Bài giảng điện tử số part 5 potx

13 234 0
  • Loading ...
1/13 trang

Thông tin tài liệu

Ngày đăng: 27/07/2014, 12:20

Bài ging N T S 1 Trang 52 3.3. FLIP – FLOP (FF) 3.3.1. Khái nim Flip-Flop (vit tt là FF) là mch dao ng a hài hai trng thái bn, c xây dng trên c s các cng logic và hot ng theo mt bng trng thái cho trc. 3.3.2. Phân loi Có hai cách phân loi: - Phân loi theo tín hiu u khin. - Phân loi theo chc nng. 1. Phân loi FF theo tín hiu u khin ng b m có hai loi: - Không có tín hiu u khin ng b (FF không ng b). - Có tín hiu u khin ng b (FF ng b). a. FF không ng b ng 1: RSFF không ng b dùng cng NOR (s hình 3.43) a vào bng chân tr ca cng NOR  gii thích hot ng ca s mch này : - S = 0, R = 1 ⇒ Q = 0. Q=0 hi tip v cng NOR 2 nên cng NOR 2 có hai ngõ vào bng 0 ⇒ Q = 1. Vy, Q = 0 và Q = 1. - S = 1, R = 0 ⇒ Q= 0. Q= 0 hi tip v cng NOR 1 nên cng NOR 1 có hai ngõ vào bng 0 ⇒ Q = 1. Vy, Q = 1 và Q = 0. - Gi s ban u: S = 0, R = 1 ⇒ Q = 0 và Q = 1. u tín hiu ngõ vào thay i thành: S = 0, R = 0 (R chuyn t 1 → 0) ta có: + S = 0 và Q = 0 ⇒ Q = 1 + R = 0 và Q = 1 ⇒ Q = 0 ⇒ RSFF gi nguyên trng thái c trc ó. - Gi s ban u: S = 1, R = 0 ⇒ Q = 1 và Q = 0. u tín hiu ngõ vào thay i thành: R = 0, S = 0 (S chuyn t 1 → 0) ta có: + R = 0 và Q = 0 ⇒ Q = 1 + S = 0 và Q = 1 ⇒ Q = 0 ⇒ RSFF gi nguyên trng thái c trc ó. Q Q R S 1 2 S R Q 0 0 Q 0 0 1 0 1 0 1 1 1 X Hình 3.43. RSFF không ng b s dng cng NOR và bng trng thái Chng 3. Các phn t logic c bn Trang 53 ng 2: RSFF không ng b dùng cng NAND (s hình 3.44) a vào bng chân tr ca cng NAND:    =∃ =∀ = 0x1 1x0 y i i Ta có: - S = 0, R = 1 ⇒ Q = 1. Q = 1 hi tip v cng NAND 2 nên cng NAND 2 có hai ngõ vào ng 1 vy Q = 0. - S = 0, R = 1 ⇒ Q = 1. Q = 1 hi tip v cng NAND 1 nên cng NAND 1 có hai ngõ vào ng 1 vy Q = 0. - S = R = 0 ⇒ Q = Q = 1 ây là trng thái cm. - S = R = 1: Gi s trng thái trc ó có Q = 1, Q = 0 ⇒ hi tip v cng NAND 1 nên cng NAND 1 có mt ngõ vào bng 0 vy Q = 1 ⇒ RSFF gi nguyên trng thái c. Nh vy gi là FF không ng b bi vì ch cn mt trong hai ngõ vào S hay R thay i thì ngõ ra cng thay i theo.  mt kí hiu, các RSFF không ng bc ký hiu nh sau: R QS R Q S Hình 3.45. Ký hiu các FF không ng b a. R,S tác ng mc 1 - b. R,S tác ng mc 0 a) b) Hình 3.44. RSFF không ng b s dng cng NAND và bng trng thái S R Q 1 2 Q S R Q 0 0 X 0 1 1 1 0 0 1 1 Q 0 Bài ging N T S 1 Trang 54 b. FF ng b Xét s RSFF ng b vi s mch, ký hiu và bng trng thái hot ng nh hình 3.46. Trong ó: Ck là tín hiu u khin ng b hay tín hiu ng h (Clock). Kho sát hot ng ca ch: - Ck = 0: cng NAND 3 và 4 khóa không cho d liu a vào. Vì cng NAND 3 và 4 u có ít nht mt ngõ vào Ck = 0 ⇒ S = R =1 ⇒ Q = Q 0 : RSFF gi nguyên trng thái c. - Ck = 1: cng NAND 3 và 4 m. Ngõ ra Q s thay i tùy thuc vào trng thái ca S và R. + S = 0, R = 0 ⇒ S =1, R =1 ⇒ Q = Q 0 + S = 0, R = 1 ⇒ S =1, R = 0 ⇒ Q = 0 + S = 1, R = 0 ⇒ S = 0, R = 1 ⇒ Q = 1 + S = 1, R = 1 ⇒ S = 0, R = 0 ⇒ Q = X Trong trng hp này tín hiu ng b Ck tác ng mc 1. Trong trng hp Ck tác ng mc 0 thì ta mc thêm cng o nh sau (hình 3.47): Tùy thuc vào mc tích cc ca tín hiu ng b Ck, chúng ta có các loi tín hiu u khin: - Ck u khin theo mc 1. - Ck u khin theo mc 0. - Ck u khin theo sn lên (sn trc). - Ck u khin theo sn xung (sn sau). S R Ck Q X X 0 Q 0 0 0 1 Q 0 0 1 1 0 1 0 1 1 1 1 1 X S Q Ck R Q S R Q 1 2 Q 3 4 R S Ck Hình 3.46. RSFF ng b: S logic và ký hiu S R Q 1 2 Q 3 4 R S Ck S Q Ck R Q Hình 3.47 Chng 3. Các phn t logic c bn Trang 55 S R ch o sn lên Ck Xung sau khi qua ch to sn lên Ck t t 0 0 Hình 3.49. S khi FF tác ng theo sn lên và dng sóng Xét FF có Ck u khin theo sn lên (sn trc) : Sn lên và mc logic 1 có mi quan h vi nhau, vì vy mch to sn lên là mch ci tin ca ch tác ng theo mc logic 1. n lên thc cht là mt xung dng có thi gian tn ti rt ngn.  ci tin các FF tác ng theo mc logic 1 thành FF tác ng theo sn lên ta mc vào trc FF ó mt mch to sn lên nh hình 3.49.  mch to sn ngi ta li dng thi gian tr ca tín hiu khi i qua phn t logic. i vi ch to sn ngi ta li dng thi gian tr ca tín hiu khi i qua cng NOT. Xét s mch to sn lên và dng sóng nh hình 3.50 : Mch to sn lên gm mt cng AND 2 ngõ vào và mt cng NOT. Tín hiu x1 t cng NOT c a n cng AND cùng vi tín hiu x 2 i trc tip (x 2 = Ck). Do tính cht tr ca tín hiu Ck khi i qua cng NOT nên x 1 b tr mt khong thi gian, vì vy tín hiu ngõ ra ca cng AND có dng mt xung dng rt hp vi thi gian tn ti chính bng thi gian tr (tr truyn t) ca cng NOT. Xung dng hp này c a n ngõ vào ng b ca FF u khin theo mc logic 1. Ti các thi m có sn lên ca tín hiu xung nhp Ck s xut hin mt xung dng tác ng vào ngõ vào ng b ca FF u khin ngõ ra a. Mc 1 b. Mc 0 c. Sn lên d. Sn xung Hình 3.48. Các loi tín hiu u khin Ck khác nhau S Ck R y x 1 x 2 Ck t y 0 t x 1 0 t x 2 0 Ck t 0 Hình 3.50 Bài ging N T S 1 Trang 56 Q thay i trng thái theo các ngõ vào. S mch FF có tín hiu Ck u khin theo sn lên nh hình 3.51. Xét FF có Ck u khin theo sn xung (sn sau) : ch to sn xung là mch ci tin tác ng mc logic 0. S mch và dng sóng c cho  hình 3.52. Trên hình 3.53 là ký hiu trên s mch và s thc hin Flip-Flop tác ng theo n xung. (Sinh viên t gii thích hot ng ca các mch này). S R Q 1 2 Q 3 4 R S y Ck Hình 3.51. FF có tín hiu Ck u khin theo sn lên y x 1 x 2 Ck Ck t 0 t x 2 x 1 0 t 0 t y 0 Hình 3.52. Mch to sn xung a.  mch b. ng sóng a) b) S R Q 1 2 Q 3 4 R S y Ck S Q Ck R Q Hình 3.53 a.  mch thc hin b. Ký hiu a) b) Chng 3. Các phn t logic c bn Trang 57 Ý ngha ca tín hiu ng b Ck: i vi các FF ng b, các ngõ ra ch thay i trng thái theo ngõ vào DATA khi xung Ck tn ti c 1 (i vi FF tác ng mc 1), hoc xung Ck tn ti mc 0 (i vi FF tác ng mc 0), hoc xung Ck  sn lên (i vi FF tác ng sn lên), xung Ck  sn xung (i vi FF tác ng n xung), còn tt c các trng hp khác ca Ck thì ngõ ra không thay i trng thái theo các ngõ vào mc dù lúc ó các ngõ vào có thay i trng thái. Phng pháp u khin theo kiu ch t (Master - Slaver) :  i vi phng pháp này khi xung Ck tn ti mc logic 1 d liu sc nhp vào FF, còn khi Ck tn ti mc logic 0 thì d liu cha trong FF c xut ra ngoài. V mt cu to bên trong gm 2 FF: mt FF thc hin chc nng ch (Master) và mt FF thc hin chc nng t (Slaver). Hot ng ca FF u khin theo kiu ch/t: (hình 3.54) + Ck = 1: FF2 m, d liu c nhp vào FF2. Qua cng o Ck = 0 ( FF1 khóa nên gi nguyên trng thái c trc ó. + Ck = 0: FF2 khóa nên gi nguyên trng thái c trc ó. Qua cng o Ck = 1 ( FF1 m, d liu c xut ra ngoài. Chú ý: Tín hiu Ck có thc to ra t mch dao ng a hài không trng thái bn. 3.3.2.2. Phân loi FF theo chc nng a. RSFF ó là FF có các ngõ vào và ngõ ra ký hiu nh hình v. Trong ó: - S, R : các ngõ vào d liu. - Q, Q : các ngõ ra. - Ck : tín hiu xung ng b i S n và R n là trng thái ngõ vào Data  xung Ck th n. Q n , Q n+1 là trng thái ca ngõ ra Q  xung Ck th n và th (n+1). Lúc ó ta có bng trng thái mô t hot ng ca RSFF: R S Ck Q 1 2 Q 3 4 5 6 7 8 FF 1 FF 2 Hình 3.54. Phng pháp u khin theo kiu ch t S Q Ck R Q Hình 3.55. Ký hiu RSFF Bài ging N T S 1 Trang 58 S n R n Q n+1 0 0 Q n 0 1 0 1 0 1 1 1 X u ý rng trng thái khi c 2 ngõ vào S = R = 1 lúc ó c 2 ngõ ra có cùng mc logic, ây là trng thái cm ca RSFF (thng c ký hiu X). Tip theo chúng ta si xây dng bng u vào kích ca RSFF. ng u vào kích gm 2 phn, phn bên trái lit kê ra các yêu cu cn chuyn i ca FF, và phn bên phi là các u kin tín hiu u vào kích cn m bo t c các s chuyn i y. Nu các u kin u vào c m bo thì FF s chuyn i theo úng yêu cu. Thc cht bng u vào kích ca FF là  khai trin bng trng thái ca FF. Ta vit li bng trng thái ca RSFF  dng khai trin nh sau: S n R n Q n Q n+1 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 1 1 0 X 1 1 1 X Trong bng này, tín hiu ngõ ra  trng thái tip theo (Q n+1 ) s ph thuc vào tín hiu các ngõ vào data (S, R) và tín hiu ngõ  ra trng thái hin ti (Q n ). T bng khai trin trên ta xây dng c bng u vào kích cho RSFF: Q n Q n+1 S n R n 0 0 0 X 0 1 1 0 1 0 0 1 1 1 X 0 ng t bng trng thái khai trin ta có th tìm c phng trình logic ca RSFF bng cách lp  Karnaugh nh sau: 00 01 11 10 0 0 0 X 1 1 1 0 X 1  bng Karnaugh này ta có phng trình logic ca RSFF: n Q n R n S 1n Q += + S n R n Q n Q n+1 Chng 3. Các phn t logic c bn Trang 59 Vì u kin ca RSFF là S.R= 0 nên ta có phng trình logic ca RSFF c vit y  nh sau: n Q n R n S 1n Q += + SR=0 ng sóng minh ha hot ng ca RSFF trên hình 3.56: b. TFF TFF là FF có ngõ vào và ngõ ra ký hiu và bng trng thái hot ng nh hình v (hình 3.57): Trong ó: - T: ngõ vào d liu - Q,: các ngõ ra - Ck: tín hiu xung ng b. i T n là trng thái ca ngõ vào DATA T  xung Ck th n. i Q n , Q n+1 là trng thái ca ngõ ra  xung Ck th n và (n+1). Lúc ó ta có bng trng thái hot ng khai trin ca TFF.  bng trng thái này ta có nhn xét: + Khi T=0: mi khi có xung Ck tác ng ngõ ra Q gi nguyên trng thái c trc ó. + Khi T=1: mi khi có xung Ck tác ng ngõ ra Q o trng thái. Hình 3.56.  th thi gian dng sóng RSFF Ck t t S t R 0 0 0 1 2 3 4 5 t 0 Q T Q Ck Q Q n Q n 0 1 T n Q n+1 Hình 3.57. Ký hiu TFF và bng trng thái hot ng Bài ging N T S 1 Trang 60 Ck t t T t Q 0 0 0 1 2 3 Hình 3.58 T n Q n Q n+1 0 0 1 1 0 1 0 1 0 1 1 0  bng trng thái khai trin ca TFF ta tìm c bng u vào kích ca TFF nh sau: Q n Q n+1 T n 0 0 1 1 0 1 0 1 0 1 1 0 Phng trình logic ca TFF: Q n+1 = nnnn Q.T.QT + (dng chính tc 1) Hoc: )QT)(Q(TQ nnnn1n ++= + (dng chính tc 2). Vit gn hn: nn1n QTQ ⊕= + (SV có th lp Karnaugh và ti thiu hóa  tìm phng trinh logic ca TFF). Trên hình 3.58 minh ha  th thi gian dng sóng ca TFF. - Tín hiu ra Q u tiên luôn luôn  mc logic 0 - Tín hiu Ck(1) u khin theo sn xung nhìn tín hiu T di mc logic 1. Theo bng trng thái : T 0 = 1 và Q 0 = 0 ⇒ Q 1 = 0 Q = 1. - Tín hiu Ck(2) u khin theo sn xung nhìn tín hiu T di mc logic 0. Theo bng trng thái : T 1 = 0 và Q 1 = 1 ⇒ Q 2 = Q 1 = 1 (Gi nguyên trng thái trc ó). - Tín hiu Ck(3) u khin theo sn xung nhìn tín hiu T di mc logic 1. Theo bng trng thái: T 2 = 1 và Q 2 = 1 ⇒ Q 3 = 2 Q = 0. Chng 3. Các phn t logic c bn Trang 61 Trng hp ngõ vào T luôn luôn bng 1 (luôn  mc logic 1): Khi T=1 thì dng sóng ngõ ra Q c cho trên hình v. Ta có nhn xét rng chu k ca ngõ ra Q ng 2 ln chu k tín hiu xung Ck nên tn s ca ngõ ra là: 2 f f CK Q = y, khi T=1 thì TFF gi vai trò mch chia tn s xung vào Ck. ng quát: Ghép ni tip n TFF vi nhau sao cho ngõ ra ca TFF trc s ni vi ngõ vào ca TFF ng sau (Ck i+1 ni vi Q i ) và lúc bây gi tt c các ngõ vào DATA T  tt c các TFF u gi mc logic 1, lúc ó tn s tín hiu ngõ ra s là: n CK Q 2 f f n = i Q n là tín hiu ngõ ra ca TFF th n; f CK là tn s xung clock  ngõ vào ng b TFF u tiên. c. DFF DFF là FF có ngõ vào và ngõ ra ký hiu nh hình 3.60. Trong ó: D là ngõ vào d liu. Q, Q : các ngõ ra. Ck: tín hiu xung ng b. i D n là trng thaïi ca ngõ vào DATA D  xung Ck th n. i Q n , Q n+1 là trng thái ca ngõ ra  xung Ck th n và (n+1). Khai trin bng trng thái ca DFF  tìm bng u vào kích ca DFF, ta có: D n Q n Q n+1 0 0 1 1 0 1 0 1 0 0 1 1 Ck t t T t Q 0 0 0 1 2 3 4 5 Hình 3.59. Dng sóng ngõ ra khi T=1 0 1 0 1 D n Q n+1 ng trng thái D Q Ck Q Hình 3.60. Ký hiu DFF [...].. .Bài gi ng ng NT S 1 Trang 62 u vào kích c a DFF: Qn 0 0 1 1 Qn+1 0 1 0 1 Dn 0 1 0 1 Ph ng trình logic c a DFF: Qn+1 = Dn Trên hình 3.61 là th th i gian d ng sóng c a DFF: Ck 1 3 2 0 4 t 5 D t 0 Q t Hình 3.61 th th i gian d ng sóng c a DFF Gi i thích d ng sóng c a tín hi u trên hình 3.61: - Tín... n i J , Kn là tr ng thái ngõ vào J,K xung Ck th n i Qn, Qn+1 là tr ng thái ngõ ra Q xung Ck th n và (n+1) Lúc ó ta có b ng tr ng thái mô t ho t ng c a JKFF: J K Qn+1 0 0 Qn 0 1 0 J Q Ck K Q Hình 3. 65 JKFF Bài gi ng NT S 1 Trang 64 1 1 Ph 0 1 1 Qn ng trình logic c a JKFF: Qn+1 = Jn Q n + K n Q n b ng tr ng thái ta th y JKFF kh c ph c c tr ng thái c m c a RSFF, khi J=K=1 ngõ ra tr ng thái k ti p o m c... Ck(3) 1 ⇒ Q3 = D4 = 0 - Tín hi u Ck(4) v v u khi n theo s u khi n theo s Trang 63 n xu ng nhìn tín hi u D3 d i m c logic 1 D3 = 1 ⇒ Q3 = n xu ng nhìn tín hi u D4 d i m c logic 0 ⇒ Q4 = 0 Ck 1 2 0 3 4 t 5 D t 0 Q t 0 Hình 3.63 th th i gian d ng sóng m ch hình 3.62 Nh n xét v t n s ngõ ra: f f Q = CK ⇒ DFF gi vai trò nh m ch chia t n s 2 ng d ng c a DFF: D0 - Dùng DFF chia t n s - Dùng DFF l u tr d li... 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 b ng khai tri n trên ta xây d ng Qn 0 0 1 1 c b ng Qn+1 0 1 0 1 u vào kích cho JKFF nh sau: Sn 0 1 X X Rn X X 1 0 th th i gian d ng sóng c a JKFF: Ck 1 0 2 3 4 t 5 J t 0 K t 0 Q t 0 Hình 3.66 th th i gian d ng sóng JKFF . ca RSFF: R S Ck Q 1 2 Q 3 4 5 6 7 8 FF 1 FF 2 Hình 3 .54 . Phng pháp u khin theo kiu ch t S Q Ck R Q Hình 3 .55 . Ký hiu RSFF Bài ging N T S 1 Trang 58 S n R n Q n+1 0 0 Q n 0. R y x 1 x 2 Ck t y 0 t x 1 0 t x 2 0 Ck t 0 Hình 3 .50 Bài ging N T S 1 Trang 56 Q thay i trng thái theo các ngõ vào. S mch FF có tín hiu Ck u khin theo sn lên nh hình 3 .51 . Xét FF có Ck u khin. trng thái. Hình 3 .56 .  th thi gian dng sóng RSFF Ck t t S t R 0 0 0 1 2 3 4 5 t 0 Q T Q Ck Q Q n Q n 0 1 T n Q n+1 Hình 3 .57 . Ký hiu TFF và bng trng thái hot ng Bài ging N T
- Xem thêm -

Xem thêm: Bài giảng điện tử số part 5 potx, Bài giảng điện tử số part 5 potx, Bài giảng điện tử số part 5 potx

Gợi ý tài liệu liên quan cho bạn