kỹ thuật đo nơtron truyền qua trong nghiên cứu số liệu hạt nhân và ứng dụng

22 433 1
kỹ thuật đo nơtron truyền qua trong nghiên cứu số liệu hạt nhân và ứng dụng

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

0 BỘ GIÁO DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM ___________________ TRẦN TUẤN ANH KỸ THUẬT ĐO NƠTRON TRUYỀN QUA TRONG NGHIÊN CỨU SỐ LIỆU HẠT NHÂN VÀ ỨNG DỤNG CHUYÊN ĐỀ NGHIÊN CỨU SINH NGƯỜI HƯỚNG DẪN KHOA HỌC: 1. PGS. TS. VƯƠNG HỮU TẤN 2. TS. PHẠM ĐÌNH KHANG ĐÀ LẠT – 2012 1 MỤC LỤC MỞ ĐẦU 2 CHƯƠNG 1 3 TỔNG QUAN 3 1.1. Đo tiết diện nơtron toàn phần bằng phương pháp đo nơtron truyền qua 3 1.2. Hình học và sai số của thí nghiệm 4 CHƯƠNG 2 6 HỆ ĐO NƠTRON TOÀN PHẦN 6 2.1 Cấu trúc và các thành phần của hệ đo nơtron 6 2.2 Cấu tạo và đặc trưng của ống đếm prôton giật lùi LND-281 6 2.3. Xác định phổ năng lượng nơtron bằng phổ kế prôton giật lùi 7 2.4. Chuẩn năng lượng cho hệ phổ kế nơtron 8 THỰC NGHIỆM 10 3.1. Kiểm tra đặc trưng của hệ đo nơtron tại kênh số 4 10 3.1.1. Xác định vùng hoạt động của cao thế 10 3.1.2. Đo phổ phân bố proton giật lùi (Mode MCA) 10 3.1.3. Đo tốc độ đếm nơtron (Mode TSCA) 12 3.2. Thực nghiệm đo tiết diện nơtron toàn phần của 12 C và 238 U trên các dòng 12 nơtron phin lọc 54 keV và 148 keV. 12 3.2.1. Bố trí phin lọc, chuẩn trực dòng và chuẩn bị mẫu 12 3.2.2. Xử lý số liệu đo tiết diện nơtron toàn phần 14 3.2.3. Kết quả và thảo luận 17 KẾT LUẬN 20 TÀI LIỆU THAM KHẢO 21 2 MỞ ĐẦU Phép đo nơtron truyền qua cho phép xác định tiết diện nơtron toàn phần. Trong vùng năng lượng nơtron từ vài chục đến vài trăm keV số liệu về tiết diện nơtron toàn phần là rất quan trọng đối với việc tính toán và thiết kế lò phản ứng hạt nhân, đặc biệt là các lò phản ứng nơtron nhanh - một loạt lò phân hạch của tương lai vì rằng năng lượng nơtron trung bình của các lò này là nằm ở vùng năng lượng keV. Xét về mặt nghiên cứu vật lý hạt nhân cơ bản thì phép đo tiết diện nơtron toàn phần phụ thuộc vào năng lượng cũng là một trong các phương pháp xác định hàm lực đối với các nơtron sóng s, p, d. Kỹ thuật phin lọc nơtron trên lò phản ứng cho phép nhận được các dòng nơtron chuẩn đơn năng trong dải keV với cường độ cao hơn so với máy phát nơtron, vì vậy đây là một công cụ rất đắc lực trong nghiên cứu hạt nhân cơ bản. Kỹ thuật đo nơtron truyền qua được áp dụng để đo tiết diện nơtron toàn phần trên các dòng nơtron phin lọc, xác định chỉ số Hydro (Hydrogen Index) trong các mẫu khung đá dầu khí, kiểm soát dòng nơtron để hiệu chính sự thăng giáng của thông lượng nơtron trong quá trình chiếu mẫu, đo và chuẩn liều nơtron trong lĩnh vực an toàn bức xạ, các thí nghiệm về vật lý nơtron phục vụ cho tính toán che chắn bảo vệ an toàn bức xạ. 3 CHƯƠNG 1 TỔNG QUAN 1.1. Đo tiết diện nơtron toàn phần bằng phương pháp đo nơtron truyền qua Trên Hình 1.1 là sơ đồ thí nghiệm đo tiết diện nơtron toàn phần theo phương pháp đo nơtron truyền qua [1]. Hình 1.1: Sơ đồ nguyên lý thí nghiệm đo nơtron truyền qua. Nếu ta đặt một mẫu vật là một bản phẳng trên dòng nơtron được chuẩn trục tốt thì một số nơtron sẽ bị hấp thụ tại các hạt nhân của mẫu. Từ N 0 nơtron ban đầu của dòng sẽ chỉ còn: xn t eNN σ 0 0 − = (1.1) nơtron, ở đây n 0 là số hạt nhân bia trong 1 cm 3 vật chất; x là độ dày của mẫu; σ t là tiết diện tương tác toàn phần. Tỷ số giữa số nơtron truyền qua mẫu và số nơtron ban đầu được gọi là độ truyền qua của mẫu và ký hiệu là T: xn t e N N T σ 0 0 − == (1.2) Từ đó:       = Txn t 1 ln 1 0 σ (1.3) Vì số đếm của đầu dò tỷ lệ với số nơtron đi vào đầu dò nên có thể xác định độ truyền qua của mẫu thông qua tỷ số giữa số nơtron truyền qua trong trường hợp có mẫu và không có mẫu mà không qua tỷ số các giá trị tuyệt đối của thông lượng. b oo b aa aa T − − = (1.4) Ở đây a 0 và a là tốc độ đếm nơtron của dòng nơtron trực tiếp và dòng truyền qua mẫu, a 0 b và a b là phông tương ứng. 4 Khi đó không cần đo cả giá trị tuyệt đối của thông lượng nơtron lẫn hiệu suất ghi của đầu dò mà vẫn xác định được giá trị tuyệt đối của tiết diện tương tác toàn phần của nơtron với hạt nhân của chất được nghiên cứu. Biểu thức (1.1) chỉ chính xác trong trường hợp nếu nơtron tán xạ không đi tới đầu dò, tức là trong điều kiện chuẩn trực dòng nơtron tốt, đầu dò đặt xa nguồn và cả kích thước đầu dò lẫn mẫu đều giảm đến cực tiểu khả dĩ. Trong các thí nghiệm truyền qua cần chú ý đến phông nơtron tán xạ từ các vật liệu xung quanh (ví dụ như tường phòng thí nghiệm) hoặc trong trường hợp ngược lại, khi đó tốc độ đếm N với mẫu hấp thụ mạnh có thể có sai số lớn (sai số thống kê). Việc đo phông được thực hiện bằng cách dùng vật liệu hấp thụ nơtron đặt giữa mẫu và đầu dò nhằm loại trừ tất cả những nơtron của dòng sơ cấp. Khi thỏa những điều kiện trên, phép đo tiết diện nơtron toàn phần σ t sẽ có kết quả chính xác. Điều đặc biệt của phương pháp này là nó cho giá trị tiết diện nơtron toàn phần tuyệt đối. Các thí nghiệm theo phương pháp đo nơtron truyền qua chỉ có ý nghĩa đối với dòng nơtron đơn năng. Nếu dòng nơtron có phổ năng lượng rộng J(E), việc lý giải kết quả trở nên không khả dĩ do sự thay đổi phổ của dòng nơtron đi qua mẫu sẽ ảnh hưởng tới độ nhạy của đầu dò. Biểu thức (1.1) trở thành: xn t eNN σ 0 0 − = (1.5) với ∫ ∫ = dEEJ dEEJE t t )( )()( σ σ (1.6) chỉ áp dụng được khi mẫu đủ mỏng [n 0 σ t (E) << 1] và hiệu suất ghi của đầu dò không phụ thuộc vào năng lượng. Chỉ trong điều kiện đó, hệ thức (1.5) mới được áp dụng để tính tiết diện hiệu dụng được lấy trung bình theo phổ nơtron tới. 1.2. Hình học và sai số của thí nghiệm Ba yếu tố cơ bản để đo tiết diện bằng phương pháp đo nơtron truyền qua là nguồn nơtron, mẫu và đầu dò cần phải được đặt trên một đường thẳng. Mẫu cần 5 che hoàn toàn dòng nơtron trực tiếp từ nguồn tới đầu dò. Đây là yêu cầu bắt buộc để xác định kích thước tối thiểu của mẫu. Nếu kích thước mẫu lớn thì sẽ gây tán xạ ở biên mẫu và làm số nơtron đến đầu dò tăng lên. Có thể đặt mẫu ở vị trí bất kỳ trên đoạn thẳng nguồn - đầu dò, tuy nhiên vị trí tốt nhất là ở chính giữa. Đặt mẫu ở vị trí này thì bổ chính do tán xạ là cực tiểu. Ngoài ra cần bố trí sao cho khoảng cách nói trên đủ lớn để góc nhìn đầu dò từ nguồn là cực tiểu (lúc đó bổ chính do tán xạ là nhỏ nhất). Khi tăng khoảng cách nguồn - đầu dò thì sẽ làm tốt được hình học bố trí thực nghiệm nhưng lại làm giảm tốc độ đếm của đầu dò. Vì vậy cần chọn ra vị trí tối ưu. Độ dày mẫu cũng được lựa chọn để sao cho sai số tương đối là nhỏ nhất. Ta có: )ln( TTT t t ∆= ∆ σ σ (1.7) Như vậy từ phép đo có mẫu, không mẫu và phông với cùng một thời gian và không có phông nơtron tán xạ thì sai số tương đối trong phép đo nơtron truyền qua là: 0 0 2 2 2 2 0 0 b b b b a a T a a T a a a a   ∆     ∆ ∆ ∆ ∆   = + + +                   (1.8) 6 CHƯƠNG 2 HỆ ĐO NƠTRON TOÀN PHẦN 2.1 Cấu trúc và các thành phần của hệ đo nơtron Các khối điện tử cần cho hệ đo nơtron bao gồm các khối sau: khối tiền khuếch đại, khối cao thế, khối khuếch đại, khối Multi Port ghép nối máy tính qua cổng USB (Hình 2.1). Trong đó, hệ đo nơtron này có thể hoạt động đồng thời được ở hai chế độ là: chế độ đo phổ biên độ xung (MCA) và chế độ đếm theo thời gian (TSCA). Hình 2.1: Sơ đồ khối của hệ đo nơtron 2.2 Cấu tạo và đặc trưng của ống đếm prôton giật lùi LND-281 [2] Sơ đồ cấu tạo của ống đếm LND-281 được mô tả trên Hình 2.2. Hình 2.2: Cấu tạo ống đếm proton giật lùi LND-281 Ống đếm LND-281 có dạng hình ống, vỏ bọc bằng thép không rỉ, đường kính 38.1cm, dài 208.8cm. Bên trong chứa hỗn hợp khí 4 2 2 CH H N + + với áp suất 4.2 atm. C ao thế hoạt động ổn định tốt nhất ở giá trị HV= +2700V Ưu điểm của ống đếm prôton giật lùi là có kích thước nhỏ, độ phân giải năng lượng tương đối tốt trong khoảng năng lượng rộng. Hơn nữa, số liệu phân bố năng lượng prôton thu được từ ống đếm này được khớp để thu được số liệu phân bố năng lượng nơtron tương ứng. Ống đếm LND-281 Tiền khuếch đại Khuếch đại Multi Port II Cao thế PC E Khuếch đại MCA TSCA USB T HV 7 Một ống đếm prôton giật lùi lý tưởng có tính đẳng hướng của phản ứng tán xạ đàn hồi n–p cho thấy đường đặc trưng vuông góc với năng lượng. Trên thực tế thì đường đáp tuyến của ống đếm không đạt được như lý tưởng do sự thay đổi của các hiệu ứng có quãng chạy hữu hạn trong vùng điện trường của ống đếm, hoặc là do sự không tuyến tính giữa năng lượng bị mất do ion hóa, nên cần phải thực hiện phép hiệu chỉnh trước khi lấy vi phân. Bên cạnh đó, còn tồn tại sự ảnh hưởng do phông bức xạ gamma, các tia gamma tương tác với thành ống đếm sinh ra các quang electron hoặc các electron Compton, các electron này có thể vào vùng nhạy của ống đếm gây ra sự ion hóa. Tuy nhiên, vì năng lượng riêng dE dx       của một electron bị tiêu tán rất nhỏ so với prôton, đối với một năng lượng đã cho nên các electron có quãng chạy là rất dài, kết quả các phôton đã gây ra xung lối ra của ống đếm với sự tăng chậm của thời gian so với prôton và phụ thuộc vào hướng quãng chạy của phôton trong ống đếm. Do đó, đã có sự khác biệt về dạng xung của tín hiệu giữa các sự kiện của prôton và tia gamma. Dựa vào sự khác biệt này, có thể sử dụng các bộ lọc dạng xung để hạn chế sự ảnh hưởng của thành phần gamma. 2.3. Xác định phổ năng lượng nơtron bằng phổ kế prôton giật lùi Trong thực nghiệm vật lý hạt nhân, năng lượng nơtron được xác định bằng hai cách: cách thứ nhất là sử dụng phản ứng hạt nhân (do nơtron gây nên) sinh ra các hạt mang điện như trong các phản ứng 10 B(n, α ) 7 Li; 3 He(n, p) 3 H ; 14 N(n, p) 14 C hoặc nơtron tán xạ trên prôton. Cách đo thứ hai là sử dụng các phản ứng của nơtron tạo nên các hạt nhân phân rã phóng xạ β + , β - hoặc phân rã γ rồi có thể đo các bức xạ này sau khi kết thúc phép chiếu trong trường nơtron. Sử dụng cách thứ nhất để xác định năng lượng nơtron trong trường hợp đo bằng ống đếm prôton giật lùi LND-281. Trong tán xạ đàn hồi với nơtron, năng lượng E A của hạt nhân giật lùi được biểu diễn bằng công thức sau: E A = α .E n .cos 2 θ , (2.1) Trong đó: α = 2 )1A( A4 + . 8 - A : số khối của hạt nhân, - E n : năng lượng của nơtron, - θ : góc tán xạ so với phương bay của nơtron trong hệ toạ độ phòng thí nghiệm. Nếu xác định được E A ta sẽ xác định được E n . Nếu 1 α = (hạt nhân là prôton) thì cực đại của E A trùng cực đại của E n . Lúc này năng lượng E p của prôton sẽ nhận các giá trị từ 0 (góc θ = 90 0 ) cho đến E n (góc θ = 0 0 ) với xác suất như nhau. Nói một cách khác phổ prôton được mô tả bằng hệ thức: ( ) 0 p p p p p dE E E f E dE E E E  ≤  =   >  (2.2) Nếu dòng nơtron tương tác với hợp chất có chứa hyđrô có phân bố năng lượng là ( ) E φ thì phổ prôton giật lùi được viết bằng hệ thức sau: ∫ σ= max E p E Hp E dE )E()E(Jconst)E(f . (2.3) Do đó: ( ) E φ ∼ ( ) ( ) p p H p E E df E E E dE σ = . (2.4) Trong đó: - ( ) p f E : phổ phân bố năng lượng prôton giật lùi, - ( ) H E σ : tiết diện tán xạ đàn hồi của hyđrô [cm 2 ]. Biểu thức (2.4) rất quan trọng khi sử dụng proton giật lùi để đo phổ nơtron, nếu đồng thời đo được E p và θ trong một sự kiện tán xạ của nơtron thì có thể xác định được năng lượng của nơtron. Nếu phép đo chỉ thu được năng lượng của proton giật lùi thì có thể xác định được phổ năng lượng của nơtron bằng cách vi phân phân bố năng lượng của prôton giật lùi. 2.4. Chuẩn năng lượng cho hệ phổ kế nơtron Phương pháp chuẩn năng lượng cho hệ phổ kế nơtron là sử dụng một lượng nhỏ thành phần khí 14 N có trong thành phần khí của ống đếm ( 4 2 2 CH H N + + ) để 9 tạo ra phản ứng (n, p) với nơtron nhiệt [4]. Kết quả là prôton sinh ra từ tán xạ đàn hồi có năng lượng đơn năng bằng 615keV cho phản ứng 14 N(n, p) 14 C (Hình 2.3). Hình 2.3: Phổ phân bố proton giật lùi trên dòng nơtron nhiệt với phin lọc Silic. 0 100 200 300 400 500 600 700 800 1 10 100 1000 10000 100000 1000000 148keV 54keV 615keV from 14 N(n,p) 14 C Counts/Channel Channel [...]... cần thiết cho tính toán thiết kế lò phản ứng như các tham số cộng hưởng nơtron trung bình, tiết diện nơtron toàn phần trung bình, hệ số tự che chắn cộng hưởng, Hướng nghiên cứu này có thể tham gia vào các hoạt động của Cơ quan năng lượng nguyên tử quốc tế trong lĩnh vực số liệu hạt nhân và mở rộng hợp tác khu vực về các hoạt động khai thác lò phản ứng nghiên cứu Trong lĩnh vực đào tạo cán bộ đây cũng... g y ( k e V) Hình 3.9: Tiết diện nơtron toàn phần của 238U trong dải năng lượng keV 19 KẾT LUẬN Với thiết bị và phương pháp đo tiết diện nơtron toàn phần sử dụng ống đếm prôton giật lùi LND-281 được thực hiện trên các dòng nơtron phin lọc tại lò phản ứng hạt nhân Đà Lạt đã mở ra một hướng nghiên cứu rất có ý nghĩa thực tiễn trong việc cung cấp các số liệu hạt nhân trong vùng cộng hưởng không phân giải... hiệu ứng tự che chắn cộng hưởng lớn trong vùng năng lượng này nên tiết diện nơtron toàn phần đo được trong thực nghiệm là phụ thuộc vào độ dày của mẫu nghiên cứu [1, 8] Hình 3.10 và 3.11 biểu diễn sự phụ thuộc của tiết diện nơtron toàn phần đo được trong thực nghiệm phụ thuộc vào độ dày mẫu 12C, 238U đối với các dòng nơtron 54 keV và 148 keV Tại các năng lượng này hiệu ứng tự che chắn là khá yếu và độ... dòng trực tiếp và dòng truyền qua mẫu được đo bằng ống đếm proton giật lùi LND-281 Phông của các dòng trực tiếp và dòng truyền qua mẫu được xác định bằng cách chắn dòng nơtron bởi 10 cm polyethylene Như vậy để xác định tiết diện nơtron toàn phần cần phải tiến hành 4 lần đo a0, a0b, a, ab, đối với mỗi một độ dày mẫu, đó là phép đo nguồn, phông, nguồn truyền qua mẫu, phông truyền qua mẫu Trong trường hợp... dòng nơtron phin lọc 54 keV và 148 keV và hiệu chỉnh thăng giáng thông lượng nơtron trong quá trình thí nghiệm Các nguồn sai số chủ yếu ảnh hưởng đến kết quả đo được cho ở Bảng 3.5 Bảng 3.5: Các nguồn sai số Nguồn sai số Sai số (%) Tiết diện nơtron toàn phần của U 0.1(nhiệt), 0.38(54keV), 0.19(148keV) Thống kê . DỤC VÀ ĐÀO TẠO BỘ KHOA HỌC VÀ CÔNG NGHỆ VIỆN NĂNG LƯỢNG NGUYÊN TỬ VIỆT NAM ___________________ TRẦN TUẤN ANH KỸ THUẬT ĐO NƠTRON TRUYỀN QUA TRONG NGHIÊN CỨU SỐ LIỆU HẠT NHÂN VÀ ỨNG. lực trong nghiên cứu hạt nhân cơ bản. Kỹ thuật đo nơtron truyền qua được áp dụng để đo tiết diện nơtron toàn phần trên các dòng nơtron phin lọc, xác định chỉ số Hydro (Hydrogen Index) trong. TỔNG QUAN 1.1. Đo tiết diện nơtron toàn phần bằng phương pháp đo nơtron truyền qua Trên Hình 1.1 là sơ đồ thí nghiệm đo tiết diện nơtron toàn phần theo phương pháp đo nơtron truyền qua [1].

Ngày đăng: 30/08/2014, 01:04

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan