Volume 01 - Properties and Selection Irons, Steels, and High-Performance Alloys Part 3 pot

160 438 2
Volume 01 - Properties and Selection Irons, Steels, and High-Performance Alloys Part 3 pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Fig 20 Transmission electron micrograph showing the microstructure of 4130 steel water quenched from 900 °C (1650 °F) and tempered at 650 °C (1200 °F) Courtesy of F Woldow Figure 21 shows the range of hardness levels which may be obtained by tempering at various temperatures as a function of the carbon content of the steel The highest hardnesses for engineering applications are associated with the transition carbide microstructures produced by tempering at 150 °C (300 °F) These microstructures have excellent fatigue and wear resistance and are used for such applications as shafts, gears, and bearings The lowest hardnesses are associated with microstructures of spheroidized carbides in a matrix of equiaxed ferrite Steels with these microstructures are used when very high toughness or corrosion resistance (for example, resistance to H2S in oil field applications) is required Fig 21 Hardness as a function of carbon content in iron-carbon alloys quenched to martensite and tempered at various temperatures Source: Ref 31 Toughness, or fracture resistance, generally increases with tempering temperature, but various types of enbrittlement or reduced toughness can develop (Ref 2) Figure 22 shows impact toughness as a function of tempering temperature for selected sets of steels with high and low levels of phosphorus Carbon content has a major influence on toughness Medium-carbon tempered steels are quite tough, but high-carbon steels show very low impact toughness, which limits the application of hardened and tempered high-carbon steels to conditions of compressive loading without impact, such as in bearings The effect of carbon on the toughness of low-temperature tempered specimens correlates with increasing densities of transition carbides and associated high strain hardening rates as carbon content increasing (Ref 2) Fig 22 Charpy V-notch impact toughness as a function of tempering temperature for various alloy steels High phosphorus levels are about 0.02% and low phosphorus levels range between 0.002 and 0.009% Source: Ref 32, 33 Toughness reaches its peak in specimens tempered at 200 °C (390 °F); it drops to a minimum in specimens tempered around 300 °C (570 °F) This drop is referred to as tempered martensite embrittlement and is associated with the transformation of retained austenite to coarse carbide structures Tempered martensite embrittlement is exacerbated by phosphorus segregation to prior-austenite grain boundaries and carbide interfaces, but this effect appears to be constant over the entire tempering range (Fig 22) At higher tempering temperatures, between 350 and 550 °C (660 and 1020 °F), another embrittlement phenomenon may develop in steels containing phosphorus, antimony, or tin (Ref 34) This embrittlement is referred to as temper embrittlement, and requires long holding times or slow cooling through the embrittling temperature range Alloy steels are most susceptible, and the cosegregation of the alloying elements with the impurities to prior austenite grain boundaries has been documented (Ref 35) References cited in this section G Krauss, Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, 1989 28 G Krauss, Tempering and Structural Change in Ferrous Martensites, in Phase Transformations in Ferrous Alloys, A.R Marder and J.I Goldstein, Ed., The Metallurgical Society, 1984 29 D.L Williamson, K Nakazawa, and G Krauss, A Study of the Early Stages of Tempering in an Fe-1.22 pct C Alloy, Metall Trans A, Vol 10A, 1979, p 1351-1363 30 Y Hirotsu and S Nagakura, Crystal Structure and Morphology of the Carbide Precipitated in Martensitic High Carbon Steel During the First Stage of Tempering, Acta Metall., Vol 20, 1972, p 645-655 31 R.A Grange, C.R Hibral, and L.F Porter, Hardness of Tempered Martensite in Carbon and Low Alloy Steels, Metall Trans A, Vol 8A, 1977, p 1775-1785 32 D.L Yaney, "The Effects of Phosphorus and Tempering on the Fracture of AISI 52100 Steel," M.S thesis, Colorado School of Mines, 1981 33 F Zia-Ebrahimi and G Krauss, Mechanisms of Tempered Martensite Embrittlement in Medium-Carbon Steels, Acta Metall , Vol 32, 1984, p 1767-1777 34 C.J McMahon, Jr., Temper Brittleness: An Interpretive Review, in Temper Embrittlement in Steel, STP 407, American Society for Testing and Materials, 1968, p 127-167 35 M Guttman, P Dumonlin, and M Wayman, The Thermodynamics of Interactive Co-Segregation of Phosphorus and Alloying Elements in Iron and Temper-Brittle Steels, Metall Trans A, Vol 13A, 1982, p 1693-1711 Processing: Quenched and Tempered Microstructures Hardened steels with tempered martensitic microstructures are most frequently used in machine components that require high strength and excellent fatigue resistance under conditions of cyclic loading Figure 23 shows a typical processing sequence for these components Hot-rolled bars are received and forged, generally at high temperatures where deformation into complex shapes is readily accomplished The forgings are air cooled, and ferrite-pearlite microstructures develop upon cooling to room temperature A normalizing treatment to refine the coarse microstructures that originated because of high-temperature forging may be required, or a spheroidizing treatment to produce a microstructure of ferrite and spheroidized cementite may be applied if extensive machining prior to hardening is required The forgings are then austenitized, quenched to martensite, and tempered to the properties described in the preceding section Straightening and stress relieving operations may be applied if required Fig 23 Temperature-time processing schedules for producing quench and tempered forgings Processing: Direct-Cooled Forging Microstructures To reduce the number of processing steps associated with producing quenched and tempered microstructures, new alloying approaches have been developed to produce high-strength microstructures directly during cooling after forging Figure 24 shows a schematic of such a processing approach and an alternate processing sequence that cold finishes hotrolled bars Eliminating heat treatment processing steps by direct cooling relative to quenching and tempering has obvious advantages Fig 24 Temperature-time schedule for producing direct-cooled forgings and cold-finished bars One group of steels that has been developed for direct cooling is microalloyed medium-carbon steels (see Ref 36, 37 and the article "High-Strength Low-Alloy Steel Forgings" in this Volume) These steels contain small amounts of vanadium and niobium and transform to precipitation-hardened microstructures of ferrite and pearlite The hardness produced by rapid air cooling ranges from 25 to 30 HRC depending on the extent of precipitation and pearlite in the microstructure; ultimate strength values are over 690 MPa (100 ksi) Thus, the hardness and strength levels are not as high as can be produced by quenching and low-temperature tempering, but they are more than adequate for many automotive applications that require intermediate strengths (Ref 36) The fatigue resistance of direct-cooled microalloyed steels is comparable to that of quenched and tempered steels of the same hardness, but the impact toughness is much lower This reduced toughness is due to the well-known increase in the ductile-to-brittle temperature in steels with ferrite-pearlite microstructures as pearlite content increases (Fig 25) In order to improve the toughness of direct-cooled forging steels, steels that transform to bainitic structures and forging steels with lower carbon concentrations and finer ferrite-pearlite microstructures are being developed (Ref 38) Fig 25 Impact transition curves as a function of carbon content in normalized steels Increase in ductile-tobrittle transition temperatures with increasing carbon content is due to increasing amounts of pearlite Source: Ref References cited in this section G Krauss, Physical Metallurgy and Heat Treatment of Steel, in Metals Handbook Desk Edition, H.E Boyer and T.L Gall, Ed., American Society for Metals, 1985, p 28-2 to 28-10 36 Fundamentals of Microalloying Forging Steels, G Krauss and S.K Banerji, Ed., The Metallurgical Society, 1987 37 G Krauss, Microalloyed Bar and Forging Steels, in 29th Mechanical Working and Steel Processing Conference Proceedings , Vol XXV, Iron and Steel Society, 1988, p 67-77 38 K Grassl, S.W Thompson, and G Krauss, "New Options for Steel Selection for Automotive Applications," SAE Technical Paper 890508, Society of Automotive Engineers, 1989 Summary This article has briefly described the major microstructures and the phase transformations by which these microstructures are developed in carbon and low-alloy steels Each type of microstructure and product is developed to characteristic property ranges by specific processing routes that control and exploit microstructural changes The incorporation of steel carbon content into microstructure has a profound effect on microstructure and properties, and steels fall naturally into low-strength/high ductility/high toughness or high-strength/high fatigue resistant/low toughness groups with increasing carbon content The use of new casting techniques, microalloying, and thermomechanical processing are being used increasingly to reduce processing steps and to improve steel product microstructures and quality References 10 11 12 13 14 15 16 17 18 G Krauss, Physical Metallurgy and Heat Treatment of Steel, in Metals Handbook Desk Edition, H.E Boyer and T.L Gall, Ed., American Society for Metals, 1985, p 28-2 to 28-10 G Krauss, Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, 1989 J.S Kirkaldy, B.A Thompson, and E.A Baganis, Prediction of Multicomponent Equilibrium and Transformation Diagrams for Low Alloy Steels, in Hardenability Concepts with Applications to Steel , D.V Doane and J.S Kirkaldy, Ed., The Metallurgical Society, 1978 Heat Treaters Guide, P.M Unterweiser, H.E Boyer, and J.J Kubbs, Ed., American Society for Metals, 1982 M Hillert, The Formation of Pearlite, in Decomposition of Austenite by Diffusional Processes, V.F Zackay and H.I Aaronson, Ed., Interscience, 1962, p 197-247 W.A Johnson and R.F Mehl, Reaction Kinetics in Processes of Nucleation and Growth, Trans AIME, Vol 135, 1939, p 416-458 J.W Christian and D.V Edmonds, The Bainite Transformation, in Phase Transformations and Ferrous Alloys, A.R Marder and J.I Goldstein, Ed., The Metallurgical Society, 1984, p 293-325 R.F Hehemann, Ferrous and Nonferrous Bainite Structures, in Metals Handbook, 8th ed., Vol 8, American Society for Metals, 1973, p 194-196 B.L Bramfitt and J.G Speer, A Perspective on the Morphology of Bainite, Metall Trans A, to be published in 1990 A.W Cramb, New Steel Casting Processes for Thin Slabs and Strip, Iron Steelmaker, Vol 15 (No 7), 1988, p 45-60 I Tamura, H Sekine, T Tanaka, and C Ouchi, Thermomechanical Processing of High-Strength LowAlloy Steels, Butterworths, 1988 Thermomechanical Processing of Microalloyed Austenite, A.J DeArdo, G.A Ratz, and P.J Wray, Ed., The Metallurgical Society, 1982 Microalloyed HSLA Steels: Proceedings of Microalloying '88, ASM INTERNATIONAL, 1988 P.R Mould, An Overview of Continuous-Annealing Technology, in Metallurgy of Continuous-Annealed Sheet Steel, B.L Bramfitt and D.L Mangonon, Jr., Ed., The Metallurgical Society, 1982, p 3-33 W.C Leslie, The Physical Metallurgy of Steels, McGraw-Hill, 1981 D.Z Yang, E.L Brown, D.K Matlock, and G Krauss, Ferrite Recrystallization and Austenite Formation in Cold-Rolled Intercritically Annealed Steel, Metall Trans A, Vol 11A, 1985, p 1385-1392 Metallurgy of Vacuum-Degassed Steel Products, R Pradhan, Ed., The Metallurgical Society, to be published in 1990 Structure and Properties of Dual-Phase Steels, R.A Kot and J.M Morris, Ed., The Metallurgical Society, 1979 19 Fundamentals of Dual-Phase Steels, R.A Kot and B.L Bramfitt, Ed., The Metallurgical Society, 1981 20 D.K Matlock, F Zia-Ebrahimi, and G Krauss, Structure, Properties and Strain Hardening of Dual-Phase Steels, in Deformation, Processing and Structure, G Krauss, Ed., ASM INTERNATIONAL, 1984 21 B.A Bilby and J.W Christian, The Crystallography of Martensite Transformations, Vol 197, 1961, p 122131 22 M Cohen, The Strengthening of Steel, Trans TMS-AIME, Vol 224, 1962, p 638-657 23 D.P Koistinen and R.E Marburger, A General Equation Prescribing the Extent of the AusteniteMartensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels, Acta Metall., Vol 7, 1959, p 59-60 24 J.P Materkowski and G Krauss, Tempered Martensite Embrittlement in SAE 4340 Steel, Metall Trans A, Vol 10A, 1979, p 1643-1651 25 A.R Marder, A.O Benscoter, and G Krauss, Microcracking Sensitivity in Fe-C Plate Martensite, Metall Trans , Vol 1, 1970, p 1545-1549 26 Hardenability Concepts with Applications to Steel, D.V Doane and J.S Kirkaldy, Ed., American Institute of Mining, Metallurgical, and Petroleum Engineers, 1978 27 C.A Siebert, D.V Doane, and D.H Breen, The Hardenability of Steels: Concepts, Metallurgical Influences, and Industrial Applications, American Society for Metals, 1977 28 G Krauss, Tempering and Structural Change in Ferrous Martensites, in Phase Transformations in Ferrous Alloys, A.R Marder and J.I Goldstein, Ed., The Metallurgical Society, 1984 29 D.L Williamson, K Nakazawa, and G Krauss, A Study of the Early Stages of Tempering in an Fe-1.22 pct C Alloy, Metall Trans A, Vol 10A, 1979, p 1351-1363 30 Y Hirotsu and S Nagakura, Crystal Structure and Morphology of the Carbide Precipitated in Martensitic High Carbon Steel During the First Stage of Tempering, Acta Metall., Vol 20, 1972, p 645-655 31 R.A Grange, C.R Hibral, and L.F Porter, Hardness of Tempered Martensite in Carbon and Low Alloy Steels, Metall Trans A, Vol 8A, 1977, p 1775-1785 32 D.L Yaney, "The Effects of Phosphorus and Tempering on the Fracture of AISI 52100 Steel," M.S thesis, Colorado School of Mines, 1981 33 F Zia-Ebrahimi and G Krauss, Mechanisms of Tempered Martensite Embrittlement in Medium-Carbon Steels, Acta Metall , Vol 32, 1984, p 1767-1777 34 C.J McMahon, Jr., Temper Brittleness: An Interpretive Review, in Temper Embrittlement in Steel, STP 407, American Society for Testing and Materials, 1968, p 127-167 35 M Guttman, P Dumonlin, and M Wayman, The Thermodynamics of Interactive Co-Segregation of Phosphorus and Alloying Elements in Iron and Temper-Brittle Steels, Metall Trans A, Vol 13A, 1982, p 1693-1711 36 Fundamentals of Microalloying Forging Steels, G Krauss and S.K Banerji, Ed., The Metallurgical Society, 1987 37 G Krauss, Microalloyed Bar and Forging Steels, in 29th Mechanical Working and Steel Processing Conference Proceedings , Vol XXV, Iron and Steel Society, 1988, p 67-77 38 K Grassl, S.W Thompson, and G Krauss, "New Options for Steel Selection for Automotive Applications," SAE Technical Paper 890508, Society of Automotive Engineers, 1989 Introduction STEELS constitute the most widely used category of metallic material, primarily because they can be manufactured relatively inexpensively in large quantities to very precise specifications They also provide a wide range of mechanical properties, from moderate yield strength levels (200 to 300 MPa, or 30 to 40 ksi) with excellent ductility to yield strengths exceeding 1400 MPa (200 ksi) with fracture toughness levels as high as 110 MPa m (100 ksi in ) This article will review the various systems used to classify carbon and low-alloy steels*, describe the effects of alloying elements on the properties and/or characteristics of steels, and provide extensive tabular data pertaining to designations of steels (both domestic and international) More detailed information on the steel types and product forms discussed in this article can be found in the articles that follow in this Section Note * The term low-alloy steel rather than the more general term alloy steel is being used to differentiate the steels covered in this article from high-alloy steels High-alloy steels include steels with a high degree of fracture toughness (Fe-9Ni-4Co), which are described in the article "Ultrahigh-Strength Steels" in this Section of the Handbook They also include maraging steels (Fe-18Ni-4Mo-8Co), austenitic manganese steels (Fe-1C12Mn), tool steels, and stainless steels, which are described in separate articles in the Section "Specialty Steels and Heat-Resistant Alloys" in this Volume Classification of Steels Steels can be classified by a variety of different systems depending on: • • • • • • • • • The composition, such as carbon, low-alloy, or stainless steels The manufacturing methods, such as open hearth, basic oxygen process, or electric furnace methods The finishing method, such as hot rolling or cold rolling The product form, such as bar, plate, sheet, strip, tubing, or structural shape The deoxidation practice, such as killed, semikilled, capped, or rimmed steel The microstructure, such as ferritic, pearlitic, and martensitic (Fig 1) The required strength level, as specified in ASTM standards The heat treatment, such as annealing, quenching and tempering, and thermomechanical processing Quality descriptors, such as forging quality and commercial quality Fig Classification of steels Source: D.M Stefanescu, University of Alabama, Tuscaloosa Of the aforementioned classification systems, chemical composition is the most widely used internationally and will be emphasized in this article Classification systems based on deoxidation practice and quality descriptors will also be reviewed Information pertaining to the microstructural characteristics of steels can be found in the article "Microstructures, Processing, and Properties of Steels" in this Volume and in Metallography and Microstructures, Volume of ASM Handbook, formerly 9th Edition Metals Handbook Chemical Analysis G4104 (Cr steels) 5130 SCr2, SCr430 0.280.33 0.150.35 0.600.85 0.030 0.030 0.901.20 5132 SCr3, SCr435 0.330.38 0.150.35 0.600.85 0.030 0.030 0.901.20 5140 SCr4, SCr440 0.380.43 0.150.35 0.600.85 0.030 0.030 0.901.20 5115 SCr21, SCr415 0.130.18 0.150.35 0.600.85 0.030 0.030 0.901.20 5120 SCr22, SCr420 0.180.23 0.150.35 0.600.85 0.030 0.030 0.901.20 G4105 (Cr-Mo steels) 4130, 4135 SCM1 0.270.37 0.150.35 0.300.60 0.030 0.030 1.001.50 0.150.30 4130 SCM2 0.28.033 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4135 SCM3 0.330.38 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4137, 4140 SCM4 0.380.43 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4145, 4147 SCM5 0.430.48 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4118 SCM21H 0.120.18 0.150.35 0.550.90 0.030 0.030 0.851.25 0.150.35 4118 SCM418H 0.150.21 0.150.35 0.550.90 0.030 0.030 0.851.25 0.150.35 4130 SCM430 0.280.33 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4130, 4135 SCM432 0.270.37 0.150.35 0.300.60 0.030 0.030 1.001.50 0.150.30 4135 SCM435 0.330.38 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4140 SCM440 0.380.43 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 4145, 4147 SCM445 0.430.48 0.150.35 0.600.85 0.030 0.030 0.901.20 0.150.30 G4106 (Mn and Mn-Cr steels) 4130 SCM2 0.280.33 0.150.35 0.600.80 0.030 0.030 0.901.20 0.150.30 50B40 SMnC3, SMnC443 0.400.46 0.150.35 1.351.65 0.030 0.030 0.350.70 G4108 (bolting material) 4340 SNB23-1-5 0.350.46 0.180.37 0.560.99 0.030 0.030 1.502.05 0.601.00 0.180.32 4340 SNB24-1-5 0.350.46 0.180.37 0.660.94 0.030 0.030 1.602.05 0.601.00 0.280.42 G4801 (spring steels) 9260 SUP7 0.550.65 1.802.20 0.701.00 0.035 0.035 5155 SUP9 0.500.60 0.150.35 0.650.95 0.035 0.035 0.650.95 5160 SUP9A 0.550.65 0.150.35 0.701.00 0.035 0.035 0.701.00 6150 SUP10 0.450.55 0.150.35 0.650.95 0.035 0.035 0.801.10 0.15-0.25V 5155 SUP11 0.500.60 0.150.35 0.650.95 0.035 0.035 0.650.95 0.0005(min)B 4161 SUP13 0.560.64 0.150.35 0.701.00 0.035 0.035 0.700.90 0.250.35 G5111 (steel castings) 50B40 SCMnCr4 0.350.45 0.300.60 1.201.60 0.040 0.040 0.400.80 4032 SCMnM3 0.300.40 0.300.60 1.201.60 0.040 0.040 0.20 0.150.35 Table 36 Chemical compositions of British Standard (BS) carbon, carbon-manganese, resulfurized, and rephosphorized/resulfurized steels referenced in Table 31 Alternate designations are in parentheses Nearest SAE grade BS number Composition, wt% C Si Mn P S Others 970 (carbon and carbon-manganese steel, free-cutting steel) 1005 015A03 0.06 0.100.40 0.40 0.050 0.050 1006 030A04 0.08 0.100.40 0.200.40 0.050 0.050 1006 040A04 0.08 0.100.40 0.300.50 0.050 0.050 1010 040A10 (En2A,2A/1,2B) 0.080.13 0.40 0.300.50 0.050 0.050 1012 040A12 (En2A,En2A/1,En2B) 0.100.15 0.40 0.300.50 0.050 0.050 1015 040A15 0.130.18 0.40 0.300.50 0.050 0.050 1017 040A17 0.150.20 0.40 0.300.50 0.050 0.050 1020 040A20 0.180.23 0.40 0.300.50 0.050 0.050 1023 040A22 (En2C,En2D) 0.200.25 0.40 0.300.50 0.050 0.050 1010 045A10 0.080.13 0.40 0.300.60 0.050 0.050 1010 045M10 (En32A) 0.070.13 0.100.40 0.300.60 0.050 0.050 1006 050A04 0.08 0.100.40 0.400.60 0.050 0.050 1010 050A10 0.080.13 0.100.40 0.400.60 0.050 0.050 1012 050A12 0.100.15 0.40 0.400.60 0.050 0.050 1015 050A15 0.130.18 0.40 0.500.70 0.050 0.050 1017 050A17 0.150.20 0.40 0.400.60 0.050 0.050 1020 050A20 (En2C,En2D) 0.180.23 0.40 0.400.60 0.050 0.050 1023 050A22 0.220.25 0.40 0.400.60 0.050 0.050 1086 050A86 0.830.90 0.100.40 0.400.60 0.050 0.050 1010 060A10 0.080.13 0.100.40 0.500.70 0.050 0.050 1012 060A12 0.100.15 0.40 0.500.70 0.050 0.050 1015 060A15 0.130.18 0.40 0.500.70 0.050 0.050 1017 060A17 0.150.20 0.40 0.500.70 0.050 0.050 1020 060A20 0.180.23 0.40 0.500.70 0.050 0.050 1023 060A22 0.200.25 0.04 0.500.70 0.050 0.050 1029 060A27 0.250.30 0.100.40 0.500.70 0.050 0.050 1030 060A30 0.280.33 0.40 0.500.70 0.050 0.050 1035 060A35 0.330.38 0.100.40 0.500.70 0.050 0.050 1039 060A40 0.380.43 0.40 0.500.70 0.050 0.050 1040 060A40 0.380.43 0.40 0.500.70 0.050 0.050 1042,1043 060A42 0.400.45 0.40 0.500.70 0.050 0.050 1045 060A47 0.450.50 0.100.40 0.500.70 0.050 0.050 1049 060A47 0.450.50 0.100.40 0.500.70 0.050 0.050 1050 060A52 0.500.55 0.40 0.500.70 0.050 0.050 1055 060A57 0.550.60 0.40 0.500.70 0.050 0.050 1060 060A57 0.550.60 0.40 0.500.70 0.050 0.050 1059 060A62 0.600.65 0.100.40 0.500.70 0.050 0.050 1064 060A62 0.600.65 0.100.40 0.500.70 0.050 0.050 1065 060A67 0.650.70 0.40 0.500.70 0.050 0.050 1070 060A72 0.700.75 0.40 0.500.70 0.050 0.050 1078 060A78 0.750.82 0.40 0.500.70 0.050 0.050 1080 060A78 0.750.82 0.40 0.500.70 0.050 0.050 1080 060A83 0.800.87 0.40 0.500.70 0.050 0.050 1084 060A86 0.830.90 0.40 0.500.70 0.050 0.050 1090 060A96 0.931.00 0.100.35 0.500.70 0.050 0.050 1095 060A99 0.951.05 0.40 0.500.70 0.050 0.050 1055 070M55 0.500.60 0.500.90 0.050 0.050 1070 070A72 (En42) 0.700.75 0.100.35 0.600.80 0.050 0.050 1074 070A72 (En42) 0.700.75 0.100.35 0.600.80 0.050 0.050 1080 070A78 0.750.82 0.100.40 0.600.80 0.050 0.050 1021 070M20 0.160.24 0.500.90 0.050 0.050 1026 070M26 0.220.30 0.500.90 0.050 0.050 1055 070M55 0.500.60 0.500.90 0.050 0.050 1015 080A15 0.130.18 0.40 0.700.90 0.050 0.050 1016 080A15 0.130.18 0.40 0.700.90 0.050 0.050 1018 080A17 0.150.20 0.40 0.700.90 0.050 0.050 1021 080A20 0.180.23 0.100.40 0.700.90 0.050 0.050 1023 080A22 0.200.25 0.100.40 0.700.90 0.050 0.050 1026 080A25 0.230.28 0.100.40 0.700.90 0.050 0.050 1026 080A27 0.250.30 0.100.40 0.700.90 0.050 0.050 1029 080A27 (En5A) 0.250.30 0.40 0.700.90 0.050 0.050 1030 080A30 (En5B) 0.280.33 0.40 0.700.90 0.050 0.050 1035 080A32 (En5C) 0.300.35 0.100.40 0.700.90 0.050 0.050 1035 080A35 (En8A) 0.330.38 0.100.40 0.700.90 0.050 0.050 1039 080A40 (En8C) 0.380.43 0.40 0.700.90 0.050 0.050 1040 080A40 (En8C) 0.380.43 0.40 0.700.90 0.050 0.050 1042 080A42 (En8D) 0.400.45 0.40 0.700.90 0.050 0.050 1043 080A42 (En8D) 0.400.45 0.40 0.700.90 0.050 0.050 1045 080A47 0.450.50 0.100.40 0.700.90 0.050 0.050 1049 080A47 0.450.50 0.100.40 0.700.90 0.050 0.050 1050 080A52 (En43C) 0.500.55 0.150.35 0.700.90 0.050 0.050 1053 080A52 (En43C) 0.500.55 0.150.35 0.700.90 0.050 0.050 1055 080A52 (En43C) 0500.55 0.150.35 0.700.90 0.050 0.050 1055 080A57 0.550.60 0.40 0.700.90 0.050 0.050 1060 080A57 0.550.60 0.40 0.700.90 0.050 0.050 1064 080A62 (En43D) 0.600.65 0.40 0.700.90 0.050 0.050 1065 080A67 (En43E) 0.650.70 0.40 0.700.90 0.050 0.050 1070, 1074 080A72 0.700.75 0.40 0.700.90 0.050 0.050 1080 080A78 0.750.82 0.40 0.700.90 0.050 0.050 1080, 1085 080A83 0.800.87 0.40 0.700.90 0.050 0.050 1084 080A86 0.830.90 0.40 0.700.90 0.050 0.050 1015 080M15 0.130.18 0.40 0.700.90 0.050 0.050 1016 080M15 0.130.18 0.40 0.700.90 0.050 0.050 1030 080M30 (En5) 0.260.34 0.601.00 0.050 0.050 1037 080M36 0.320.40 0.601.00 0.050 0.050 1039 080M40 (En8) 0.360.44 0.601.00 0.050 0.050 1040 080M40 (En8) 0.360.44 0.601.00 0.050 0.050 1043 080M46 0.420.50 0.601.00 0.050 0.050 1045 080M46 0.420.50 0.601.00 0.050 0.050 1046 080M46 0.420.50 0.601.00 0.050 0.050 1050 080M50 (En43A) 0.450.55 0.601.00 0.050 0.050 1053 080M52 (En43C) 0.500.55 0.150.35 0.700.90 0.050 0.050 1022 120M19 0.150.23 1.001.40 0.050 0.050 1526 120M28 0.240.32 1.001.40 0.050 0.050 1536 120M36 (En15B) 0.320.40 1.001.40 0.050 0.050 1513 125A15 0.130.18 0.100.40 1.101.40 0.050 0.050 1513 130M15 0.120.18 0.100.40 1.101.50 0.050 0.050 1513 130M15 (En201) 0.120.18 0.100.40 1.101.50 0.050 0.050 1513 130M15 0.120.18 0.100.40 1.101.50 0.050 0.050 1541 135M44 0.400.48 0.100.40 1.201.50 0.050 0.050 1524 150M19 (En14A) 0.150.23 1.301.70 0.050 0.050 1524 150M19 (En14B) 0.150.23 1.301.70 0.050 0.050 1527 150M28 (En14A) 0.240.32 1.301.70 0.050 0.050 1527 150M28 (En14B) 0.240.32 1.301.70 0.050 0.050 1536 150M36 (En15) 0.320.40 1.301.70 0.050 0.050 1541 150M40 0.360.44 0.100.40 1.301.70 0.050 0.050 1016 170H15 0.120.18 0.100.40 0.801.10 0.060 0.030.06 0.0005-0.005B 1022 170H20 0.170.23 0.100.40 0.801.20 0.050 0.050 0.0005-0.005B 1037 170H36 0.320.39 0.100.40 0.801.10 0.050 0.050 0.0005-0.005B 1039 170H41 0.370.44 0.100.40 0.801.10 0.050 0.050 0.0005-0.005B 1015 173H16 0.130.19 0.100.40 1.101.40 0.060 0.030.06 0.0005-0.005B 1016 173H16 0.130.19 0.100.40 1.101.40 0.060 0.030.06 0.0005-0.005B 1524 175H23 0.200.25 0.100.40 1.301.60 0.060 0.030.06 0.0005-0.005B 1117 210A15 0.130.18 0.100.40 0.901.20 0.050 0.100.18 1117 210M17 (En32M) 0.120.18 0.100.40 0.901.30 0.050 0.100.18 1139 212A37 (En8BM) 0.350.40 0.25 1.001.30 0.060 0.120.20 1141 212A42 (En8DM) 0.400.45 0.25 1.001.30 0.060 0.120.20 1144 212A42 (En8DM) 0.400.45 0.25 1.001.30 0.060 0.120.20 1137, 1139 212M36 (En8M) 0.320.40 0.25 1.001.40 0.060 0.120.20 1137, 1139 216M36 (En15AM) 0.320.40 0.25 1.301.70 0.060 0.120.20 1137, 1139 212M36 (En8M) 0.320.40 0.25 1.001.40 0.060 0.120.20 1144 212M44 0.400.48 0.25 1.001.40 0.060 0.120.20 1146 212M44 0.400.48 0.25 1.001.40 0.060 0.120.20 1117 214A15 0.130.18 0.100.40 1.101.50 0.050 0.100.18 1117 214M15 (En202) 0.120.18 0.100.40 1.201.60 0.050 0.100.18 1118 214M15 (En201) 0.120.18 0.100.40 1.201.60 0.050 0.100.18 1141 216A42 0.400.45 0.25 1.201.50 0.060 0.120.20 1144 216M44 0.400.48 0.25 1.201.50 0.060 0.120.20 1213 220M07 (En1A) 0.15 0.901.30 0.070 0.200.30 1137, 1139 225M36 0.320.40 0.25 1.301.70 0.060 0.120.20 1144 225M44 0.400.48 0.25 1.301.70 0.060 0.200.30 1144 226M44 0.400.48 0.25 1.301.70 0.060 0.220.30 1213 230M07 0.15 0.05 0.901.30 0.070 0.250.35 1213 240M07 (En1A) 0.15 1.101.50 0.070 0.300.40 1215 240M07 (En1B) 0.15 1.101.50 0.070 0.300.60 980 (not identified) 1524 CDS9, CDS10 0.26 0.35 1.201.70 0.050 0.050 1010 CEW1 0.013 0.60 0.050 0.050 1035 CFS6 0.300.40 0.35 0.500.80 0.050 0.050 1522 CFS7 0.200.30 0.35 1.201.50 0.050 0.050 0.40 0.30 1.301.70 0.050 0.050 0.400.48 0.30 0.500.90 0.045 0.045 1045 (not identified) 1536 1045 1287 (not identified) 1040 1287 1449 (plate, sheet, and strip) 1023 22HS 0.200.25 0.400.60 0.050 0.050 1008 3CR, 3CS, 3HR, 3HS 0.10 0.50 0.040 0.040 1010 4CR, 4CS, 4HR, 4HS 0.12 0.60 0.050 0.050 1012 12CS, 12HS 0.100.15 0.400.60 0.050 0.050 1017 17CS, 17HS 0.150.20 0.400.60 0.050 0.050 1023 22CS 0.200.25 0.400.60 0.050 0.050 1030 30CS, 30HS 0.250.35 0.050.35 0.500.90 0.045 0.045 1040 40CS, 40HS 0.350.45 0.050.35 0.500.90 0.045 0.045 1010 40F30 0.12 1.20 0.030 0.035 1513 40/30CS, 40/30HR, 40/30HS 0.15 1.20 0.040 0.040 1010 43F35, 46F40, 50F45, 60F55, 68F62 0.12 1.20 0.030 0.035 1060 60CS, 60HS 0.550.65 0.050.30 0.500.90 0.045 0.045 1070 70CS, 70HS 0.650.75 0.050.30 0.500.90 0.045 0.045 1010 75F70CS, 75F70HR, 75F70HS 0.12 1.20 0.030 0.035 1080 80CS, 80HS 0.750.85 0.050.35 0.500.90 0.045 0.045 1090 95CS, 95HS 0.901.00 0.050.35 0.300.90 0.040 0.040 1453 (not identified) 1513 A2 0.100.20 0.100.35 1.001.60 0.040 0.040 1527 A3 0.250.30 0.300.50 1.301.60 0.050 0.050 0.25Cr, 0.25Ni 1456 (not identified) 1524 Grade A 0.180.25 0.50 1.201.60 0.050 0.050 1527 Grade B1, Grade B2 0.250.33 0.50 1.201.60 0.050 0.050 0.16 0.50 0.050 0.050 0.25Cr, 0.30Ni, 0.30Cu, 0.10Mo 1501 (plates for pressure vessels) 1012 141-360 1503 (forgings for pressure vessels) 1522 221-460 0.23 0.100.40 0.901.70 0.040 0.040 1522 223-409 0.25 0.100.40 0.901.70 0.040 0.040 0.01-0.06Nb 1522 224-490 0.25 0.100.40 0.901.70 0.040 0.040 0.15Al 1549 (not identified) 1050 50CS 0.450.55 0.050.35 0.500.90 0.045 0.045 1050 50HS 0.450.55 0.050.35 0.500.90 0.045 0.045 1717 (tubes) 1035 CDS105/106 0.300.40 0.35 0.300.90 0.050 0.050 1008 ERW101 0.10 0.60 0.060 0.060 0.100.15 0.100.35 1.301.70 0.050 0.050 2772 (collier haulage and winding equipment) 1513 150M12 3059 (boiler and superheater tubes) 1013 360 0.17 0.35 0.400.80 0.045 0.045 1016 440 0.120.18 0.100.35 0.901.20 0.040 0.035 0.17 0.35 0.400.60 0.045 0.045 3601 (pipes and tubes) 1013 360 3100 (steel castings) 1527 A5 0.250.33 0.60 1.201.60 0.050 0.050 1536 A5 0.250.33 0.60 1.201.60 0.050 0.050 1527 A6 0.250.33 0.60 1.201.60 0.050 0.050 1536 A6 0.250.33 0.60 1.201.60 0.050 0.050 1046 AW2 0.400.50 0.36 1.00 0.050 0.050 0.25Cr, 0.40Ni, 0.30Cu, 0.15Mo 1055 AW3 0.500.60 0.60 1.00 0.050 0.050 0.25Cr, 0.40Ni, 0.15Mo, 0.30Cu 3111 (wire) 1022 Type 0.170.23 0.150.35 0.801.10 0.040 0.040 0.02Al, 0.0008-0.005B 1037 Type 10 0.320.39 0.150.35 0.801.10 0.040 0.040 0.0008-0.005B, 0.02Al 3146 (investment castings) 1040 Class Grade C 0.350.45 0.200.60 0.401.00 0.035 0.035 0.30Cr, 0.40Ni, 0.30Cu, 0.10Mo 1040 Class 0.370.45 0.200.60 0.500.80 0.035 0.035 0.30Cr, 0.40Ni, 0.30Cu, 0.10Mo 1522 CLA2 0.180.25 0.200.50 1.201.70 0.035 0.035 0.30Cr, 0.40Ni, 0.30Cu 0.17 0.35 0.400.80 0.045 0.045 0.17 0.35 0.400.80 0.045 0.045 3601 (pipes and tubes) 1013 360 3603 (tubes for pressure vessels) 1013 360 3606 (tubes for heat exchangers) 1008 261 0.060.10 0.100.35 0.600.80 0.020 0.020 0.20Cr, 0.40-0.60Mo, 0.06Al, 0.002-0.006B 1016 440 0.120.18 0.100.35 0.901.20 0.040 0.035 ... G 1010 0 1010 0.0 8-0 . 13 0 .3 0-0 .60 0.040 0.050 G 1012 0 1012 0.1 0-0 .15 0 .3 0-0 .60 0.040 0.050 G 10 13 0 10 13 0.1 1-0 .16 0.5 0-0 .80 0.040 0.050 G 1015 0 1015 0. 13 -0 18 0 .3 0-0 .60 0.040 0.050 G 1016 0 1016 0 13 -0 .18... 0.1 4-0 .20 1 .3 0-1 .60 0.040 0.0 8-0 . 13 G1 137 0 1 137 0 .3 2-0 .39 1 .3 5-1 .65 0.040 0.0 8-0 . 13 G1 139 0 1 139 0 .3 5-0 . 43 1 .3 5-1 .65 0.040 0.1 3- 0 .20 G11400 1140 0 .3 7-0 .44 0.7 0-1 .00 0.040 0.0 8-0 . 13 G11410 1141 0 .3 7-0 .45... G1 033 0 1 033 0.2 9-0 .36 0.7 0-1 .00 0.040 0.050 G1 035 0 1 035 0 .3 1-0 .38 0.6 0-0 .90 0.040 0.050 G1 037 0 1 037 0 .3 1-0 .38 0.7 0-1 .00 0.040 0.050 G1 038 0 1 038 0 .3 4-0 .42 0.6 0-0 .90 0.040 0.050 G1 039 0 1 039 0 .3 6-0 .44

Ngày đăng: 10/08/2014, 12:21

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan