Mixed Boundary Value Problems Episode 5 pptx

28 170 0
Mixed Boundary Value Problems Episode 5 pptx

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

108 Mixed Boundary Value Problems Substituting Equation 3.2.41 into Equation 3.2.35, we obtain the integral equation 1 √ 2  π c h(t)  ∞  n=1 {P n [cos(t)] − P n−1 [cos(t)]}sin(nx)  dt = f(x). (3.2.42) Using the results from Problem 3 in Section 1.3, Equation 3.2.42 simplifies to  π x h(t)  cos(x) −cos(t) dt = −csc  x 2  f(x),c<x≤ π. (3.2.43) From Equation 1.2.11 and Equation 1.2.12, we obtain h(t)= 2 π d dt   π t f(x)cos(x/2)  cos(t) −cos(x) dx  . (3.2.44) Using the results from Equations 3.2.22, 3.2.28, 3.2.34, 3.2.35, 3.2.41, and 3.2.44, the solution to the dual equations            ∞  n=1 nc n sin(ny)=g(π − y), 0 ≤ y<γ, ∞  n=1 c n sin(ny)=f(π − y),γ<y≤ π, (3.2.45) is c n = 1 √ 2  π 0 h(t) {P n−1 [cos(t)] − P n [cos(t)]} dt, (3.2.46) where h(t)= 2 π cot  t 2   t 0 g(π −ξ)sin(ξ/2)  cos(ξ) −cos(t) dξ, 0 ≤ t<γ, (3.2.47) and h(t)=− 2 π d dt   π t f(π −ξ)cos(ξ/2)  cos(t) −cos(ξ) dξ  ,γ<t≤ π. (3.2.48) Therefore, the solution to Equation 3.2.20 and Equation 3.2.21 is C n = 1 √ 2  γ 0 h(t) {P n−1 [cos(t)] − P n [cos(t)]} dt, (3.2.49) where h(t)= 2 L cot  t 2   t 0 U 0 [L(π −ξ)/π]sin(ξ/2)  cos(ξ) −cos(t) dξ, 0 ≤ t<γ. (3.2.50) © 2008 by Taylor & Francis Group, LLC Separation of Variables 109 Consequently, making the back substitution, the dual series            ∞  n=1 b n n sin(nx)=f(x)0≤ x<c, ∞  n=1 b n sin(nx)=g(x).c<x≤ π, (3.2.51) has the solution b n = n √ 2  π 0 k(t) {P n−1 [cos(t)] + P n [cos(t)]} dt, (3.2.52) where k(t)= 2 π d dt   c 0 f(ξ)sin(ξ/2)  cos(ξ) −cos(t) dξ  , 0 ≤ t<c, (3.2.53) and k(t)= 2 π tan  t 2   π t g(ξ)cos(ξ/2)  cos(t) −cos(ξ) dξ, c < t ≤ π. (3.2.54) Using Equation 3.2.51 through Equation 3.2.54, we finally have that A n = 1 √ 2  π/L 0 k(t) {P n−1 [cos(t)] + P n [cos(t)]} dt, (3.2.55) where k(t)= 2 π d dt   t 0 U 0 (Lξ/π)sin(ξ/2)  cos(ξ) −cos(t) dξ  , 0 ≤ t<π/L. (3.2.56) 3.3 DUAL FOURIER-BESSEL SERIES Dual Fourier-Bessel series arise during mixed boundary value problems in cylindrical coordinates where the radial dimension is of finite extent. Here we show a few examples. • Example 3.3.1 Let us find 16 the potential forLaplace’s equation in cylindrical coordi- nates: ∂ 2 u ∂r 2 + 1 r ∂u ∂r + ∂ 2 u ∂z 2 =0, 0 ≤ r<1, 0 <z<∞, (3.3.1) 16 Originally solved by Borodachev, N. M., and F. N. Borodacheva, 1967: Considering the effect of the walls for an impact of a circular disk on liquid. Mech. Solids, 2(1), 118. © 2008 by Taylor & Francis Group, LLC 110 Mixed Boundary Value Problems subject to the boundary conditions lim r→0 |u(r, z)| < ∞,u r (1,z)=0, 0 <z<∞, (3.3.2)  u z (r, 0) = 1, 0 ≤ r<a, u(r, 0) = 0,a<r<1, (3.3.3) and lim z→∞ u(r, z) → 0, 0 ≤ r<1, (3.3.4) where a<1. Separation of variables yields the potential, namely u(r, z)=A 0 + ∞  n=1 A n e −k n z J 0 (k n r), (3.3.5) where k n is the nth positive root of J  0 (k)=−J 1 (k)=0. Equation 3.3.5 satisfies Equation 3.3.1, Equation 3.3.2, and Equation 3.3.4. Substituting Equation 3.3.5 into Equation 3.3.3, we obtain the dual series: ∞  n=1 k n A n J 0 (k n r)=−1, 0 ≤ r<a, (3.3.6) and A 0 + ∞  n=1 A n J 0 (k n r)=0,a<r<1. (3.3.7) Srivastav 17 showed that this dual Dini series has the solution A 0 = −2  a 0 th(t) dt, (3.3.8) and A n = − 2 k n J 2 0 (k n )  a 0 h(t)sin(k n t) dt, (3.3.9) where the unknown function h(t)isgivenbytheregularFredholm integral equation of the second kind: h(t)+  a 0 L(t, η)h(η) dη = t, 0 ≤ t<a, (3.3.10) and L(t, η)= 4 π 2  ∞ 0 K 1 (x) I 1 (x) sinh(tx)sinh(ηx) dx. (3.3.11) 17 Srivastav, R. P., 1961/1962: Dual series relations. II. Dual relations involving Dini series. Proc. R. Soc. Edinburgh, Ser. A, 66, 161–172. © 2008 by Taylor & Francis Group, LLC Separation of Variables 111 0 0.2 0.4 0.6 0.8 1 0 0.05 0.1 0.15 0.2 −0.4 −0.3 −0.2 −0.1 0 0.1 r z u(r,z) Figure 3.3.1:The solution to Laplace’s equation subject to the boundary conditions given by Equation 3.3.2, Equation 3.3.3, and Equation 3.3.4 when a =0.5. Figure 3.3.1 illustrates this solution when a =0.5. • Example 3.3.2 Asimilar problem 18 to the previous one arises during the solution of Laplace’s equation in cylindrical coordinates: ∂ 2 u ∂r 2 + 1 r ∂u ∂r + ∂ 2 u ∂z 2 =0, 0 ≤ r<1, 0 <z<∞, (3.3.12) subject to the boundary conditions lim r→0 |u(r, z)| < ∞,u r (1,z)=0, 0 <z<∞, (3.3.13)  u(r, 0) = 1, 0 ≤ r<a, u z (r, 0) = 0,a<r<1, (3.3.14) and lim z→∞ |u z (r, z)| < ∞, 0 ≤ r<1, (3.3.15) where a<1. Separation of variablesgives u(r, z)=A 0 z + ∞  n=1 A n e −k n z J 0 (k n r) k n , (3.3.16) 18 SeeHunter, A., and A. Williams, 1969: Heat flow across metallic joints – The con- striction alleviation factor. Int. J. Heat Mass Transfer, 12, 524–526. © 2008 by Taylor & Francis Group, LLC 112 Mixed Boundary Value Problems where k n is the nth positive root of J  0 (k)=−J 1 (k)=0. Equation 3.3.16 satisfies Equation 3.3.12, Equation 3.3.13, and Equation 3.3.15. Substituting Equation 3.3.16 into Equation 3.3.14, we obtain the dual series: ∞  n=1 A n J 0 (k n r) k n =1, 0 ≤ r<a, (3.3.17) and A 0 − ∞  n=1 A n J 0 (k n r)=0,a<r<1. (3.3.18) Srivastav 19 has given the solution to the dual Fourier-Bessel series αa 0 + ∞  n=1 a n J 0 (k n r) k n = f(r), 0 ≤ r<a, (3.3.19) and a 0 + ∞  n=1 a n J 0 (k n r)=0,a<r<1. (3.3.20) Then, a 0 =2  a 0 h(t) dt, (3.3.21) and a n = 2 J 2 0 (k n )  a 0 h(t)cos(k n t) dt, (3.3.22) where the function h(t)isgivenbythe integral equation h(t) −  a 0 K(t, τ)h(τ) dτ = x(t), 0 <t<a, (3.3.23) x(t)= 2 π d dt   t 0 rf(r) √ t 2 − r 2 dr  , (3.3.24) and K(t, τ)= 4 π (1 − α)+ 4 π 2  ∞ 0 K 1 (ξ) ξI 1 (ξ) [2I 1 (ξ) −ξ cosh(τξ)cosh(tξ)] dξ. (3.3.25) 19 Ibid. See also Sneddon, op. cit., Equation 5.3.27 through Equation 5.3.35. © 2008 by Taylor & Francis Group, LLC Separation of Variables 113 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 −1 −0.5 0 0.5 1 1.5 2 r z u(r,z) Figure 3.3.2:The solution to Laplace’s equation subject to the boundary conditions given by Equation 3.3.13 through Equation 3.3.15 when a = 1 2 . Equation 3.3.19 through Equation 3.3.25 provide the answer to our problem if we set α =0andf(r)=1. Figure 3.3.2 illustrates the solution when a = 1 2 . • Example 3.3.3 Let us solve Laplace equation 20 ∂ 2 u ∂r 2 + 1 r ∂u ∂r + ∂ 2 u ∂z 2 =0, 0 ≤ r<a, 0 <z<∞, (3.3.26) subject to the boundary conditions lim r→0 |u(r, z)| < ∞,u(a, z)=0, 0 <z<∞, (3.3.27)  u z (r, 0) = 1, 0 ≤ r<1, u r (r, 0) = 0, 1 <r<a, (3.3.28) and lim z→∞ u(r, z) → 0, 0 ≤ r<a, (3.3.29) where a>1. The method of separation of variables yields the product solution u(r, z)= ∞  n=1 A n J 0 (k n r)e −k n z , (3.3.30) 20 See Sherwood, J. D., and H. A. Stone, 1997: Added mass of a disc accelerating within apipe.Phys. Fluids, 9, 3141–3148. © 2008 by Taylor & Francis Group, LLC 114 Mixed Boundary Value Problems where k n is the nth root of J 1 (ka)=0. Equation 3.3.30 satisfies not only Laplace’s equation, but also the boundary conditions given by Equation 3.3.27 andEquation 3.3.29. Substituting Equation 3.3.30 into Equation 3.3.28, we obtain the dual series ∞  n=1 A n k n J 0 (k n r)=−1, 0 ≤ r<1, (3.3.31) and ∞  n=1 A n k n J 1 (k n r)=0, 1 ≤ r<a. (3.3.32) We b egin our solution of these dual equations by applying the identity 21 ∞  n=1 J ν+2m+1−p (ζ n )J ν (ζ n r) ζ 1−p n J 2 ν+1 (ζ n a) =0, 1 <r<a, (3.3.33) where |p|≤ 1 2 , ν>p− 1, m =0, 1, 2, ,andζ n denotes the nth root of J ν (ζa)=0. Bydirection substitution it is easily seen that Equation 3.3.32 is satisfied if ν =1and k 2−p n J 2 2 (k n a)A n = ∞  m=0 C m J 2m+2−p (k n ). (3.3.34) Here p is still a free parameter. Substituting Equation 3.3.34 into Equation 3.3.31, ∞  n=1 ∞  m=0 C m J 2m+2−p (k n )J 0 (k n r) k 1−p n J 2 2 (k n a) = −1, 0 ≤ r<1. (3.3.35) Our remaining task is to compute C m .Although Equation 3.3.35 holds for any r between 0 and 1, it would be better if we did not have to deal with its presence. It can be eliminated as follows: From Sneddon’s book, 22  ∞ 0 η 1−k J ν+2m+k (η)J ν (rη) dη = Γ(ν + m +1)r ν (1 − r 2 ) k−1 2 k−1 Γ(ν +1)Γ(m + k) P (k+ν,ν+1) m  r 2  (3.3.36) 21 Tranter, C. J., 1959: On the analogies between some series containing Bessel functions and certain special cases of the Weber-Schafheitlin integral. Quart. J. Math., Ser. 2, 10, 110–114. 22 Sneddon, op. cit., Equation 2.1.33 and Equation 2.1.34. © 2008 by Taylor & Francis Group, LLC Separation of Variables 115 if 0 ≤ r<1; this integral equals 0 if 1 <r<∞.HereP (a,b) m (x)= 2 F 1 (−m, a+ m; b; x)istheJacobi polynomial. If we view Equation 3.3.36 as a Hankel transform of η −k J ν+2m+k (η), then its inverse is η −k J ν+2m+k (η) =  1 0 Γ(ν + m +1)r 1+ν  1 − r 2  k−1 2 k−1 Γ(ν +1)Γ(m + k) J ν (rη)P (k+ν,ν+1) m  r 2  dr. (3.3.37) We also have from the orthogonality condition 23 of Jacobi polynomials that  1 0 r 2ν+1  1 − r 2  k−1 P (k+ν,ν+1) m  r 2  dr = Γ(ν +1)Γ(k) 2Γ(ν + k +1) δ 0m , (3.3.38) where δ nm is the Kronecker delta. Multiplying both sides of Equation 3.3.35 by r  1 − r 2  −p P (1−p,1) m (r 2 )andapplying Equation 3.3.38, we obtain − Γ(1 − p) 2Γ(2 −p) δ 0j = ∞  n=1 ∞  m=0 C m J 2m+2−p (k n )J 2j+1−p (k n )Γ(j +1− p) 2 p Γ(j +1)k 2−2p n J 2 2 (k n a) ; (3.3.39) or ∞  m=0 A jm C m = B j ,j=0, 1, 2, , (3.3.40) where A jm = ∞  n=1 J 2m+2−p (k n )J 2j+1−p (k n ) k 2−2p n J 2 2 (k n a) , (3.3.41) and B j =  −2 p−1 /Γ(2 − p),j=0, 0, otherwise. (3.3.42) For a given p,wecan solve Equation 3.3.40 after we truncate the infinite num- ber of equations to just M .Foragivenk n we solve the truncated Equation 3.3.40, which yields C m for m =0, 1, 2, ,M.ThenEquation3.3.34 gives A n .Finally, the potential u(r, z)follows from Equation 3.3.30. Figure 3.3.3 illustrates this solution when a =2andp =0.5. • Example 3.3.4 In the previous example we solved Laplace’s equation over a semi-infinite right cylinder. Here, let us solve Laplace’s equation 24 when the cylinder has 23 See page 83 in Magnus, W., and F. Oberhettinger, 1954: Formulas and Theorems for the Functions of Mathematical Physics. Chelsea Publ. Co., 172 pp. 24 SeeGalceran,J., J. Cecilia, E. Companys, J. Salvador, and J. Puy, 2000: Analytical expressions for feedback currents at the scanning electrochemical microscope. J. Phys. Chem., Ser. B, 104, 7993-8000. © 2008 by Taylor & Francis Group, LLC Separation of Variables 117 and ∞  n=1 A n J 0 (k n r)=0, 1 ≤ r<a. (3.3.49) Let us reexpress A n as follows: A n = 1 √ k n J 2 1 (k n a) ∞  m=0 B m J 2m+ 1 2 (k m ). (3.3.50) Substituting Equation 3.3.50 into Equation 3.3.49, we have 25 that ∞  n=1 A n J 0 (k n r)= ∞  m=o B m  ∞  n=1 J 2m+ 1 2 (k m )J 0 (k n r) √ k n J 2 1 (k n a)  =0 (3.3.51) for 1 <r≤ a.Therefore, Equation 3.3.49 is satisfied identically with this definition of A n . Next, we substitute Equation 3.3.50 into Equation 3.3.48, multiply both sides of the resulting equation by rF 21  −s, s + 1 2 , 1,r 2  dr/ √ 1 − r 2 and in- tegrate between r =0andr =1.Wefind that ∞  m=0 C m,s B m = √ 2Γ(s +1) Γ  s + 1 2   1 0 r √ 1 − r 2 F 21  −s, s + 1 2 , 1,r 2  dr (3.3.52) =   2/π, s =0, 0,s>0, (3.3.53) where C m,s = ∞  n=1 coth(k n b)J 2m+ 1 2 (k n )J 2s+ 1 2 (k n ) k 2 n J 2 1 (k n a) (3.3.54) and s =0, 1, 2, Weused J 2s+ 1 2 (k n ) √ k n = √ 2Γ(s +1) Γ  s + 1 2   1 0 r √ 1 − r 2 F 21  −s, s + 1 2 , 1,r 2  J 0 (k n r) dr. (3.3.55) Equation 3.3.55 is now solved to yield B m .Next,wecompute A n from Equa- tion 3.3.50. Finally u(r, z)follows from Equation 3.3.47. Figure 3.3.4 illustrates the solution to Equation 3.3.43 through Equa- tion 3.3.46 when a =2andb =1. Assuggested by Galceran et al., 26 the 25 Tranter, op. cit. 26 Galceran, Cecilia, Companys, Salvador, and Puy, op. cit. © 2008 by Taylor & Francis Group, LLC Separation of Variables 119 z r z = h z = 0 1 a Figure 3.3.5:Schematicof a hollow cylinder containing discs at z =0andz = h. u(r, 0 − )=u(r, 0 + ),u(r, h − )=u(r, h + ), 0 ≤ r<a, (3.3.60)  u(r, 0) = G(r),u(r, h)=F (r), 0 ≤ r<1, u z (r, 0 − )=u z (r, 0 + ),u z (r, h − )=u z (r, h + ), 1 <r<a, (3.3.61) and lim |z|→∞ u(r, z) → 0, 0 ≤ r<a. (3.3.62) Here, G(r)andF (r)denotetheprescribed potential on the discs at z =0 and z = h,respectively. The parameters h + and h − denote points that are slightly above or below h,respectively. Separation of variables yields the potential, namely u(r, z)= ∞  n=0 A n e −k n (z−h) J 0 (k n r) k n ,h≤ z<∞, (3.3.63) u(r, z)= ∞  n=0  A n sinh(k n z) sinh(k n h) + B n sinh[k n (h −z)] sinh(k n h)  J 0 (k n r) k n , 0 ≤ z ≤ h, (3.3.64) and u(r, z)= ∞  n=0 B n e k n z J 0 (k n r) k n , −∞ <z≤ 0, (3.3.65) © 2008 by Taylor & Francis Group, LLC [...]... Group, LLC Separation of Variables 133 1 u(r,θ ) 0.8 0.6 0.4 0.2 0 −0.2 1 1 0 .5 0 .5 0 0 −0 .5 −0 .5 y x −1 −1 Figure 3.4.1: The solution u(r, θ) to the mixed boundary value problem posed in Example 3.4.1 with α = π/4 and b = 0. 25 power = power*r; end; end; end; end Figure 3.4.1 illustrates the solution when α = π/4 and b = 0. 25 An alternative method for solving Equation 3.4.6 and Equation 3.4.7 is to introduce... (t2 0 1 rJ0 (km r) r 1 rJ0 (km r) r (t2 + sin(kn t) √ dt dr t2 − r 2 dt √ h2 ) Gradshteyn and Ryzhik, op cit., Formula 2. 252 , Point II © 2008 by Taylor & Francis Group, LLC h2 ) t2 − r 2 dr (3.3.99) 126 Mixed Boundary Value Problems 10 9 8 u(r,z) 7 6 5 4 3 2 1 0 0 2 0 .5 1 1 0 r 1 .5 −1 2 −2 z Figure 3.3.8: The electrostatic potential when a unit point charge is placed at r = 0 and z = h for the structure... Separation of Variables - 0 .5* dt*gamma*log(abs(2*cos(arg 1)))/pi - 0 .5* dt*gamma*log(abs(cos(arg 2)))/pi + 0 .5* dt*gamma*log(abs(2*sin(arg 1)))/pi; if (arg 2 == 0) AA(n+1,m+1) = AA(n+1,m+1) + 0 .5* dt*gamma*log(0. 25) /pi; else AA(n+1,m+1) = AA(n+1,m+1) + 0 .5* dt*gamma*log(abs(sin(arg 2)/(t-phi)))/pi; end end % Use Atkinson’s technique to treat the fifth term in % Equation 3.4. 25 See Section 5 of his paper if (m...120 Mixed Boundary Value Problems where kn is the nth positive root of J0 (ka) = 0 Equation 3.3.63 through Equation 3.3. 65 satisfy Equation 3.3 .58 , Equation 3.3 .59 , Equation 3.3.60, and Equation 3.3.62 Substituting Equation 3.3.63 through Equation 3.3. 65 into Equation 3.3.61, we obtain the following system of simultaneous dual... terms of Equation 3.4. 25 Use the % trapezoidal rule Recall that r(π) = 0 if (m < N) arg 1 = (t+phi)/4; arg 2 = (t-phi)/4; AA(n+1,m+1) = AA(n+1,m+1) - 0 .5* dt*gamma*log(abs(2*cos(arg 1)))/pi - 0 .5* dt*gamma*log(abs(cos(arg 2)))/pi + 0 .5* dt*gamma*log(abs(2*sin(arg 1)))/pi; if (arg 2 == 0) AA(n+1,m+1) = AA(n+1,m+1) + 0 .5* dt*gamma*log(0. 25) /pi; else AA(n+1,m+1) = AA(n+1,m+1) + 0 .5* dt*gamma*log(abs(sin(arg... cos(3t/2), π h(0) = 0 (3.4 .51 ) Separation of Variables 137 0 u(x,y)/(Ua) −0.1 −0.2 −0.3 −0.4 −0 .5 −0.6 −0.7 −0.8 −2 −2 −1 −1 0 0 1 y/a 1 x/a 2 Figure 3.4.2: The solution u(r, θ) to the mixed boundary value problem posed by Equation 3.4.37 through Equation 3.4.40 when α = π/4 To solve Equation 3.4 .51 , we rewrite it as h (t) + t 1 4 h(τ ) dτ = 0 4 M1 − cos(3t/2), 4 π (3.4 .52 ) α where M1 = 0 h(t) dt,... continuous value of ur (a, θ) for 0 ≤ θ ≤ π Substituting Equation 3.4.41 and Equation 3.4.42 into Equation 3.4.40 gives the dual Fourier-Legendre series ∞ nAn Pn [cos(θ)] = − cos(θ), 0 ≤ θ < α, (3.4.43) n=0 37 Reprinted from Int J Solids Struct., 38, P A Martin, The spherical-cap crack revisited, 4 759 –4776, c 2001, with permission of Elsevier © 2008 by Taylor & Francis Group, LLC 136 Mixed Boundary Value Problems. .. and ∞ 1 h(t) 0 J0 (kn r) cos(kn t) dt 2 a2 kn J1 (kn a) n=0 ∞ 1 g(t) + 0 29 e−kn h J0 (kn r) cos(kn t) 2 a2 kn J1 (kn a) n=0 Gradshteyn and Ryzhik, op cit., Formula 6 .55 2.4 © 2008 by Taylor & Francis Group, LLC 122 Mixed Boundary Value Problems It is readily shown30 that 2 a2 ∞ ∞ J0 (kn r) cos(kn t) = 2 kn J1 (kn a) n=0 − J0 (rη) cos(tη) dη 0 ∞ 2 π 0 K0 (aη) I0 (rη) cosh(tη) dη (3.3.82) I0 (aη) In a... & Francis Group, LLC 131 132 Mixed Boundary Value Problems Once ψ(ϕi ) is found with ψ(π) = 0, we compute An via Equation 3.4.18 The MATLAB code to compute An is for m = 0:M if ( m == 0 ) A(m+1) = alpha/pi + sin(alpha)/pi; else A(m+1) = sin(m*alpha)/(m*pi) + sin((m+1)*alpha)/((m+1)*pi); end % This is the n = 0 term for Simpson’s rule A(m+1) = A(m+1) + 2*psi( 1 )*cos((m+0 .5) *tt( 1 ))*dt/(3*pi); % Recall... integration for n = 1:N-1 if ( mod(n+1,2) == 0 ) A(m+1) = A(m+1) + 8*psi(n+1)*cos((m+0 .5) *tt(n+1))*dt/(3*pi); else A(m+1) = A(m+1) + 4*psi(n+1)*cos((m+0 .5) *tt(n+1))*dt/(3*pi); end; end; end The final solution follows from Equation 3.4 .5 The MATLAB code to realize this solution is for j = 1:41 y = 0. 05* (j-21); for i = 1:41 x = 0. 05* (i-21); u(i,j) = NaN; r = sqrt(x*x + y*y); theta = abs(atan2(y,x)); if (r . and Ryzhik, op. cit., Formula 2. 252 , Point II. © 2008 by Taylor & Francis Group, LLC 126 Mixed Boundary Value Problems 0 0 .5 1 1 .5 2 −2 −1 0 1 2 0 1 2 3 4 5 6 7 8 9 10 z r u(r,z) Figure 3.3.8:Theelectrostatic. (3.3. 65) © 2008 by Taylor & Francis Group, LLC 120 Mixed Boundary Value Problems where k n is the nth positive root of J 0 (ka)=0. Equation 3.3.63 through Equation 3.3. 65 satisfy Equation 3.3 .58 ,. G(r). (3.3.81) 29 Gradshteyn and Ryzhik, op. cit., Formula 6 .55 2.4. © 2008 by Taylor & Francis Group, LLC 122 Mixed Boundary Value Problems It is readily shown 30 that 2 a 2 ∞  n=0 J 0 (k n r)cos(k n t) k n J 2 1 (k n a) =  ∞ 0 J 0 (rη)cos(tη)

Ngày đăng: 13/08/2014, 05:22

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan