BÀI TẬP TOÁN CAO CÓ LỜI GIẢI

86 1,791 1
  • Loading ...
1/86 trang

Thông tin tài liệu

Ngày đăng: 18/10/2014, 12:05

48 trang bài tập chọn lọc có lời giải, giúp sinh viên nắm được nội dung và kiến thức chương trình. Tài liệu đáp ứng nhu cầu học của sinh viên nhằm chuẩn bị cho kỳ thi giữa kỳ cũng như kết thúc học phần. . ]. n i i i f t a t K t     Khi đó, 1 1 ( ) , ( ) n n i i i i i i f a f A a A         Và     1 1 1 1 ( ) ( ) n n n n i i i i i i i i i i i i f A v a A v a A v a v a v f v . i f A a A f B a B       và 1 1 1 1 1 1 1 1 1 1 ( ) ( ) ( ) ( ) ( ) k k k i i i i i i i i i k k i i i i i i f A a A a PBP a PB P P a B P P a B P Pf B P                  . b) Do A đồng dạng v i B nên tồn t i ma trận P khả nghịch để 1 A PBP   . Giả sử 1 ( ) [ ] k i i i f t a t K t     . Khi đó 1 1 ( ) , ( ) k k i i i i i i f A a A f B a B   
- Xem thêm -

Xem thêm: BÀI TẬP TOÁN CAO CÓ LỜI GIẢI, BÀI TẬP TOÁN CAO CÓ LỜI GIẢI, BÀI TẬP TOÁN CAO CÓ LỜI GIẢI, * Đa thức đặc trưng  của ma trận  là . Giải phương trình đặc trưng , ta nhận được các nghiệm phân biệt 2,3. Do đó các giá trị riêng phân biệt của ma trận  là ., c) Do  và  đồng dạng nên . Khi đó  khác 0 khi và chỉ khi  khác 0. Do đó  khả nghịch khi và chỉ khi  khả nghich., với mọi j cố định. Định nghĩa ma trận chuyển vị của A, kí hiệu adj(A).

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay