6.     u'sinudx cosu c 7.   2 u' dx tanu c cos u 8.     2 u' dx cot u c sin u 9.     u'tanudx ln cosu c 10.   u'cotudx ln sinu c TT Luyện Thi Đại Học VĨNH VIỄN 125 Đặc biệt: u(x) = ax + b;         1 f(x)dx F(x) c f(ax b)dx F(ax b) c a 1.         1 1 (ax b) (ax b) dx c a1 2.      dx 1 ln ax b c ax b a 3.    ax b ax b 1 e dx e a 4.         x 1 a dx ln x c 5.      1 cos(ax b)dx sin(ax b) c a 6.       1 sin(ax b)dx cos(ax b) c a 7.      2 dx 1 tan(ax b) c a cos (ax b)       2 dx 1 8. cot(ax b) c a sin (ax b) 1 9. tan(ax b)dx ln cos(ax b) c a            1 10. cot(ax b)dx ln sin(ax b) c a 11.      22 dx 1 x a ln c 2a x a xa B – ĐỀ THI Bài 1: CAO ĐẲNG KHỐI A, B, D NĂM 2011 Tính tích phân 2 1 2x 1 I dx x(x 1)     Giải I = 2 1 (x 1) x dx x(x 1)    = 2 1 11 dx x 1 x       =   2 1 6 lnx(x 1) ln ln3 2    . Bài 2: CAO ĐẲNG KHỐI A, B, D NĂM 2010 Tính tích phân:     1 0 2x 1 I dx x1 Giải     1 0 2x 1 I dx x1 =       1 0 3 2 dx x1 =    1 0 2x 3ln x 1 = 2 – 3ln2. Bài 3: CAO ĐẲNG GTVT III KHỐI A NĂM 2007 Tính các tích phân sau:        2 4 3 2 2 1 x x 3x 2x 2 I dx xx Giải Chia tử cho mẫu, ta được: Hướng dẫn giải CDBT từ các ĐTQG Toán học – 126          4 3 2 2 22 x x 3x 2x 2 x 2 x3 x x x x =     2 12 x3 x 1 x           2 2 1 12 I x 3 dx x 1 x         2 3 1 x 3x ln x 1 2ln x 3 I =  16 3 ln 38 Bài 4: CAO ĐẲNG KINH TẾ – CÔNG NGHIỆP TPHCM NĂM 2007 Tính tích phân:    x 1 dt I(x) t(t 1) , với x > 1. Từ đó tìm x lim I(x) Giải I(x) =         xx 11 dt 1 1 dt t t 1 t t 1 =         x x 1 1 t lnt ln t 1 ln t1 =   x1 ln ln x 1 2             xx x1 lim I x lim ln ln ln2 x 1 2 Bài 5: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2005 Tính tích phân:   4 sinx 0 tanx e cosx dx    Giải               4 4 4 sinx sinx 0 0 0 I tanx e .cosx dx tanxdx sinx 'e dx =        sinx 4 4 0 0 ln cosx + e    2 2 ln 2 e 1 . Bài 6: ĐỀ DỰ BỊ 2 Tính tích phân:    3 3 1 dx I xx Giải                            22 3 3 3 3 3 2 2 2 1 1 1 1 dx 1 x x 1 x 1 1 2x I dx dx dx x x 2 x x x(1 x ) x 1 x 1 TT Luyện Thi Đại Học VĨNH VIỄN 127             22 1 33 ln ln(x 1) lnx ln x 1 x 2 11      2 x 3 1 6 3 ln ln ln ln 22 12 1x Bài 7: Tính tích phân : I =   2 2 0 x xdx . Giải Tính               2 1 2 2 2 2 0 0 1 I x x dx x x dx x x dx Do : x 0 1 2 x 2 x  0 +                   3 2 3 2 12 x x x x I1 01 3 2 3 2 . Bài 8: ĐỀ DỰ BỊ 3 Cho hàm số: f(x) =     x 3 a bxe x1 . Tìm a và b biết rằng f’(0) =  22 và   1 0 f(x)dx 5 Giải Ta có:   x 3 a f(x) bx.e (x 1)              x 4 3a f (x) be (x 1) f (0) 3a b 22 (1) (x 1)                    1 1 1 1 3 x x x 2 0 0 0 0 a 3a f(x)dx a(x 1) dx b xe b(xe e ) b 5 (2) 8 2(x 1) (1) và (2) ta có hệ:                3a b 22 a8 3a b2 b5 8 . Hướng dẫn giải CDBT từ các ĐTQG Toán học – 128  Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ A. PHƯƠNG PHÁP GIẢI ĐỔI BIẾN SỐ LOẠI I 1. Sử dụng công thức:      b a f[u(x)].u (x)dx f(u)du 2. Phương pháp: Xét tích phân   b a I f(x)du - Đặt t = u(x)  dt = u'(x)dx - Đổi cận u(a) = t 1 ; u(b) = t 2 - Suy ra: t 2 t 2 t 1 t 1 I g(t)dt g(t)   (g(t) f[u(x)].u (x)) Thường đặt ẩn phụ t là  căn thức, hoặc mũ của e, hoặc mẫu số, hoặc biểu thức trong ngoặc.  có sinxdx  đặt t = cosx, có cosxdx  đặt t = sinx, có dx x đặt t = lnx. ĐỔI BIẾN SỐ LOẠI II  Công thức:       b / a f( (t)) (t)dt f(x)dx ;        x (t); ( ) a, ( ) b  Tính:   b a I f(x)dx Đặt      x (t) dx (t)dt Đổi cận:        x (t); ( ) a, ( ) b Khi đó:         b a I f( (t)). (t)dt f(x)dx Các dạng thường gặp: 1.   b 22 a a x dx đặt x asint 2.    b 22 a dx đặt x asint ax 3. b 22 a dx đặt x atant ax    B. ĐỀ THI Bài 1: ĐẠI HỌC KHỐI A NĂM 2011 TT Luyện Thi Đại Học VĨNH VIỄN 129 Tính tích phân :   4 0 xsinx x 1 cosx I dx. xsinx cosx      Giải Ta có: 4 0 xsinx cosx xcosx I dx xsinx cosx      4 0 xcosx 1 dx xsinx cosx        44 4 0 00 xcosx xcosx x dx dx xsinx cosx 4 xsinx cosx          Đặt t = xsinx + cosx  dt = xcosxdx. Khi x = 0 thì t = 1, x =  4 thì t = 2 1 24      Suy ra:         2 1 24 1 dt I 4t        2 1 24 1 ln t 4        2 ln 1 4 2 4 . Bài 2: ĐẠI HỌC KHỐI D NĂM 2011 Tính tích phân: 4 0 4x 1 I dx. 2x 1 2     Giải Đặt: t 2x 1 2    2x 1 t 2    2 2x 1 t 4t 4     2 t 4t 3 x 2    dx = (t – 2)dt. x = 0  t = 3, x = 4  t = 5. Suy ra:   2 5 3 t 4t 3 41 2 I t 2 dt t     =     2 5 3 2t 8t 5 t 2 dt t     = 5 32 3 2t 12t 21t 10 dt t     = 5 2 3 10 2t 12t 21 dt t        = 5 3 2 3 2t 6t 21t 10ln t 3        = 34 3 10ln 35  . Bài 3: ĐẠI HỌC KHỐI B NĂM 2010 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 130 Tính tích phân: I =   e 2 1 lnx dx x(2 lnx) Giải Đặt    1 u lnx du dx x , x = 1  u = 0, x = e  u = 1               22 11 00 u 1 2 I du du 2u 2 u 2 u        1 0 2 ln 2 u 2u          2 ln3 ln2 1 3     31 ln 23 . Bài 4: ĐẠI HỌC KHỐI D NĂM 2009 Tính tích phân:    3 x 1 dx I e1 . Giải Đặt t = e x  dx = dt t ; x = 1  t = e; x = 3  t = e 3           33 ee ee dt 1 1 I dt t t 1 t 1 t    33 ee ee ln t 1 ln t       2 ln e e 1 2 Bài 3: ĐẠI HỌC KHỐI A NĂM 2008 Tính tích phân:    64 0 tan x I dx cos2x Giải Cách 1:  Đặt t = tanx  dt = (1 + tan 2 x)dx    2 dt dx 1t    2 2 1t cos2x 1t  Đổi cận: x = 0  t = 0;     3 xt 63  Khi đó:           33 3 4 3 2 22 00 t1 I dt t 1 dt 1 t 1 t TT Luyện Thi Đại Học VĨNH VIỄN 131              3 3 t 1 1 t 1 3 1 10 t ln ln 3 3 2 1 t 2 3 1 9 3 0 Cách 2: Ta có:           6 4 6 4 6 4 2 2 2 2 0 0 0 tan x tan x tan x I dx dx dx cos2x cos x sin x cos x(1 tan x) Đặt: t = tanx   2 dx dt cos x Đổi cận: x = 0  t = 0;     3 xt 63 Khi đó:        3 34 2 0 t 1 3 1 10 I dt ln 2 3 1 9 3 1t Bài 4: ĐẠI HỌC KHỐI B NĂM 2008 Tính tích phân:            4 0 sin x dx 4 I sin2x 2(1 sinx cosx) Giải Tính tích phân:            4 0 sin x dx 4 I sin2x 2(1 sinx cosx) Đặt t = sinx + cosx           dt (cosx sinx)dx 2 sin x dx 4 Đổi cận: x = 0  t = 1;    x t 2 4 Ta có: t 2 = sin 2 x + cos 2 x + 2sinxcosx = 1 + sin2x  sin2x = t 2 – 1 Khi đó:          22 22 11 2 dt 2 dt I 22 t 1 2(1 t) (t 1)           2 1 2 1 1 4 3 2 2 . 2 t 1 2 2 4 1 2 1 . Bài 5: ĐẠI HỌC SÀI GÒN KHỐI B NĂM 2007 Tính tích phân:    1 2 0 1 I dx x x 1 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 132 Giải I =      1 2 0 1 dx 13 x 24 Đặt   2 1 3 3 x tant, t ; dx 1 tan t dt 2 2 2 2 2            I =            2 3 2 6 3 1 tan t 2 dt 3 33 1 tan t 4 Bài 6: CAO ĐẲNG XÂY DỰNG SỐ 2 NĂM 2007 Tính tích phân: I =   e 3 1 dx x 1 lnx Giải Đặt:  3 t 1 lnx  lnx = t 3 – 1,  2 dx 3t dt x Đổi cận: x = 1  t = 1; x = e   3 t2    3 2 1 I 3tdt    2 3 3 3t 3 4 3 2 22 1 Bài 7: CAO ĐẲNG CÔNG NGHIỆP THỰC PHẨM NĂM 2007 Tính tích phân:    1 2 0 x1 dx x1 Giải       11 12 22 00 xdx dx I I I x 1 x 1 ;    2 1 1 11 I ln(x 1) ln2 0 22 . Đặt x = tant,      2 dt t 0, , dx 4 cos t     4 2 0 I dt 4 . Vậy   1 I ln2 24 Bài 8: CAO ĐẲNG TÀI CHÍNH – HẢI QUAN NĂM 2007 Tính tích phân:      2 3 sinx I dx cos2x cosx TT Luyện Thi Đại Học VĨNH VIỄN 133 Giải Đặt t = cosx  dt = sinxdx x  3  2 t 1 2 0 I =                11 0 22 22 1 00 2 12 dt 1 dt dt 33 2t t 1 2t t 1 t 1 2t 1  I =      1 2 0 11 ln4 ln ln t 1 2t 1 33 Bài 9: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI A NĂM 2006 Tính tích phân: I =     6 2 dx 2x 1 4x 1 Giải Đặt        2 t 1 1 t 4x 1 x dx tdt 42                  5 5 5 2 2 2 3 3 3 t dt t 1 1 2 I dt dt t1 t 1 (t 1) (t 1) 2. 1 t 4          5 1 3 1 ln t 1 ln 3 t 1 2 12 Bài 10: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI B NĂM 2006 Tính tích phân: I =   10 5 dx x 2 x 1 Giải  Đặt t =       2 x 1 t x 1 dx 2tdt và x = t 2 + 1  Đổi cận x 5 10 t 2 3 Khi đó: I =            33 22 22 2tdt 1 1 2 dt t1 t 2t 1 t1 =         3 2 2 2ln t 1 2ln2 1 t1 [...]... 2x 0 Tính tích phân: I   Giải  4  4  cos2x 1 d 1  sin 2x  1 1 dx    ln 1  sin 2x  4  ln2 1  sin 2x 2 0 1  sin 2x 2 2 0 0 Ta có I   Bài 24: ĐỀ DỰ BỊ 2 138 ln3 ex dx 0 Tính tích phân: I   e  1  x 3 TT Luyện Thi Đại Học VĨNH VIỄN Giải ex 0 I ln 3  ex  1  3 4 Khi đó I   dt 3 2 2 t dx Đặt t  ex  1  dt  ex dx ; Đổi cận:  x 0 ln3 t 2 4 4 2 t  2 1 2 Bài 25: ĐỀ DỰ BỊ... NĂM 2008 2 Tính tích phân: I   1 ln x x3 dx Giải 2 Tính tích phân: I   1 I  u  ln x dx 1  dx Đặt:  , chọn v   2 dx  du  3 x 2x x dv  3  x ln x 2 2 1 1 1 2 1 3 3  2 ln 2 ln x   3 dx =  ln 2  2   ln 2   2 1 1 2x 8 8 16 16 2x 4x 1 1 Bài 4: ĐẠI HỌC KHỐI D NĂM 2007 e Tính tích phân: I   x3 ln2 xdx 1 Giải 141 Hướng dẫn giải CDBT từ các ĐTQG Toán học – Tính tích phân x4 2 ln x... 11: CAO ĐẲNG KỸ THUẬT CAO THẮNG  4  Tính tích phân: 0 1  sin 2x cos2 x dx Giải I =  4  0 1  sin 2x 2 cos x  tan x  4 0 dx =  4 1  0 sin 2x  cos2 x dx   cos2 x dx 0  4  4 d(cos2 x) cos2 x 0 dx   = tan x 4  ln(cos2 x) 4 = 1 + ln2 0 0 150 x 1 0 t 0 1 TT Luyện Thi Đại Học VĨNH VIỄN ỨNG DỤNG CỦA TÍCH PHÂN  Vấn đề 5: A PHƯƠNG PHÁP GIẢI TÍNH DIỆN TÍCH Bài toán 1: Cho hàm số y = f(x) liên... Toán học – Bài 21: 2 3  Tính tích phân: I  5 dx x x2  4 Giải Tính tích phân I  2 3 dx  2 x x 4 5 Ta có I  2 3  5 dx 2 x x 4 2 3   5 xdx x 2 x2  4 xdx Đặt t  x2  4  t 2  4  x2  dt = x2  4 x  2 3  t = 4 Đổi cận  x  5  t = 3  4 dt Vậy I   3t 2 4  1 t 2 4 1 1 1 1 5 ln   ln  ln   ln 4 t 2 3 4 3 5 4 3 Bài 22: ĐỀ DỰ BỊ 1 Tính tích phân: I  ln3  e2x dx ex  1...  1 3e4  1 16 5e4  1 32 Bài 5: ĐẠI HỌC KHỐI D NĂM 2006 1 Tính tích phân: I   (x  2)e2x dx 0 Giải Tính tích phân 1 u  x  2 1  I   (x  2)e2x dx Đặt   du  dx, chọ n v = e2x 2x 2 dv  e dx  0 1 I  (x  2)e2x 2 1 1  0 1 2x e2 1 2x  e dx =  2  1  4 e 20 1 0 Bài 6: ĐỀ DỰ BỊ 1 - ĐẠI HỌC KHỐI D NĂM 2006  2 Tính tích phân: I =  (x  1)sin 2x dx 0 Giải u  x  1 1 Đặt   du  dx,... 2 1  cos2xdx   1 2 4 0 Bài 7: ĐỀ DỰ BỊ 2 - ĐẠI HỌC KHỐI D NĂM 2006 142  5  3e2 4 TT Luyện Thi Đại Học VĨNH VIỄN 2 Tính tích phân: I =  (x  2)ln xdx 1 Giải  u  ln x 1 x2  Đặt   du  dx, chọ n v   2x x 2 dv   x  2  dx  2 2  x2  5 x  I=   2x  ln x     2  dx  2 ln 2   2  4 2    1 1 Bài 8: ĐẠI HỌC KHỐI D NĂM 2005  2 Tính tích phân: I    2x  1 cos2 xdx 0 Giải...  2 2 Bài 10: ĐỀ DỰ BỊ 1  4 x dx 1  cos2x 0 Tính tích phân: I   Giải  4  4 u  x du  dx x 1 xdx  I dx   Đặt  du   2 1  cos2x 2 0 cos x  chọ n v  tan x dv  0 cos2 x   4  4  1 1 1  1 I  x tan x   tan xdx  x tan x  ln cos x  4   ln 2  0 8 4 2 20 2 0 Bài 11: CĐ KINH TẾ – KỸ THUẬT CÔNG NGHIỆP I 3 ln x Tính tích phân: I   dx 1 (x  1)2 144 TT Luyện Thi Đại Học VĨNH... du  dx u  x   cos2x dv  sin2xdx, chọn v   2   2 x cos2x Vậy: I =  2 0   2  1 s in2x  2    cos2xdx     20 4 2  2 0 4    Vấn đề 4: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHỐI HP A.ĐỀ THI Bài 1: ĐẠI HỌC KHỐI A NĂM 2010 1 Tính tích phân : I   0 x2 (1  2ex )  ex 1  2ex dx 145 Hướng dẫn giải CDBT từ các ĐTQG Toán học – Giải 1 I 1 0 x2 (1  2ex )  ex 1 x3 I1   x dx  3 0 1 2...   13  7   0 91 Bài 26: CAO ĐẲNG KINH TẾ TP HCM  2 Tính tích phân: I   x sin 2xdx 0 Giải  du  dx u  x   cos2x dv  sin2xdx  v   2   2  2    1 s in2x  2  x cos2x   cos2xdx     Vậy: I =  20 4 2  2 0 4 2   0 139 Hướng dẫn giải CDBT từ các ĐTQG Toán học –  Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN A PHƯƠNG PHÁP GIẢI b  u(x).v(x)dx  u(x).v(x)... 1 15 1 t   Bài 18: 2 Tính tích phân: I   1 x 1 x 1 dx Giải Đặt t = 136 x  1  t = 0 x  1  t2 = x  1  2tdt = dx Đổi cận  x = 2  t = 1 TT Luyện Thi Đại Học VĨNH VIỄN 1 Vậy I    t2  1 2t dt  21 t3  t dt  21  t2  t  2   1 t 0 0   t 1 0 2   dt t 1 1  t3 t 2  11 I  2    2t  2ln | t  1|   4ln2 3 2  0 3   Bài 19: e Tính tích phân: I   1 1  3lnx.ln x dx .  Chuyên đề 4: TÍCH PHÂN  Vấn đề 1: BIẾN ĐỔI VỀ TỔNG – HIỆU CÁC TÍCH PHÂN CƠ BẢN A. PHƯƠNG PHÁP GIẢI Sử dụng ba tích chất sau để biến đổi tích phân cần tính thành tổng – hiệu các tích. Vấn đề 2: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ A. PHƯƠNG PHÁP GIẢI ĐỔI BIẾN SỐ LOẠI I 1. Sử dụng công thức:      b a f[u(x)].u (x)dx f(u)du 2. Phương pháp: Xét tích phân. sin2x cos2xdx 2 4 2 4 22 Hướng dẫn giải CDBT từ các ĐTQG Toán học – 140  Vấn đề 3: TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN A. PHƯƠNG PHÁP GIẢI Công thức:    bb b a aa u(x).v
- Xem thêm -

Xem thêm: Chuyên đề Tích phân Luyện thi ĐH, Chuyên đề Tích phân Luyện thi ĐH, Chuyên đề Tích phân Luyện thi ĐH

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay