Tuyển tập các đề thi vào lớp 10 chuyên toán (có đáp án)

78 4,167 13
  • Loading ...
1/78 trang

Thông tin tài liệu

Ngày đăng: 23/08/2014, 09:15

Câu 3 (1,5 điểm).Cho là hai số thực dương thoả mãn điều kiện . Tìm giá trị nhỏ nhất của .Câu 4 (3,0 điểm).1. Cho tam giác ABC nội tiếp trong đường tròn tâm O. Gọi M, N, P lần lượt là điểm đối xứng của O qua các đường thẳng BC, CA, AB; H là trực tâm của tam giác ABC và L là trọng tâm tam giác MNP. Chứng minh rằng và ba điểm O, H, L thẳng hàng.2. Cho tứ giác lồi ABCD. Giả sử tồn tại một điểm M nằm bên trong tứ giác sao cho . Chứng minh đẳng thức sau: ,trong đó là số đo góc giữa hai đường thẳng AC và BD. Sở giáo dục và đào tạo HảI dơng Kỳ thi tuyển sinh lớp 10 THPT chuyên nguyễn trãi - Năm học 2009-2010 Môn thi : toán Thời gian làm bài: 150 phút Ngày thi 08 tháng 7 năm 2009 (Đề thi gồm: 01 trang) Câu I (2.5 điểm): 1) Giải hệ phơng trình: + + = + = 2 2 2 x y xy 3 xy 3x 4 2) Tìm m nguyên để phơng trình sau có ít nhất một nghiệm nguyên: + + + = 2 2 4x 4mx 2m 5m 6 0 Câu II (2.5 điểm): 1) Rút gọn biểu thức: ( ) ( ) + + = + 3 3 2 2 2 4 x 2 x 2 x A 4 4 x với 2 x 2 2) Cho trớc số hữu tỉ m sao cho 3 m là số vô tỉ. Tìm các số hữu tỉ a, b, c để: 3 2 3 a m b m c 0+ + = Câu III (2.0 điểm): 1) Cho đa thức bậc ba f(x) với hệ số của x 3 là một số nguyên dơng và biết =f(5) f(3) 2010 . Chứng minh rằng: f(7) f(1) là hợp số. 2) Tìm giá trị lớn nhất của biểu thức: = + + + 2 2 P x 4x 5 x 6x 13 Câu IV (2.0 điểm): Cho tam giác MNP có ba góc nhọn và các điểm A, B, C lần lợt là hình chiếu vuông góc của M, N, P trên NP, MP, MN. Trên các đoạn thẳng AC, AB lần lợt lấy D, E sao cho DE song song với NP. Trên tia AB lấy điểm K sao cho ã ã =DMK NMP . Chứng minh rằng: 1) MD = ME 2) Tứ giác MDEK nội tiếp. Từ đó suy ra điểm M là tâm của đờng tròn bàng tiếp góc DAK của tam giác DAK. Câu V (1.0 điểm): Trên đờng tròn (O) lấy hai điểm cố định A và C phân biệt. Tìm vị trí của các điểm B và D thuộc đờng tròn đó để chu vi tứ giác ABCD có giá trị lớn nhất. Hết Đề thi chính thức 1 H ớng dẫn chấm Câu Phần nội dung Điểm câu I 2,5 điểm 1) 1,5điểm + + = + = 2 2 2 x y xy 3 (1) xy 3x 4 (2) Từ (2) x 0. Từ đó 2 4 3x y x = , thay vào (1) ta có: 0.25 2 2 2 2 4 3x 4 3x x x. 3 x x + + = ữ 0.25 4 2 7x 23x 16 0 + = 0.25 Giải ra ta đợc 2 2 16 x 1 hoặc x = 7 = 0.25 Từ 2 x 1 x 1 y 1= = = ; 2 16 4 7 5 7 x x y 7 7 7 = = = m 0.25 Vậy hệ có nghiệm (x; y) là (1; 1); (-1; -1); ữ ữ 4 7 5 7 ; 7 7 ; ữ ữ 4 7 5 7 ; 7 7 0.25 2) 1,0điểm Điều kiện để phơng trình có nghiệm: x ' 0 0.25 m 5m 6 0 (m 2)(m 3) 0 2 + . Vì (m - 2) > (m - 3) nên: x ' 0 m 2 0 và m 3 0 2 m 3, mà m Z m = 2 hoặc m = 3. 0.25 Khi m = 2 x ' = 0 x = -1 (thỏa mãn) Khi m = 3 x ' = 0 x = - 1,5 (loại). 0.25 Vậy m = 2. 0.25 câu II 2,5 điểm 1) 1,5điểm Đặt a 2 x; b 2 x (a, b 0) = + = 2 2 2 2 a b 4; a b 2x + = = 0.25 ( ) ( ) ( ) 3 3 2 2 2 ab a b 2 ab a b a b ab A 4 ab 4 ab + + + + = = + + 0.25 ( ) ( ) ( ) 2 ab a b 4 ab A 2 ab a b 4 ab + + = = + + 0.25 ( ) A 2 4 2ab a b = + 0.25 ( ) ( ) ( ) ( ) 2 2 A 2 a b 2ab a b a b a b = + + = + 0.25 2 2 A 2 a b 2x A x 2 = = = 0.25 2) 1,0điểm 3 2 3 a m b m c 0+ + = (1) Giả sử có (1) 3 2 3 b m c m am 0 (2) + + = Từ (1), (2) 2 2 3 (b ac) m (a m bc) = 0.25 2 Nếu 2 a m bc 0 2 3 2 a m bc m b ac = là số hữu tỉ. Trái với giả thiết! 2 3 2 2 b ac 0 b abc a m bc 0 bc am = = = = 0.25 3 3 3 b a m b a m = = . Nếu b 0 thì 3 b m a = là số hữu tỉ. Trái với giả thiết! a 0;b 0 = = . Từ đó ta tìm đợc c = 0. 0.25 Ngợc lại nếu a = b = c = 0 thì (1) luôn đúng. Vậy: a = b = c = 0 0.25 câu III 2 điểm 1) 1,0điểm Theo bài ra f(x) có dạng: f(x) = ax 3 + bx 2 + cx + d với a nguyên dơng. 0.25 Ta có: 2010 = f(5) - f(3) = (5 3 - 3 3 )a + (5 2 - 3 2 )b + (5 - 3)c = 98a + 16b + 2c 16b + 2c = (2010- 98a) 0.25 Ta có f(7) - f(1) = (7 3 - 1 3 )a + (7 2 - 1 2 )b + (7 - 1)c = 342a + 48b + 6c = 342a + 3(16b + 2c) = 342a + 3(2010- 98a)= 48a + 6030 = 3.(16a + 2010) 3M 0.25 Vì a nguyên dơng nên 16a + 2010>1 . Vậy f(7)-f(1) là hợp số 0.25 2) 1,0điểm ( ) ( ) = + + + 2 2 2 2 P x 2 1 x 3 2 Trên mặt phẳng tọa độ Oxy lấy các điểm A(x-2; 1), B(x+3; 2) 0.25 Ta chứng minh đợc: ( ) ( ) = + = + = 2 2 AB x 2 x 3 1 2 25 1 26 ( ) = + 2 2 OA x 2 1 , ( ) = + + 2 2 OB x 3 2 0.25 Mặt khác ta có: OA OB AB ( ) ( ) + + + 2 2 2 2 x 2 1 x 3 2 26 0.25 Dấu = xảy ra khi A thuộc đoạn OB hoặc B thuộc đoạn OA = = + x 2 1 x 7 x 3 2 .Thử lại x = 7 thì A(5; 1); B(10; 2) nên A thuộc đoạn OB. Vậy Max =P 26 khi x = 7. 0.25 câuIV 2 điểm 1) 0,75điểm Ta dễ dàng chứng minh tứ giác MBAN nội tiếp ã ã =MAB MNB , MCAP nội tiếp ã ã =CAM CPM . 0.25 Lại có ã ã =BNM CPM (cùng phụ góc NMP) ã ã =CAM BAM (1) 0.25 Do DE // NP mặt khác MA NP MA DE (2) Từ (1), (2) ADE cân tại A MA là trung trực của DE MD = ME 0.25 2) 1,25điể 0.25 3 K E B C A N M P D m K E B C A N M P D Do DE//NP nên ã ã =DEK NAB , mặt khác tứ giác MNAB nội tiếp nên: ã ã + = 0 NMB NAB 180 ã ã + = 0 NMB DEK 180 Theo giả thiết ã ã =DMK NMP ã ã + = 0 DMK DEK 180 Tứ giác MDEK nội tiếp 0.25 Do MA là trung trực của DE MEA MDA = 0.25 ã ã ã ã = = MEA MDA MEK MDC . 0.25 Vì ã ã ã ã = = MEK MDK MDK MDC DM là phân giác của góc CDK, kết hợp với AM là phân giác DAB M là tâm của đờng tròn bàng tiếp góc DAK của tam giác DAK. 0.25 câu V 1 điểm D' B' A' O C A B D Không mất tổng quát giả sử:AB AC. Gọi B là điểm chính giữa cung ẳ ABC =AB' CB' Trên tia đối của BC lấy điểm A sao cho BA = BA + = AB BC CA' 0.25 Ta có: ã ã ã = =B'BC B'AC B'CA (1) ; ã ã + = 0 B'CA B'BA 180 (2) ã ã + = 0 B'BC B'BA' 180 (3);Từ (1), (2), (3) ã ã =B'BA B'BA' 0.25 Hai tam giác ABB và ABB bằng nhau = A'B' B'A Ta có + = + B'A B'C B'A' B'C A'C = AB + BC ( BA + BC không đổi vì B, A, C cố định). Dấu = xảy ra khi B trùng với B. 0.25 Hoàn toàn tơng tự nếu gọi D là điểm chính giữa cung ẳ ADC thì ta cũng có AD + CD AD + CD. Dấu = xảy ra khi D trùng với D. Chu vi tứ giác ABCD lớn nhất khi B, D là các điểm chính giữa các cung ằ AC của đờng tròn (O) 0.25 4 Bài 1: (1,5 điểm) Cho 1 1 a 2 : 7 1 1 7 1 1 = ữ ữ + + + Hãy lập một phơng trình bậc hai có hệ số nguyên nhận a - 1 là một nghiệm. Bài 2: (2,5 điểm) a) Giải hệ phơng trình: x 16 xy y 3 y 9 xy x 2 = = b) Tìm m để phơng trình ( ) 2 2 2 x 2x 3x 6x m 0 + + = có 4 nghiệm phân biệt. Bài 3: (2,0 điểm) a) Chứng minh rằng nếu số nguyên k lớn hơn 1 thoả mãn 2 k 4+ và 2 k 16+ là các số nguyên tố thì k chia hết cho 5. b) Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác có p là nửa chu vi thì p a p b p c 3p + + Bài 4: (3,0 điểm) Cho đờng tròn tâm O và dây AB không đi qua O. Gọi M là điểm chính giữa của cung AB nhỏ. D là một điểm thay đổi trên cung AB lớn (D khác A và B). DM cắt AB tại C. Chứng minh rằng: a) MB.BD MD.BC= b) MB là tiếp tuyến của đờng tròn ngoại tiếp tam giác BCD. c) Tổng bán kính các đờng tròn ngoại tiếp tam giác BCD và ACD không đổi. Bài 5: (1,0 điểm) Cho hình chữ nhật ABCD. Lấy E, F thuộc cạnh AB; G, H thuộc cạnh BC; I, J thuộc cạnh CD; K, M thuộc cạnh DA sao cho hình 8 - giác EFGHIJKM có các góc bằng nhau. Chứng minh rằng nếu độ dài các cạnh của hình 8 - giác EFGHIJKM là các số hữu tỉ thì EF = IJ. Hết Hớng dẫn chấm thi Bài 1: (1,5 điểm) 1 1 7 1 1 7 1 1 a 2 : 2 : 7 7 1 1 7 1 1 + + + + = = ữ ữ + + + 0,5 đ Sở giáo dục và đào tạo Hng yên đề chính thức kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2009 2010 Môn thi: Toán (Dành cho thí sinh thi vào các lớp chuyên Toán, Tin) Thời gian làm bài: 150 phút 5 a = 2 2 : 7 7 = 0,25 đ Đặt 2 x a 1 x 7 1 x 1 7 x 2x 1 7= = + = + + = 0,5 đ 2 x 2x 6 0 + = Vậy phơng trình 2 x 2x 6 0+ = nhận 7 1 làm nghiệm 0,25 đ Bài 2: (2,5 điểm) a) x 16 x 16 xy (1) xy y 3 y 3 y x 5 y 9 (2) xy x y 6 x 2 = = = = ĐK: x,y 0 0,25 đ Giải (2) 2 2 6y 6x 5xy (2x 3y)(3x 2y) 0 = + = 0,25 đ * Nếu 3y 2x 3y 0 x 2 + = = . Thay vào (1) ta đợc 3y 3 16 y. 2 2 3 + = 0,25 đ 2 3y 23 2 6 = (phơng trình vô nghiệm) 0,25 đ * Nếu 2y 3x 2y 0 x 3 = = . Thay vào (1) ta đợc 2 y 9 y 3= = 0,25 đ - Với y 3 x 2= = (thoả mãn điều kiện) - Với y 3 x 2= = (thoả mãn điều kiện) Vậy hệ phơng trình có hai nghiệm: (x; y) = (2; 3); (x; y) = (-2; -3) 0,25 đ b) Đặt ( ) 2 2 x 2x 1 y x 1 y x 1 y (y 0) + = = = (*) Phơng trình đã cho trở thành: ( ) ( ) 2 y 1 3 y 1 m 0 + = 2 y 5y m 4 0 + + = (1) 0,25 đ Từ (*) ta thấy, để phơng trình đã cho có 4 nghiệm phân biệt thì phơng trình (1) có 2 nghiệm dơng phân biệt 0,25 đ 0 9 4m 0 S 0 5 0 P 0 m 4 0 > > > > > + > 0,25 đ 9 m 9 4 m 4 4 m 4 < < < > Vậy với 9 4 m 4 < < thì phơng trình có 4 nghiệm phân biệt. 0,25 đ 6 Bài 3: (2,0 điểm) a) Vì k > 1 suy ra 2 2 k 4 5; k 16 5+ > + > - Xét 2 2 2 k 5n 1 (với n ) k 25n 10n 1 k 4 5= + = + + + M 2 k 4 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 2 (với n ) k 25n 20n 4 k 16 5= + = + + + M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 3 (với n ) k 25n 30n 9 k 16 5= + = + + + M 2 k 16 + không là số nguyên tố. 0,25 đ - Xét 2 2 2 k 5n 4 (với n ) k 25n 40n 16 k 4 5= + = + + + M 2 k 4 + không là số nguyên tố. Do vậy k 5M 0,25 đ b) Ta chứng minh: Với a,b,c thì ( ) ( ) 2 2 2 2 a b c 3 a b c+ + + + (*) Thật vậy 2 2 2 2 2 2 (*) a b c 2ab 2bc 2ca 3a 3b 3c + + + + + + + 2 2 2 (a b) (b c) (c a) 0 + + (luôn đúng) 0,5 đ áp dụng (*) ta có: ( ) ( ) 2 p a p b p c 3 3p a b c 3p + + = Suy ra p a p b p c 3p + + (đpcm) 0,5 đ Bài 4: (3,0 điểm) J I C N M O A B D a) Xét MBC và MDB có: ã ã BDM MBC (haigóc nội tiếp chắn hai cung bằng nhau)= ã ã BMC BMD= 0,5 đ Do vậy MBC và MDB đồng dạng Suy ra MB MD MB.BD MD.BC BC BD = = 0,5 đ 7 b) Gọi (J) là đờng tròn ngoại tiếp BDC ã ã ã BJC 2BDC 2MBC = = hay ã ã BJC MBC 2 = ã ã 0 180 BJC BCJ cân tại J CBJ 2 = 0,5 đ Suy ra ã ã ã ã O O BJC 180 BJC MBC CBJ 90 MB BJ 2 2 + = + = Suy ra MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB 0,5 đ c) Kẻ đờng kính MN của (O) NB MB Mà MB là tiếp tuyến của đờng tròn (J), suy ra J thuộc NB Gọi (I) là đờng tròn ngoại tiếp ADC Chứng minh tơng tự I thuộc AN Ta có ã ã ã ã ANB ADB 2BDM BJC= = = CJ // IN Chứng minh tơng tự: CI // JN 0,5 đ Do đó tứ giác CINJ là hình bình hành CI = NJ Suy ra tổng bán kính của hai đờng tròn (I) và (J) là: IC + JB = BN (không đổi) 0,5 đ Bài 5: (1,0 điểm) g f e d h c b a G F I H J M C A B D E K Gọi EF = a ; FG = b ; GH = c ; HI = d ; IJ = e ; JK = f ; KM = g ; ME = h (với a, b, c, d, e, f, g, h là các số hữu tỉ dơng) Do các góc của hình 8 cạnh bằng nhau nên mỗi góc trong của hình 8 cạnh có số đo là: O O 8 2 180 135 8 ( ). = 0,25 đ Suy ra mỗi góc ngoài của hình 8 cạnh đó là: 180 O - 135 O = 45 O Do đó các tam giác MAE ; FBG ; CIH ; DKJ là các tam giác vuông cân. MA = AE = h 2 ; BF = BG = b 2 ; CH = CI = d 2 ; DK = DJ = f 2 Ta có AB = CD nên: h b f d a e 2 2 2 2 + + = + + (e - a) 2 = h + b - f - d 0,5 đ 8 Nếu e - a 0 thì h b f d 2 e a + = Ô (điều này vô lý do 2 là số vô tỉ) Vậy e - a = 0 e = a hay EF = IJ (đpcm). 0,25 đ S GIO DC BèNH NH K THI TUấN SINH VO LP 10 TRNG THPT CHUYấN Lấ QUí ễN NM HC 2009-2010 chớnh thc Mụn thi:Toỏn (chuyờn) Ngy thi:19/06/2009 Thi gian:150 phỳt Bi 1(1.5im) Cho a,b,c l di ba cnh ca mt tam giỏc.Chng minh rng: 1 2 a b c b c c a a b < + + < + + + Bi 2(2im) Cho 3 s phõn bit m,n,p.Chng minh rng phng trỡnh 1 1 1 0 x m x n x p + + = - - - cú hai nghim phõn bit. Bi 3(2im) Vi s t nhiờn n, 3n .t ( ) ( ) ( ) ( ) 1 1 1 3 1 2 5 2 3 2 1 1 n S n n n = + + + + + + + + Chỳng minhS n < 1 2 Bi 4(3im) Cho tam giỏc ABC ni tip trũn tõm O cú di cỏc cnh BC = a, AC = b, AB = c.E l im nm trờn cung BC khụng cha im A sao cho cung EB bng cung EC.AE ct cnh BC ti D. a.Chỳng minh:AD 2 = AB.AC DB.DC b.Tớnh di AD theo a,b,c Bi 5(1.5im) Chng minh rng : ( ) 2 1 2 3 2 m n n - + Vi mi s nguyờn m,n. ********************************************** P N MễN TON THI VO 10 TRNG CHUYấN Lấ QUí ễN NM 2009 Bi 1: Vỡ a,b,c l di ba cnh tam giỏc nờn ta cú:a,b,c >0 v a< b+c ,b< a + c , c < a+b Nờn ta cú 2a a a a b c a b c a b c + < = + + + + + Mt khỏc a a b c a b c > + + + 9 c b a D O C E B A Vy ta cú 2 (1) a a a a b c c b a b c < < + + + + + Tng t 2 (2); b b b a b c c a a b c < < + + + + + 2 (3) c c a a b c b a a b c < < + + + + + Cng (1) (2) v (3) v theo v ta cú iu phi chng minh. Bi 2: K: , ,x m n pạ PT ó cho (x-n)(x-p)+(x-m)(x-p)+(x-m)(x-n) = 0 3x 2 -2(m+n+p)x +mn+mp+np = 0(1) Ta cú ' 2 ( ) 3( )m n p mn mp np= + + - + + = m 2 +n 2 +p 2 +2mn+2mp+2np -3mn-3mp-3np = m 2 +n 2 +p 2 mn-mp-np = 1 2 [(m-n) 2 +(n-p) 2 +(m-p) 2 ] >0 t f(x) = 3x 2 -2(m+n+p)x + mn+ mp +np Ta cú f(m) = 3m 2 2m 2 -2mn -2mp +mn +mp +np = m 2 mn mp +np = (m-n)(m-p) ạ 0 = >m,n,p khụng phi l nghim ca pt(1) Vy PT ó cho luụn cú hai nghim phõn bit Bi 3 ( ) ( ) 2 2 1 1 1 Ta có : 2 1 2 1 1 4 4 1 1 n +1 - n 1 1 1 2 2 1. 1 4 4 n n n n n n n n n n n n n n n n n n + - + - = = + + + + + + ổ ử + - ữ ỗ ữ < = = - ỗ ữ ỗ ữ ỗ ố ứ + + + Do ú 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 1 1 n S n n n ổ ử ổ ử ữ ữ ỗ ỗ ữ ữ < - + - + + - = - < ỗ ỗ ữ ữ ỗ ỗ ữ ữ ỗ ỗ ố ứ ố ứ + + Bi 3: Ta cú ã ã BAD CAE= ( Do cung EB = cung EC) V ã ã AEC DBA= ( Hai gúc ni tip cựng chn cung AC) nờn BAD EAC . . (1) BA AE AB AC AE AD AD AC = =ị ị Ta cú ã ã ã ã (Đối đỉnh) và CADADC BDC DBE= = (2 gúc ni tip cựng chn cung CE) nờn ACD BDE . . AD DB AD DE DB DChay DC DE = =ị ị AD(AE-AD) = DB.DC Hay AD 2 = AD.AE - DB.DC=AB.AC DB.DC (do (1)) 4b)Theo tớnh cht ng phõn giỏc ta cú DC hay b DC DB DB DC DB a AC AB c b c b c + = = = = + + vy ( ) 2 2 . . . DC DB a a a bc DB DC b c b c b c b c = =ị + + + theo cõu a ta cú AD 2 = AB.AC DB.DC = ( ) ( ) 2 2 2 2 1 a bc a bc bc b c b c ổ ử ữ ỗ ữ ỗ - = - ữ ỗ ữ ỗ ữ ữ ỗ + + ố ứ 10 [...]... 2- 2+ 2+ 1 n2 2- 1 n2 1 ( 3+ 2 ) ************************************************ SỞ GD&ĐT VĨNH PHÚC —————— ĐỀ CHÍNH THỨC KỲ THI VÀO LỚP 10 THPT CHUN NĂM HỌC 2009-2 010 ĐỀ THI MƠN: TỐN Dành cho các thí sinh thi vào lớp chun Tốn Thời gian làm bài: 150 phút, khơng kể thời gian giao đề ————————— (Đề có 01 trang) Câu 1: (3,0 điểm) a) 1 1 9  x + y + x + y = 2  Giải hệ phương trình:   xy + 1 = 5  xy... GIÁO DỤC VÀ ĐÀO TẠO SƠN THANH HỐ Đề chính thức KÌ THI TUYỂN SINH VÀO LỚP 10 THPT CHUN LAM NĂM HỌC: 2009-2 010 MƠN: TỐN (Dành cho học sinh thi vào lớp chun Tốn) Thời gian: 150 phút (khơng kể thời gian giao đề) Ngày thi: 19 tháng 6 năm 2009 Câu 1: (2,0 điểm) 2 1 Cho số x ( x ∈ R ; x > 0 ) thoả mãn điều kiện : x + 3 thức : A = x + 1 x3 1 x5 1 2= 2 y 1 = 7 Tính giá trị các biểu x2 5 và B = x +    2... 49/16 víi x = 1/7; y = 2/7; z = 4/7 VËy gi¸ trÞ bÐ nhÊy cđa P lµ 49/16 0,2 SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH NINH BÌNH ĐỀ THI TUYỂN SINH VÀO LỚP 10 CHUN NĂM HỌC 2009 – 2 010 Mơn Tốn – Vòng 1 (Dùng cho tất cả các thí sinh) ĐỀ CHÍNH THỨC Thời gian làm bài 120 phút (Khơng kể thời gian giao đề) Đề thi gồm 05 câu trong 01 trang Câu 1: (2 điểm) Tính giá trị biểu thức: ( x= 5 2+2 5 y= A= ) 5 − 250 3 3 − 3 −1 3 +1... minh tất cả các điểm đã cho nằm trong tam giác A ' B ' C ' Giả sử trái lại, có một điểm P nằm ngồi tam giác A ' B ' C ', chẳng hạn như trên hình vẽ Khi đó d ( P; AB ) > d ( C ; AB ) , suy ra S PAB > SCAB , mâu thuẫn với giả thi t tam giác ABC có diện tích lớn nhất Vậy, tất cả các điểm đã cho đều nằm bên trong tam giác A ' B ' C ' có diện tích khơng lớn hơn 4 ĐỀ THI TUYỂN SINH VÀO LỚP 10 CHUN CỦA... màu các ơ vng của bảng bằng hai màu đen trắng như bàn cờ vua Lúc đầu tổng số sỏi ở các ơ đen bằng 100 5 2009 là một số lẻ sau mối phép thực hiện thao tác T tổng số sỏi ở các ơ đen ln là số lẻ vậy khơng thể chuyển tất cả viên sỏi trên bẳng ơ vng về cùng một ơ sau một số hữu hạn các phép thưc hiện thao tác T Së gi¸o dơc-®µo t¹o Hµ nam ®Ị chÝnh thøc Kú thi tun sinh vµo líp 10 THPT chuyªn N¨m häc 2009-2 010. .. 2m-3+n>2m-3-n Vµ do m ∈ Z, n ∈ N vµ 77=1.77=7.11=-1.(-77)=-7.(-11) Tõ ®ã xÐt 4 trêng hỵp ta sÏ t×m ®ỵc gi¸ trÞ cđa m 2)Tõ gi¶ thi t bµi to¸n ta cã: 100 a + 10b 2 2 100 a + 10b + c = ( a + b ) 4c ⇔ c = (do 4 ( a + b ) − 1 ≠ 0) 2 4 ( a + b) −1 = 10 ( 10a + b ) 4 ( a + b) −1 2 = 10 ( a + b ) + 9a    4 ( a + b) −1 2 Ta cã 4 ( a + b ) − 1 lµ sè lỴ vµ do 0 < c ≤ 9 nªn 4 ( a + b ) − 1 M5 2 2 Mµ 4 ( a +... cạnh của tam giác ABC b) Cho a, b, c là các số thực dương thay đổi thỏa mãn: a + b + c = 3 Tìm giá trị nhỏ nhất của biểu thức 23 P = a2 + b2 + c2 + ab + bc + ca a 2b + b 2c + c 2 a Hết -Së GD&§T NghƯ An K× thi TUN sinh VµO líp 10 trêng thpt chuyªn phan béi ch©u n¨m häc 2009 - 2 010 §Ị thi chÝnh thøc M«n thi: To¸n Híng dÉn chÊm thi B¶n híng dÉn chÊm gåm 03 trang Néi... đường thẳng d (trừ các điểm ở bên trong đường tròn) Bài 5: B = 8x + 6 7 + 18y + x y 2  2 4 5  =  8x + ÷+ 18y + ÷+  + ÷≥ 8 + 12 + 23 = 43 x  y x y  1 1 Dấu bằng xảy ra khi ( x; y ) =  ; ÷  2 3 1 1 Vậy giá trị nhỏ nhất của B là 43 khi ( x; y ) =  ; ÷  2 3 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH TRUNG HỌC PHỔ THƠNG TỈNH PHÚ N NĂM HỌC 2009-2 010 Mơn thi: TỐN CHUN ĐỀ CHÍNH THỨC Thời... thẳng By song song với đường thẳng SP Tìm quỹ tích giao điểm M của Ax và By =HẾT= SỞ GD & ĐT PHÚ N *** KỲ THI TUYỂN SINH THPT NĂM HỌC 2009 -2 010 MƠN : TỐN (Hệ số 2) ĐỀ CHÍNH THỨC HƯỚNG DẪN CHẤM THI Bản hướng dẫn chấm gồm 04 trang I- Hướng dẫn chung: 1- Nếu thí sinh làm bài khơng theo cách nêu trong đáp án mà vẫn đúng thì cho đủ điểm từng phần như hướng dẫn quy định 2- Việc chi tiết hố thang điểm (nếu... 180 ( xet ∆BDE ) 0 Vậy tứ giác BCED nội tiếp đường tròn tâm K Với K là gaio điểm 3 đường trực của ∆BCE hoặc ∆BDE K× thi TUN sinh VµO líp 10 trêng thpt chuyªn phan béi ch©u n¨m häc 2009 - 2 010 Së GD&§T NghƯ An §Ị thi chÝnh thøc Mơn thi: TỐN Thời gian: 150 phút, khơng kể thời gian giao đề Bài 1: (3.5 điểm) a) Giải phương trình 3 x+2 + 3 7− x =3 b) Giải hệ phương trình 8  2 + 3 x = y 3    x3 − 2 . đ Sở giáo dục và đào tạo Hng yên đề chính thức kỳ thi tuyển sinh vào lớp 10 thpt chuyên Năm học 2009 2 010 Môn thi: Toán (Dành cho thí sinh thi vào các lớp chuyên Toán, Tin) Thời gian làm bài: 150. giáo dục-đào tạo Kỳ thi tuyển sinh vào lớp 10 THPT chuyên Hà nam Năm học 2009-2 010 Môn thi : toán (đề chuyên) đề chính thức Thời gian làm bài: 120 phút(không kể thời gian giao đề) Bài 1.(2,5 điểm) 1). và đào tạo HảI dơng Kỳ thi tuyển sinh lớp 10 THPT chuyên nguyễn trãi - Năm học 2009-2 010 Môn thi : toán Thời gian làm bài: 150 phút Ngày thi 08 tháng 7 năm 2009 (Đề thi gồm: 01 trang) Câu
- Xem thêm -

Xem thêm: Tuyển tập các đề thi vào lớp 10 chuyên toán (có đáp án), Tuyển tập các đề thi vào lớp 10 chuyên toán (có đáp án), Tuyển tập các đề thi vào lớp 10 chuyên toán (có đáp án)

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay