GIÁO ÁN DẠY HỌC SINH GIỎI TOÁN 9

92 403 5
  • Loading ...
1/92 trang

Thông tin tài liệu

Ngày đăng: 28/10/2014, 02:00

Học Học - Nữa Học - Mãi GIO N BI DNG HC SINH GII I S 9 Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t1> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng cố định nghĩa và các tính chất của bất đẳng thức - Nắm đợc định nghĩa và một số tính chất bất đẳng thức. Biết vận dụng định nghĩa bất đẳng thức để chứng minh một số bất đẳng thức cơ bản. Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò - GV: Nghiên cứu kĩ giáo án - HS: Ôn tập lại định nghĩa và các tính chất của bất đẳng thức C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Thế nào là một bất đẳng thức ? Cho ví dụ ? - HS2: Nêu các tính chất của bất đẳng thức ? Cho các ví dụ minh họa ? III. Bài mới A Lí thuyết 1) Định nghĩa bất đẳng thức. a nhỏ hơn b, kí hiệu là a < b, nếu a b < 0. a lớn hơn b, kí hiệu là a > b, nếu a b > 0. a nhỏ hơn hoặc bằng b, kí hiệu là a b, nếu a - b 0. a lớn hơn hoặc bằng b, kí hiệu là a b, nếu a - b 0. Ví dụ: VD1: 7 5 7 6 > vì ( 7 5) ( 7 6) 1 0 = > VD2: 1 3 1 1 3 4 3 4 < vì 1 3 1 1 1 0 3 4 3 4 2 = < ữ ữ VD3: a2 + 1 < a2 + 2 vì (a2 + 1) - (a2 + 2) = -1 < 0 2) Các tính chất của BĐT. + Tính chất 1: a > b b < a. + Tính chất 2: a > b và b > c a > c + Tính chất 3: a > b a + c > b + c + Tính chất 4: a > b, c > d a + c > b + d a > b, c < d a - c > b - d 1 + Tính chất 5: a> b, c > 0 ac > bc ; a> b, <0 ac < bc + Tính chất 6: a > b 0, c > d 0 ac > bd + Tính chất 7: a > b > 0 an > bn với mọi n * N ; a > b an > bn (n lẻ) a b> a n > b n (n chẵn) 3, Một số bất đẳng thức thông dụng : a, Bất đẳng thức Côsi : Với 2 số dơng a , b ta có : ab ba + 2 Dấu đẳng thức xảy ra khi : a = b b, Bất đẳng thức Bunhiacôpxki : Với mọi số a ; b; x ; y ta có : ( ax + by ) 2 (a 2 + b 2 )(x 2 + y 2 ) Dấu đẳng thức xảy ra <=> y b x a = c, Bất đẳng thức giá trị tuyệt đối : baba ++ Dấu đẳng thức xảy ra khi : ab 0 B Các phơng pháp chứng minh bất đẳng thức 1. Phơng pháp 1 : Dùng định nghĩa Phơng pháp chứng minh A > B : - Bớc 1: Xét hiệu A B - Bớc 2: Chứng minh A B > 0 - Lu ý : A 2 0 với mọi A ; dấu '' = '' xảy ra khi A = 0 . Bài tập: *) Bài tập 1: Chứng minh bất đẳng thức sau: 2 a b ab 2 + ữ Bài làm : (Bất đẳng thức Côsi) Xét hiệu 2 2 2 a b a 2ab b 4ab ab 2 4 + + + = ữ 2 a b 0 2 = ữ Vậy: 2 a b ab 2 + ữ dấu = xảy ra khi a = b. *) Bài tập 2: Chứng minh rằng với mọi số a, b, x, y ta có 2 2 2 2 2 (a b )(x y ) (ax by)+ + + (Bất đẳng thức Bunhiacôpxki) Bài làm : Xét hiệu 2 2 2 2 2 (a b )(x y ) (ax by)+ + + = a 2 x 2 + a 2 y 2 + b 2 x 2 + b 2 y 2 - a 2 x 2 - b 2 y 2 2byax = (ay bx) 2 0 Vậy: 2 2 2 2 2 (a b )(x y ) (ax by)+ + + 2 dấu = xảy ra khi ay = bx hay a b x y = *) Bài tập 3: Cho a, b, c, d là các số thực. Chứng minh rằng : 2 2 2 2 2 a b c d e a(b c d e)+ + + + + + + Bài làm : Xét hiệu 2 2 2 2 2 (a b c d e ) a(b c d e)+ + + + + + + = 2 2 2 2 2 2 2 2 a a a a ab b ac c ad d ae e 4 4 4 4 + + + + + + + ữ ữ ữ ữ ữ ữ ữ ữ = 2 2 2 2 a a a a b c d e 0 2 2 2 2 + + + ữ ữ ữ ữ Vậy: 2 2 2 2 2 a b c d e a(b c d e)+ + + + + + + dấu = xảy ra khi a b c d e 2 = = = = *) Bài tập 4: Với mọi số : x, y, z chứng minh rằng : x 2 + y 2 + z 2 +3 2(x + y + z) Bài làm : Ta xét hiệu : H = x 2 + y 2 + z 2 +3 - 2( x + y + z) = x 2 + y 2 + z 2 +3 - 2x - 2y - 2z = (x 2 - 2x + 1) + (y 2 - 2y + 1) + (z 2 - 2z + 1) = (x - 1) 2 + (y - 1) 2 + (z - 1) 2 Do (x - 1) 2 0 với mọi x (y - 1) 2 0 với mọi y (z - 1) 2 0 với mọi z => H 0 với mọi x, y, z Hay x 2 + y 2 + z 2 +3 2(x + y + z) với mọi x, y, z . Dấu bằng xảy ra <=> x = y = z = 1. *) Bài tập 5: Chứng minh rằng với mọi x, y ta đều có : x 4 + y 4 xy 3 + x 3 y Bài làm : Xét hiệu : x 4 + y 4 ( xy 3 + x 3 y ) = ( x 4 xy 3 ) + ( y 4 x 3 y ) = x( x 3 y 3 ) + y( y 3 x 3 ) = ( x y )( x 3 y 3 ) = ( x y ) 2 ( x 2 + xy + y 2 ) = ( x y ) 2 ( ) 2 2 3 1 x y y 2 4 + + 0 Vậy bất đẳng thức đã cho là đúng . Dấu = xảy ra khi x = y . *) Bài tập 6: Cho các số dơng a , b thoả mãn điều kiện a + b = 1 Chứng minh rằng : ( 1 + 1 a )( 1 + 1 b ) 9 (1) Bài làm : Ta có ( a + 1 a .)( b + 1 b ) 9 ab + a + b + 1 9 ab ( vì a,b > 0 ) a + b + 1 8 ab 2 8 ab 1 4 ab ( vì a + b = 1 ) ( a + b ) 2 4 ab ( a b ) 2 0 (2) 3 Bất đẳng thức (2) đúng, các phép biến đổi là tơng đơng. Vậy bất đẳng thức (1) đợc chứng minh. Xảy ra dấu đẳng thức khi và chỉ khi a = b IV. Hớng dẫn về nhà *) Giải bài tập 7: Chứng minh bất đẳng thức : 2 22 22 + + baba Hớng dẫn: Xét hiệu : H = 2 22 22 + + baba = 4 )2()(2 2222 bababa +++ = 0)( 4 1 )222( 4 1 22222 =+ baabbaba . Với mọi a, b . Dấu '' = '' xảy ra khi a = b . ******************************* Học Học - Nữa Học - Mãi Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t2> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng cố định nghĩa và các tính chất của bất đẳng thức - Nắm đợc định nghĩa và một số tính chất bất đẳng thức. Biết vận dụng các tính chất của bất đẳng thức để chứng minh một số bất đẳng thức cơ bản. Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò - GV: Nghiên cứu kĩ giáo án - HS: Ôn tập lại định nghĩa và các tính chất của bất đẳng thức C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Viết các tính chất của bất đẳng thức ?. Giải bài tập 46/SBT - HS2: Giải bài tập 7 (tiết trớc) - HS3: Giải bài tập 45/SBT 4 III. Bài mới 2. Phơng pháp 2 : Dùng tính chất của bất đẳng thức *) Bài tập 1 : Cho hai số x, y thoả mãn điều kiện x + y = 2. Chứng minh x 4 + y 4 2 Bài làm : - Ta có: (x 2 y 2 ) 2 0 (với mọi x, y) x 4 + y 4 2x 2 y 2 x 4 + y 4 + x 4 + y 4 x 4 + 2x 2 y 2 + y 4 2(x 4 + y 4 ) (x 2 + y 2 ) 2 (1) dấu = xảy ra khi x = y hoặc x = - y. - Mặt khác, ta có: (x y) 2 0 (với mọi x, y) x 2 + y 2 2xy 2(x 2 + y 2 ) (x + y) 2 x 2 + y 2 2 (2) (vì x + y = 2) dấu = xảy ra khi x = y. - Từ (1) và (2) x 4 +y 4 2 dấu= xảy ra khi x = y = 1. *) Bài tập 2 : Chứng minh rằng 2 2 2 3 a b c a b c 4 + + + Bài làm : Ta có: 2 2 1 1 a 0 a a 2 4 + + ữ 2 2 1 1 b 0 b b 2 4 + + ữ 2 2 1 1 c 0 c c 2 4 + + ữ Cộng vế theo vế của các bất đẳng thức trên ta đợc: 2 2 2 1 1 1 a b c a b c 4 4 4 + + + + + 2 2 2 3 a b c a b c 4 + + + dấu = xảy ra khi a = b = c = 1 2 . *) Bài tập 3 : Cho 0 < a, b, c, d < 1 . Chứng minh rằng : (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d . Bài làm : Ta có : (1 - a)(1 - b) = 1 - a - b + ab Do a, b > 0 nên ab > 0 => (1 - a)(1 - b) > 1 - a - b . Do c < 1 nên 1 - c > 0 => (1 - a)(1 - b)(1 - c) > (1 - a - b)(1 - c) (1 - a)(1 - b)(1 - c) > 1 - a - b - c + ac + bc . Do 0 < a, b, c, d <1 nên 1 - d > 0 ; ac + bc > 0 ; ad + bd + cd > 0 =>(1 - a)(1 - b)(1 - c) > 1 - a - b - c => (1 - a)(1 - b)(1 - c)(1 - d) > (1 - a - b - c)(1 - d) => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d + ad + bd + cd 5 => (1 - a)(1 - b)(1 - c)(1 - d) > 1 - a - b - c - d . *) Bài tập 4 : Cho 0 < a, b, c < 1 . Chứng minh rằng : 2a 3 + 2b 3 + 2c 3 < 3 + a 2 b + b 2 c + c 2 a Bài làm : Do 0 < a, b < 1 => a 3 < a 2 < a < 1 ; b 3 < b 2 < b < 1 ; ta có : (1 - a 2 )(1 - b) > 0 => 1 + a 2 b > a 2 + b => 1 + a 2 b > a 3 + b 3 hay a 3 + b 3 < 1 + a 2 b . Tơng tự : b 3 + c 3 < 1 + b 2 c ; c 3 + a 3 < 1 + c 2 a . => 2a 3 + 2b 3 + 2c 3 < 3 + a 2 b + b 2 c + c 2 a *) Bài tập 5 : Từ bất đẳng thức ( ) 2 a b 0 , hãy chứng minh các bất đẳng thức sau : +) ( ) 2 2 2 a b a b 2 2 + + +) ( ) 2 a b 4ab + +) ( ) 2 a b ab 2 + +) ( ) 2 1 1 (a,b 0) 4ab a b > + +) 1 1 4 (a,b 0) a b a b + > + +) 2 2 a b 2(a b ) (a,b 0)+ + > (BĐT Bu-nhi-a-côp-xki) +) a b 2 ab (a,b 0)+ > (BĐT cô-si) *) Học sinh tự luyện tại lớp các bài tập sau: *) Bài tập 6 : Chứng minh các bất đẳng thức sau: a) 3(m + 1) + m < 4(2 + m) b) b(b + a) ab c) a(a b) b(a b) d) 2 c 1 c 1 2 + *) Bài tập 7 : Cho các số dơng a, b, c có tích bằng 1. Chứng minh rằng (a + 1)(b + 1)(c + 1) 8 *) Bài tập 8 : Chứng minh các bất đẳng thức: a) (x + y + z) 2 3(xy + yz + xz) b) c 2 c 1 2 + *) Bài tập 9 : Cho a, b là hai số thoả mãn điều kiện a + b = 2. Chứng minh rằng a 4 + b 4 a 3 + b 3 . *) Bài tập 10 : Cho hai số x, y thoả mãn điều kiện x + y = 1. Chứng minh: a) x 2 + y 2 1 2 b) 1 8 x 4 + y 4 IV. Hớng dẫn về nhà - Xem lại các bài đã chữa 6 - Làm tiếp các bài tập từ 6 đến 10 ******************************* Học Học - Nữa Học - Mãi Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t3 > A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh biết cách chứng minh bất đẳng thức bằng phơng pháp biến đổi tơng đơng và dùng bất đẳng thức quen thuộc nh Cô -si, Bu-nhi-a-côp -xki hoặc bất đẳng thức giá trị tuyệt đối Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán. B/Chuẩn bị của thầy và trò - GV: - HS: C/Tiến trình bài dạy I. Tổ chức II. Kiểm tra bài cũ - HS1: Giải bài tập 10 câu a - HS2: Giải bài tập 10 câu b - HS2: Giải bài tập 9 III. Bài mới 3. Phơng pháp 3 : Dùng phép biến đổi tơng đơng - Quá trình chuyển từ một bất đẳng thức sang một bất đẳng thức tơng đơng gọi là một phép biến đổi tơng đơng . - Biến đổi bất đẳng thức cần chứng minh tơng đơng với bất đẳng thức đúng hoặc bất đẳng thức đã đợc chứng minh là đúng . - Khi có hai bất đẳng thức tơng đơng , nếu một bất đẳng thức đúng thì bất đẳng thức kia cũng đúng . Ta có sơ đồ : A > B A 1 > B 1 A 2 > B 2 A n > B n *) Bài tập 1 : Cho a, b là hai số dơng có tổng bằng 1 . Chứng minh rằng : 3 4 1 1 1 1 + + + ba Giải: Dùng phép biến đổi tơng đơng 3(a + 1 + b + 1) 4(a + 1) (b + 1) 7 9 4(ab + a + b + 1) (vì a + b = 1) 9 4ab + 8 1 4ab (a + b) 2 4ab Bất đẳng thức cuối đúng . Suy ra điều phải chứng minh . *) Bài tập 2 : Cho a, b, c là các số dơng thoả mãn : a + b + c = 4 Chứng minh rằng : (a + b)(b + c)(c + a) a 3 b 3 c 3 Giải: Từ : (a + b) 2 4ab , (a + b + c) 2 = [ ] cbacba )(4)( 2 +++ => 16 4(a + b)c => 16(a + b) 4(a + b) 2 c 16 abc => a + b abc Tơng tự : b + c abc c + a abc => (a + b)(b + c)(c + a) a 3 b 3 c 3 *) Bài tập 3 : Chứng minh bất đẳng thức : 3 33 22 + + baba ; trong đó a > 0 ; b > 0 Giải : Dùng phép biến đổi tơng đơng : Với a > 0 ; b > 0 => a + b > 0 3 33 22 + + baba + + + 2 ).( 2 22 ba baba ba . 2 2 + ba a 2 - ab + b 2 2 2 + ba 4a 2 - 4ab + 4b 2 a 2 + 2ab + b 2 3a 2 - 6ab + 3b 2 = 3(a 2 - 2ab + b 2 ) 0 ( ) 2 3 a b 0 Bất đẳng thức cuối cùng đúng ; suy ra : 3 33 22 + + baba Dấu = xảy ra a = b *) Bài tập 4 : Cho 2 số a, b thoả mãn a + b = 1 . CMR a 3 + b 3 + ab 2 1 Giải : Ta có : a 3 + b 3 + ab 2 1 <=> a 3 + b 3 + ab - 2 1 0 <=> (a + b)(a 2 - ab + b 2 ) + ab - 2 1 0 <=> a 2 + b 2 - 2 1 0 . Vì a + b = 1 <=> 2a 2 + 2b 2 - 1 0 <=> 2a 2 + 2(1-a) 2 - 1 0 ( vì b = a -1 ) <=> 4a 2 - 4a + 1 0 <=> ( 2a - 1 ) 2 0 8 Bất đẳng thức cuối cùng đúng . Vậy a 3 + b 3 + ab 2 1 Dấu '' = '' xảy ra khi a = b = 2 1 *) Bài tập 5 : Với a > 0 , b > 0 . Chứng minh bất đẳng thức : a b a a b b Giải : Dùng phép biến đổi tơng đơng : a b a a b b ( )() baabbbaa ++ 0 [ ] 0)()()( 33 ++ baabba 0)())(( +++ baabbababa 0)2)(( ++ bababa 2 ( a b )( a b ) 0+ Bất đẳng thức cuối đúng ; suy ra : a b a a b b *) Bài tập 6 : Cho các số dơng a , b thoả mãn điều kiện a + b = 1 Chứng minh rằng : ( 1 + 1 a )( 1 + 1 b ) 9 (1) Giải: Ta có ( a + 1 a .)( b + 1 b ) 9 ab + a + b + 1 9 ab ( vì a,b > 0 ) a + b + 1 8 ab 2 8 ab ( vì a + b = 1 ) ( a + b ) 2 4 ab ( a b ) 2 0 (2) Bất đẳng thức (2) đúng các phép biến đổi là tơng đơng vậy bất đẳng thức (1) đợc chứng minh. Xảy ra dấu đẳng thức a = b . 4. Phơng pháp 4 : Dùng các bất đẳng thức quan trọng và quen thuộc - Kiến thức : Dùng các bất đẳng thức quen thuộc nh : Cô-si , Bu-nhi-a-côp-xki , bất đẳng thức chứa dấu giá trị tuyệt đối để biến đổi và chứng minh , - Một số hệ quả từ các bất đẳng thức trên : x 2 + y 2 2xy Với a, b > 0 , 2+ a b b a *) Bài tập 7 : Giả sử a, b, c là các số dơng , chứng minh rằng: 2> + + + + + ba c ac b cb a Giải áp dụng BĐT Cauchy , ta có : a + (b + c) )(2 cba + cba a cb a ++ + 2 9 Tơng tự ta thu đợc : cba b ac b ++ + 2 , cba c ba c ++ + 2 Dấu bằng của ba BĐT trên không thể đồng thời xảy ra , vì khi đó có : a = b + c , b = c + a , c = a + b nên a + b + c = 0 ( trái với giả thiết a, b, c đều là số dơng ). Từ đó suy ra : 2> + + + + + ba c ac b cb a *) Bài tập 8 : Cho x , y là 2 số thực dơng thoả mãn : x 2 + y 2 = 22 11 xyyx + Chứng minh rằng : 3x + 4y 5 Giải : áp dụng bất đẳng thức Bunhiacôpxki ta có : (x 2 + y 2 ) 2 = ( 22 11 xyyx + ) 2 ( 0 x 1< ; 0 y 1< ) (x 2 + y 2 )(1 - y 2 + 1 - x 2 ) => x 2 + y 2 1 Ta lại có : (3x + 4y) 2 (3 2 + 4 2 )(x 2 + y 2 ) 25 => 3x + 4y 5 Đẳng thức xảy ra 2 2 x y 1 0 x 1,0 y 1 y x 3 4 + = < < = = = 5 4 5 3 y x *) Bài tập 9 : Cho a, b, c 0 ; a + b + c = 1 . Chứng minh rằng : a, 6+++++ accbba b, 5,3111 <+++++ cba Giải a, áp dụng bất dẳng thức Bunhiacôpxki với 2 bộ 3 số ta có : ( ) ( ) ( ) ( ) ( ) ++++++++++++ 222 1111.1.1. accbbaaccbba => ( ) 2 a b b c c a 3.(2a 2b 2c) 6+ + + + + + + = => 6+++++ accbba . Dấu '' = '' xảy ra khi : a = b = c = 3 1 b, áp dụng bất đẳng thức Côsi , ta có : ( ) (a 1) 1 a a 1 a 1 .1 1 2 2 + + + = + = + Tơng tự : 1 2 1 ++ b b ; 1 2 1 ++ c c Cộng từng vế của 3 bất đẳng thức trên ta đợc : 10 [...]... thức trung gian a m b m > a n b n với a > b > 0 và m > n a +b a +b Nên khi m = 199 6, n = 199 5 thì bất đẳng thức phải chứng minh luôn đúng a 199 6 b 199 6 a 199 5 b 199 5 > a 199 6 + b 199 6 a 199 5 + b 199 5 9 Phơng pháp 8: Dùng phép quy nạp toán học - Kiến thức : Để chứng minh một bất đẳng thức đúng với n n0 bằng phơng pháp quy nạp toán học , ta tiến hành : + Kiểm tra bất đẳng thức đúng với n = n0 + Giả sử bất đẳng... Côsi ) x y z z Mà : 0 < x + y + z 1 nên suy ra 1 1 1 + + 9 x y z 8 Phơng pháp 7: Dùng bất đẳng thức tổng quát chứa luỹ thừa các số tự nhiên *) Bài tập : Cho a > b > 0 CMR: a 199 6 b 199 6 a 199 5 b 199 5 > a 199 6 + b 199 6 a 199 5 + b 199 5 Giải : Để chứng minh bất đẳng thức trên , ta chứng minh bất đẳng thức trung gian sau: m m n n Nếu a > b > 0 và m,n là hai số tự nhiên mà m>n thì a m b m > a n b n (1) a +b... ******************************* Học Học - Nữa Học - Mãi Chủ đề 1 Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh biết cách chứng minh bất đẳng thức bằng phơng pháp sử dụng các bất đẳng thức về ba cạnh của tam giác Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất... ******************************* Học Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình 18 Học - Nữa Học - Mãi Chủ đề 1 A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh biết cách chứng minh bất đẳng thức bằng phơng pháp phản chứng, phơng pháp đổi biến, dùng bất đẳng thức tổng quát chứa lũy thừa các số tự nhiên, phơng pháp quy nạp toán học Kĩ năng - Rèn luyện kĩ năng... thẳng A/Mục tiêu Học xong buổi học này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng cố tính chất đồ thị các hàm số y = ax (a 0) và y = ax + b (a 0), vị trí tơng đối của hai đờng thẳng, cách tính góc tạo bởi đờng thẳng y = ax + b (a 0) và trục Ox - Học sinh áp dụng kiến thức đã học giải đợc các bài tập liên quan Kĩ năng - Rèn khả năng t duy, lập luận, trình bày Thái độ - Học sinh tích cực,... nhất của biểu thức P = Học Học - Nữa Học - Mãi Chủ đề 3 Buổi 2 ( x + a ) ( x + b) x Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Bất đẳng thức và cực trị đại số Luyện tập A/Mục tiêu Học xong buổi học này HS cần phải đạt đợc : Kiến thức - Học sinh sử dụng thành thạo bất đẳng thức cô - si để tìm giá trị lớn nhất hoặc nhỏ nhất của một biểu thức đại số Kĩ năng - Rèn khả năng sáng tạo, vận dụng kiến... = c = 1 3 Học Học - Nữa Học - Mãi ******************************* Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình 29 Chủ đề 5 Buổi 1 Hàm số bậc nhất Hàm số bậc nhất - định nghĩa và tính chất A/Mục tiêu Học xong buổi học này HS cần phải đạt đợc : Kiến thức - Củng cố định nghĩa và tính chất của hàm số bậc nhất Kĩ năng - Rèn kĩ năng áp dụng kiến thức vào giải bài tập Thái độ - Học sinh tích cực,... ******************************* Học Học - Nữa Học - Mãi Chủ đề 3 Buổi 1 Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Bất đẳng thức và cực trị đại số Dùng bất đẳng thức để tìm cực trị của một biểu thức A/Mục tiêu Học xong buổi học này HS cần phải đạt đợc : Kiến thức - Học sinh biết dùng bất đẳng thức để tìm giá trị lớn nhất hoặc nhỏ nhất của một biểu thức đại số Kĩ năng - Rèn khả năng sáng tạo, vận dụng... 2 9 a + 2bc b + 2ca c + 2ab 2 Giải : Đặt : a2 + 2bc = x ; b2 + 2ca = y ; c2 + 2ab = z Khi đó : x + y + z = a2 + 2bc + b2 + 2ca + c2 + 2ab = (a + b + c)2 1 Bài toán trở thành : Cho x, y, z > 0 , x + y + z 1 Chứng minh rằng : 21 1 1 1 + + 9 x y z Ta chứng minh đợc : (x + y + z)( 9 x+y+z => 1 + 1 + 1 x y 1 1 1 + + ) 9 (Theo bất đẳng thức Côsi ) x y z z Mà : 0 < x + y + z 1 nên suy ra 1 1 1 + + 9. .. nhiên, phơng pháp quy nạp toán học Kĩ năng - Rèn luyện kĩ năng biến đổi và rèn luyện khả năng t duy toán học thông qua chứng minh các bất đẳng thức Thái độ - Rèn luyện tính cẩn thận và chính xác, biết lựa chọn giải pháp hợp lý khi giải toán B/Chuẩn bị của thầy và trò - GV: - HS: C/Tiến trình bài dạy I Tổ chức II Kiểm tra bài cũ - HS1: Cho tam giác ABC Hãy viết các bất đẳng thức về ba cạnh của tam . Học Học - Nữa Học - Mãi GIO N BI DNG HC SINH GII I S 9 Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t1> A/Mục tiêu Học xong tiết này HS cần. . ******************************* Học Học - Nữa Học - Mãi Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t2> A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh đợc củng. 10 ******************************* Học Học - Nữa Học - Mãi Trung Văn Đức - THCS Lai Thành - Kim Sơn - Ninh Bình Chủ đề 1 <t3 > A/Mục tiêu Học xong tiết này HS cần phải đạt đợc : Kiến thức - Học sinh biết
- Xem thêm -

Xem thêm: GIÁO ÁN DẠY HỌC SINH GIỎI TOÁN 9, GIÁO ÁN DẠY HỌC SINH GIỎI TOÁN 9, GIÁO ÁN DẠY HỌC SINH GIỎI TOÁN 9

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay