Giáo trình phân tích sơ đồ thiết bị và đồ thị chu trình Renkin được áp dụng trong nhà máy phát điện p4 pps

5 411 0
Giáo trình phân tích sơ đồ thiết bị và đồ thị chu trình Renkin được áp dụng trong nhà máy phát điện p4 pps

Đang tải... (xem toàn văn)

Thông tin tài liệu

118 Khi sản xuất phối hợp điện năng và nhiệt năng thì cả điện năng và nhiệt năng đợc cung cấp bằng tuốc bin ngng hơi có một cửa trích điều chỉnh nh trình bày trên hình 10.6b. Để đảm bảo đồng thời đợc lợng điện N đ và lợng nhiệt Q cho hộ tiêu thụ cần phải tiêu tốn một lợng hơi là G ph . Để tính toán lợng hơi tiêu hao trong trờng hợp này ta giả sử tuốc bin làm việc nh một tuốc bin ngng hơi thuần túy, nghĩa là lợng hơi trích G n = 0. Khi đó muốn sản xuất ra lợng điện N đ thì theo (10-3) cần tiêu hao một lợng hơi là: G õ = mpco TB tdk0 d ii N )( (10-12) Nếu trích đi một lợng hơi G n cấp cho hộ dùng nhiệt nghĩa là lợng hơi Gn này không vào phần hạ áp, không tham gia sinh công để sản xuất điện năng trong phần hạ áp, vì vậy lợng điện sản xuất ra sẽ giảm đi một lợng là: N õ = G n (i n - i k ) TB td co mp (10-13) Để bù lại lợng điện đã giảm đi, cần phải tăng thêm vào tuốc bin một lợng hơi có thể sản xuất ra lợng điện đã bị thiếu N õ là: G = mpco TB tdk0 d ii N )( (10-14) Thay N õ từ (10-13) vào (10-14) ta đợc: G = mpco TB tdk0 mpco TB tdknn ii iiG )( )( (10-15) hay: G = G n )ii( )ii( k kn 0 = y G n , (11-16) trong đó: )ii( )ii( k kn 0 = y đợc gọi là hệ số năng lợng của dòng hơi trích. Nh vậy lợng hơi tiêu tốn trong quá trình sản xuất phối hợp điện năng và nhiệt năng là: G ph = G đ + G (10-17) G ph = G đ + yG n (10-18) Rõ ràng (i n - i k ) < (i 0 - i k ), do đó : )ii( )ii( k kn 0 = y < 1 So sánh (10-17) với (10-18) và lu ý (y < 1) ta thấy sản sản xuất phối hợp điện năng và nhiệt năng tốn ít hơi hơn sản xuất riêng rẽ một lợng là: G tk = G r - G ph = (G đ + G n ) - (G đ + yG n ) G tk = (1 - y)G n (10-19) Lợng hơi đi vào bình ngng khi sản xuất phối hợp là: G' k = G ph - G n = G đ + yG n - G n = G đ - (1 - y)G n (10-20) Lợng hơi đi vào bình ngng khi sản xuất phối hợp nhỏ hơn khi sản xuất riêng rẽ một lợng là: 119 G k = G' k - G k = G đ - [G đ - (1 - y)G n ] (10-21) G k = (1 - y)G n (10-22) Khi sản xuất phối hợp điện năng và nhiệt năng trong tuốc bin có cửa trích, nhờ giảm đợc lợng hơi G k vào binh ngng nên giảm đợc tổn thất nhiệt do nhả nhiệt cho nớc làm mát trong bình ngng. a) b) Hình 10.6. Các phơng án sản xuất điện năng và nhiệt năng a-sản xuất riêng rẽ; b-sản xuất phối hợp Lợng nhiệt tiết kiệm đợc khi sản xuất điện bằng tuốc bin trích hơi là: Q đ = Q ng - Q tr = G k (i k - i' k ) (10-23) Trong đó: Lợng nhiệt tiêu hao cho tuốc bin trích hơi là: Q tr = N đ + Q k tr Lợng nhiệt tiêu hao cho tuốc bin ngng hơi là: Q ng = N đ + Q k ng thay G k từ (10-20) vào (10-21) ta đợc: Q đ = (1 - y)G n (i k - i' k ) (10-24) 10.3. các biện pháp nâng cao hiệu quả kinh tế của nhà máy điện 120 10.3.1. Thay đổi thông số hơi Hiệu suất nhiệt của chu trình Renkin cũng có thể biểu thị bằng hiệu suất chu trình Carno tơng đơng: 1 2 tcarnot T T 1max == (10-29) Từ (10-27) ta thấy: hiệu suất nhiệt của chu trình khi giảm nhiệt độ trung bình T 2tb của quá trình nhả nhiệt trong bình ngng hoặc tăng nhiệt độ trung bình T 1tb của quá trình cấp nhiệt trong lò hơi. 10.3.1.1. Giảm nhiệt độ trung bình của quá trình nhả nhiệt T 2tb Hình 10.7 biểu diễn chu trình Renkin có áp suất cuối giảm từ p 2 xuống p 2o , khi nhiệt độ đầu t 1 và áp suất đầu P 1 không thay đổi. 10.3.1.2. Nâng cao nhiệt độ trung bình của quá trình cấp nhiệt T 1tb Theo (10-29) ta thấy khi nhiệt độ trung bình T 1 của quá trình cấp nhiệt 3451 tăng lên, thì hiệu suất t chu trình sẽ tăng lên. Để nâng nhiệt độ trung bình của quá trình cấp nhiệt T 1tb , có thể tăng áp suất đầu p 1 hoặc nhiệt độ đầu t 1 . Nếu giữ nguyên áp suất hơi quá nhiệt p 1 và áp suất cuối p 2 , tăng nhiệt độ đầu t 1 (hình 10.8) thì nhiệt độ trung bình T 1tb của quá trình cấp nhiệt 3451 cũng tăng lên. Nếu giữ nguyên nhiệt độ hơi quá nhiệt t 1 và áp suất cuối p 2 , tăng áp suất đầu p 1 (hình 10.9) thì nhiệt độ sôi của quá trình 4-5 tăng, do đó nhiệt độ trung bình T 1tb của Khi giảm áp suất ngng tụ p 2 của hơi trong bình ngng, thì nhiệt độ bão hòa t s cũng giảm theo, do đó nhiệt độ trung bình T 2tb của quá trình nhả nhiệt giảm xuống. Theo (10-29) thì hiệu suât nhiệt t của chu trình tăng lên. Tuy nhiên, nhiệt độ t s bị giới hạn bởi nhiệt độ nguồn lạnh (nhiệt độ nớc làm mát trong bình ngng), do đó áp suất cuối của chu trình cũng không thể xuống quá thấp, thờng từ 2Kpa đến 5Kpa tùy theo điều kiện khí hậu từng vùng. Mặt khác, khi giảm áp suất p 2 xuống thì độ ẩm của hơi ở các tầng cuối tuốc bin cũng giảm xuống, sẽ làm giảm hiệu suất và tuổi thọ Tuốc bin, do đó cũng làm giảm hiệu suất chung của toàn nhà máy. s 2 0 T 0 2 x = 1 x = 0 3 0 3 4 5 1 2 H ình 10.7. ảnh hởngcủa áp suất cuối 121 quá trình cấp nhiệt 3451 cũng tăng lên trong khi T 2tb giữ nguyên, dẫn đến hiệu suất nhiệt t của chu trình tăng lên. Hình 10.8. ảnh hởng của nhiệt độ đầu Hình 10.9. ảnh hởng của áp suất đầu Khi tăng nhiệt độ đầu thì độ ẩm giảm, nhng tăng áp suất đầu thì độ ẩm tăng. Do đó trên thực tế ngời ta thờng tăng đồng thời cả áp suất và nhiệt độ đầu để tăng hiệu suất chu trình mà độ ẩm không tăng, nên hiệu suất của chu trình Renkin thực tế sẽ tăng lên. Chính vì vậy, ứng với một giá trị áp suất đầu ngời ta sẽ chọn nhiệt độ đầu tơng ứng, hai thông số này gọi là thông số kết đôi. 10.3.2. Chu trình trích hơi gia nhiệt nớc cấp Một biện pháp khác để nâng cao hiệu suất chu trình Renkin là trích một phần hơi từ tuôc bin để gia nhiệt hâm nớc cấp trớc khi bơm nớc cấp cho lò. Sơ đồ thiết bị chu trình gia nhiệt hâm nớc cấp đợc biểu diễn trên hình 10 10. Chu trình này khác chu trình Renkin ở chỗ: Cho 1kg hơi đi vào tuốc bin, sau khi dãn nở trong phần đầu của Tuốc bin từ áp suất p 1 đến áp suất p t , ngời ta trích một lợng hơi g 1 và g 2 để gia nhiệt nớc cấp, do đó lợng hơi đi qua phần sau của tuốc bin vào bình ngng sẽ giảm xuống chỉ còn là g k : g k = 1 - g 1 - g 2 (10-30) Lợng nhiệt nhả ra trong bình ngng cũng giảm xuống chỉ còn: ( ) ( ) '' 222122 hn 2 iigg1iiq <= (10-31) Hiệu suất chu trình có trích hơi hâm nóng nớc cấp là: 11 hn 21 tr ct q l q qq = = (10-32) Lợng hơi vào bình ngng giảm, nghĩa là lợng nhiệt q 2 mà hơi nhả ra cho nớc làm mát trong bình ngng cũng giảm. Từ (10-32) rõ ràng ta thấy hiệu suất nhiệt chu trình có trích hơi gia nhiệt hâm nớc cấp tăng lên. 0 T 5 0 x = 0 x = 0 3 1 0 s 2 x= 1 3 4 5 2 1 0 s 1 0 1 2 T 2 x = 1 4 2 0 5 4 0 2 0 1k g IV g 2 V V II V I II g 1 g Gọi công của dòng hơi ngng sinh ra trong tuốc bin là: l k = g k (i 0 - i k ) = g k h 0 công của dòng hơi trích sinh ra trong tuốc bin là: l tr = g tr (i 0 - i tr ) = g tr h tr và nhiệt lợng cấp cho 1kg hơi trong lò là: q 0k = i 0 - i nc 122 ok k0 q l = k ct là hiệu suất của chu trình ngng hơi thuần túy (không có trích hơi), okk n 1 trtr ok n 1 tr hg hg l l = = A tr là hệ số năng lợng của dòng hơi trích, Khi đó ta có hiệu suất của chu trình có trích hơi gia nhiệt nớc cấp là: + + = + + = + + = okk ok ok n 1 trtr 0k n 1 trtr ok 0 okk n 1 trtr 0k n 1 trtr ok 0 n 1 trtrk0k n 1 trtr0k tr ct qg hg hg hg 1 hg hg 1 q h qg hg 1 hg hg 1 q h hgqg hghg (10-33) hay: tr ct = k ct k cttr tr A1 A1 + + (10-34) vì k ct < 1 do đó (1 + A tr ) > (1 + A tr ) k ct , nghĩa là k cttr tr A1 A1 + + > 1 hay: tr ct > k ct , (10-35) Công thức (10-35) chứng tỏ hiệu suất của chu trình có trích hơi gia nhiệt nớc cấp luôn luôn lớn hơn hiệu suất của chu trình ngng hơi thuần túy (không có trích hơi gia nhiệt). 10.3.3. Quá nhiệt trung gian hơi Nh đã phân tích ở trên, để nâng cao hiệu suất chu trình của nhà máy ta có thể tăng đồng thời cả áp suất và nhiệt độ đầu của hơi quá nhiệt. Nhng thực tế không thể . cấp cho lò. Sơ đồ thiết bị chu trình gia nhiệt hâm nớc cấp đợc biểu diễn trên hình 10 10. Chu trình này khác chu trình Renkin ở chỗ: Cho 1kg hơi đi vào tuốc bin, sau khi dãn nở trong phần đầu. 10.3. các biện pháp nâng cao hiệu quả kinh tế của nhà máy điện 120 10.3.1. Thay đổi thông số hơi Hiệu suất nhiệt của chu trình Renkin cũng có thể biểu thị bằng hiệu suất chu trình Carno tơng. Giảm nhiệt độ trung bình của quá trình nhả nhiệt T 2tb Hình 10.7 biểu diễn chu trình Renkin có áp suất cuối giảm từ p 2 xuống p 2o , khi nhiệt độ đầu t 1 và áp suất đầu P 1 không thay đổi.

Ngày đăng: 26/07/2014, 20:21

Từ khóa liên quan

Mục lục

  • Bảng 1-1: Khả năng phân giải phụ thuộc nhiệt độ

  • Bảng 1-2: ảnh hưởng của nhiệt độ đến vi sinh vật

  • Bảng 1-3. Chế độ bảo quản rau quả tươi

  • Bảng 1-4: Chế độ bảo quản sản phẩm động vật

  • Bảng 1-5. Các thông số về phương pháp kết đông

  • Bảng 2-1: Chế độ và thời gian bảo quản đồ hộp rau quả

  • Bảng 2-2: Chế độ và thời gian bảo quản rau quả tươi

  • Bảng 2-3: Chế độ và thời gian bảo quản TP đông lạnh

  • Bảng 2-4: Các ứng dụng của panel cách nhiệt

  • Hình 2-1: Kết cấu kho lạnh panel

  • Hình 2-2: Cấu tạo tấm panel cách nhiệt

  • Hình 2-3: Kho lạnh bảo quản

  • 1- Rivê; 2- Thanh nhôm góc; 3- Thanh nhựa; 4- Miếng che mối

  • 9- Miếng đệm; 10- Khoá cam-lock; 11- Nắp nhựa che lổ khoá

  • Hình 2-5 : Các chi tiết lắp đặt panel

  • Bảng 2-5: Tiêu chuẩn chất tải của các loại sản phẩm

  • Bảng 2-6: Hệ số sử dụng diện tích

  • Bảng 2-7: Kích thước kho bảo quản tiêu chuẩn

  • Hình 2-7: Con lươn thông gió kho lạnh

  • Hình 2-9: Màn nhựa che cửa ra vào và xuất nhập hàng kho lạ

Tài liệu cùng người dùng

Tài liệu liên quan