Giáo trình hướng dẫn tìm hiểu về cấu tạo,nhiệt độ và áp suất của mặt trời cũng như những ảnh hưởng của nó đến các hành tinh phần 5 doc

5 496 0
Giáo trình hướng dẫn tìm hiểu về cấu tạo,nhiệt độ và áp suất của mặt trời cũng như những ảnh hưởng của nó đến các hành tinh phần 5 doc

Đang tải... (xem toàn văn)

Thông tin tài liệu

116 Chơng 11. trao đổi nhiệt bức xạ 1.1.1. Các khái niệm cơ bản 1.1.1.1. Đặc điểm của quá trình trao đổi nhiệt bức xạ Trao đổi nhiệt bức xạ (TĐNBX) là hiện tợng trao đổi nhiệt giữa vật phát bức xạ và vật hấp thụ bức xạ thông qua môi trờng truyền sóng điện từ. Mọi vật ở mọi nhiệt độ luôn phát ra các lợng tử năng lợng và truyền đi trong không gian dới dạng sóng điện từ, có bớc sóng từ 0 đến vô cùng. Theo độ dài bức sóng từ nhỏ đến lớn, sóng điện từ đợc chia ra các khoảng ứng với các tia vũ trụ, tia gama , tia Roentgen hay tia X, tia tử ngoại, tia ánh sáng, tia hồng ngoại và các tia sóng vô tuyến nh hình (1.1.1.1). Thực nghiệm cho thấy, chỉ các tia ánh sáng và hồng ngoại mới mang năng lợng E đủ lớn để vật có thể hấp thụ và biến thành nội năng một cách đáng kể, đợc gọi là tia nhiệt, có bớc sóng (0,4 ữ 400) 10 -6 m. Môi trờng thuận lợi cho TĐNBX giữa 2 vật là chân không hoặc khí lõang, ít hấp thụ bức xạ. Khác với dẫn nhiệt và trao đổi nhiệt đối lu, TĐNBX có các đặc điểm riêng là: - Luôn có sự chuyển hóa năng lợng: từ nội năng thành năng lợng điện từ khi bức xạ và ngợc lại khi hấp thụ. Không cần sự tiếp xúc trực tiếp hoặc gián tiếp qua môi trờng chất trung gian, chỉ cần môi trờng truyền sóng điện từ, tốt nhất là chân không. - Có thể thực hiện trên khoảng cách lớn, cỡ khoảng cách giữa các thiên thể trong khoảng không vũ trụ. 117 - Cờng độ TĐNBX phụ thuộc rất mạnh vào nhiệt độ tuyệt đối của vật phát bức xạ. 11.1.2. Các đại lợng đặc trng cho bức xạ 11.1.2.1. Công suất bức xạ toàn phần Q Công suất bức xạ toàn phần của mặt F là tổng năng lợng bức xạ phát ra từ F trong 1 giây, tính theo mọi phơng trên mặt F với mọi bớc sóng (0,). Q đặc trng cho công suất bức xạ của mặt F hay của vật, phụ thuộc vào diện tích F và nhiệt độ T trên F: Q = Q (F,T), [W]. 11.1.2.2. Cờng độ bức xạ toàn phần E Cờng độ bức xạ toàn phần E của điểm M trên mặt F là công suất bức xạ toàn phần Q của diện tích dF bao quanh M, ứng với 1 đơn vị diện tích dF: ]m/W[ 'dF Q E 2 = E đặc trng cho cờng độ BX toàn phần của điểm M trên F, phụ thuộc vào nhiệt độ T tại M, E = E (T). Nếu biết phân bố E tại M F thì tìm đợc: = F EdFQ , khi E = const, M F thì: Q = EF; [W]. 11.1.2.3. Cờng độ bức xạ đơn sắc Cờng độ bức xạ đơn sắc E tại bớc sóng , của điểm M F là phần năng lợng 2 Q phát từ dF quanh M, truyền theo mọi phơng xuyên qua kính lọc sóng có +ữ d ứng với 1 đơn vị của dF và d: [] .m/W, dF d Q E 3 2 = E đặc trng cho cờng độ tia BX có bớc sóng phát từ điểm M F, phụ thuộc vào bớc sóng và nhiệt độ T tại điểm M , E = E (, T). Nếu biết phân bố E theo thì tính đợc E = .dE 0 = Quan hệ giữa E , E, Q có dạng: dFdEEdFQ 0 FF == = 118 11.1.3. các hệ số A, D,D,R và 11.1.3.1. Các hệ số hấp thụ A, phản xạ R và xuyên qua D Khi tia sóng điện từ mang năng lợng Q chiếu vào mặt vật, vật sẽ hấp thụ 1 phần năng lợng Q A để biến thành nội năng, phần Q R bị phản xạ theo tia phản xạ, và phần còn lại Q D sẽ truyền xuyên qua vật ra môi trờng khác theo tia khúc xạ. Phơng trình cân bằng năng lợng sẽ có dạng: Q = Q A + Q R + Q D Hay DRA Q Q Q Q Q Q 1 DRA ++=++= Q Q A A = gọi là hệ số hấp thụ, Q Q R R = gọi là hệ số phản xạ. Q Q D D = gọi là hệ số xuyên qua. Ngời ta thờng gọi vật có A = 1 là vật đen tuyệt đối. R = 1 là vật trắng tuyệt đối, D = 1 là vật trong tuyệt đối, vật có D = 0 là vật đục. Chân không và các chất khí loãng có số nguyên tử dới 3 có thể coi là vật có D = 1. 11.1.3.2. Vật xám và hệ số bức xạ hay độ đen Những vật có phổ bức xạ E đồng dạng với phổ bức xạ E 0 của vật đen tuyệt đối ở mọi bớc sóng , tức có == ,const E E 0 đợc gọi là vật xám, còn hệ số tỉ lệ đợc gọi là hệ số bức xạ hay độ đen của vật xám. Thực nghiệm cho thấy, hầu hết các vật liệu trong kĩ thuật đều có thể coi là vật xám. Độ đen phụ thuộc vào bản chất vật liệu, màu sắc và tính chất cơ học của bề mặt các vật. 11.1.3.2. Bức xạ hiệu dụng và bức xạ hiệu quả Xét tơng tác bức xạ giữa mặt F của vật đục có các thông số D = 0, A , E và môi trờng có cờng độ bức xạ tới mặt F là E t . - Lợng nhiện bức xạ ra khỏi 1 m 2 mặt F, bao gồm bức xạ tự phát E và bức xạ phản xạ (1 - A) E t , đợc gọi là cờng độ bức xạ hiệu dụng: 2 'thd m/WE)A1(EE += - Trị tuyệt đối của hiệu số dòng nhiệt ra theo bức xạ tự phát E và dòng nhiệt vào 1m 2 mặt F do hấp thụ A E t đợc gọi là dòng bức xạ hiệu quả q, .m/W,AEEq 2 t = 119 Dòng bức xạ hiệu quả q chính là lợng nhiệt trao đổi bằng bức xạ giữa1m 2 mặt F với môi trờng. Nếu vật có nhiệt độ cao hơn môi trờng, tức vật phát nhiệt thì q = E AE t , nếu vật thu nhiệt thì q = AE t E. - Quan hệ giữa E hd và q có dạng: = 1 A 1 q A E E hd dấu (+) khi vật thu q, dấu (-) khi vật phát q. Nếu xét tren toàn mặt F, bằng cách nhân các đẳng thức trên với F, sẽ đợc: Công suất bức xạ hiệu dụng của F là: Q hd = Q +(1 A)Q t W . Lợng nhiệt trao đổi giữa F và môi trờng là: Q F = [Q - AQ t ], [W]. Quan hệ giữa Q hd , Q F là: [] .W,1 A 1 Q A Q Q Fhd = 11.2. Các định luật cơ bản của bức xạ 11.2.1. Định luật Planck Dựa vào thuyết lợng tử năng lợng, Panck đã thiết lập đợc định luật sau đây, đợc coi là định luật cơ bản về bức xạ nhiệt: Cờng độ bức xạ đơn sắc của vật đen tuyệt đối E 0 phụ thuộc vào bớc sóng và nhiệt độ theo quan hệ: = 1 T C exp C E 2 5 1 0 Trong đó C 1 , C 2 là các hằng số phụ thuộc đơn vị đó, nếu đo, nếu đo E 0 bằng W/m 3 , bằng m, T bằng 0 K thì: C 1 = 0,374.10 -15 , [Wm 2 ] C 2 = 1,439.10 -12 , [mK] Đồ thị E 0 (,T) cho thấy: E 0 tăng rất nhanh theo T và chỉ có giá trị đáng kể trong miền (08ữ 10).10 -6 m. E 0 đạt cực trị tại bớc sóng m xác định theo phơng trình: ,01 T5 c e E m 2 T.m 2c m 0 = += 120 tức là tại m [] .m, T 10.9,2 3 Đó là nội dung định luật Wien, đợc thiết lập trớc Plack bằng thực nghiệm. Định luật Plack áp dụng cho các vật xám, là vật có E = E 0 , sẽ có dạng: [ ] .m/W, 1 T C exp C E 3 2 5 1 = 11.2.2. Định luật Stefan Boltzmann a. phát biểu định luật: Cờng độ bức xạ toàn phần E 0 của vật đen tuyệt đối tỉ lệ với nhiệt độ tuyệt đối mũ 4: 4 00 TE = Với 0 = 5,67.10 -8 W/m 2 K 4 Định luật này đợc xây dựng trên cơ sở thực nghiệm và lí thuyết nhiệt động học bức xạ, mang tên hai nhà khoa học thiết lập ra nó trớc Planck. Sau đó, nó đợc coi nh 1 hệ quả của định luật Planck. b. chứng minh: Bằng định luật Planck: = = = d t c C dEE 0 2 5 1 0 00 Đổi biến x = T C 2 thì Tx C 2 = và dx Tx C d 2 2 = 4 0 4 4 2 1 0 x 3 4 4 2 1 0 TTI C C dx 1e x T C C E = = = c. Tính hằng số I C C 2 1 0 = Với () dxexdxeexdx e1 ex dx 1e x I 0 0n 0x x)1n(3 0n n xx3 0 x x3 0 x 3 = = + = == = nếu đổi biến t = (n +1)x thì 5,6 n 1 !3 1n 1 dtet 1n dt e 1n t I 1n 4 4 0n t 0t 3t 3 0n 0t == + = + + = = = = = = Do đó hằng số bức xạ của vật đen tuyệt đối, theo Planck là: 428 84 154 4 2 1 0 Km/W10.67,55,6 10.4388,1 10.37,0 I C C === Giá trị này của 0 hoàn toàn phù hợp với định luật trên. . cho công suất bức xạ của mặt F hay của vật, phụ thuộc vào diện tích F và nhiệt độ T trên F: Q = Q (F,T), [W]. 11.1.2.2. Cờng độ bức xạ toàn phần E Cờng độ bức xạ toàn phần E của điểm. hay độ đen của vật xám. Thực nghiệm cho thấy, hầu hết các vật liệu trong kĩ thuật đều có thể coi là vật xám. Độ đen phụ thuộc vào bản chất vật liệu, màu sắc và tính chất cơ học của bề mặt các. 11.1.3. các hệ số A, D,D,R và 11.1.3.1. Các hệ số hấp thụ A, phản xạ R và xuyên qua D Khi tia sóng điện từ mang năng lợng Q chiếu vào mặt vật, vật sẽ hấp thụ 1 phần năng lợng Q A để biến thành

Ngày đăng: 23/07/2014, 07:21

Từ khóa liên quan

Mục lục

  • Bảng 1-1: Khả năng phân giải phụ thuộc nhiệt độ

  • Bảng 1-2: ảnh hưởng của nhiệt độ đến vi sinh vật

  • Bảng 1-3. Chế độ bảo quản rau quả tươi

  • Bảng 1-4: Chế độ bảo quản sản phẩm động vật

  • Bảng 1-5. Các thông số về phương pháp kết đông

  • Bảng 2-1: Chế độ và thời gian bảo quản đồ hộp rau quả

  • Bảng 2-2: Chế độ và thời gian bảo quản rau quả tươi

  • Bảng 2-3: Chế độ và thời gian bảo quản TP đông lạnh

  • Bảng 2-4: Các ứng dụng của panel cách nhiệt

  • Hình 2-1: Kết cấu kho lạnh panel

  • Hình 2-2: Cấu tạo tấm panel cách nhiệt

  • Hình 2-3: Kho lạnh bảo quản

  • 1- Rivê; 2- Thanh nhôm góc; 3- Thanh nhựa; 4- Miếng che mối

  • 9- Miếng đệm; 10- Khoá cam-lock; 11- Nắp nhựa che lổ khoá

  • Hình 2-5 : Các chi tiết lắp đặt panel

  • Bảng 2-5: Tiêu chuẩn chất tải của các loại sản phẩm

  • Bảng 2-6: Hệ số sử dụng diện tích

  • Bảng 2-7: Kích thước kho bảo quản tiêu chuẩn

  • Hình 2-7: Con lươn thông gió kho lạnh

  • Hình 2-9: Màn nhựa che cửa ra vào và xuất nhập hàng kho lạ

  • Bảng 2-8: Khoảng cách cực tiểu khi xếp hàng trong kho lạnh

  • Hình 2-10: Bố trí kênh gió trong kho lạnh

  • Hình 2-11: Cách xác định chiều dài của tường

  • Bảng 2-9. Hiệu nhiệt độ dư phụ thuộc hướng và tính chất bề m

  • Bảng 2-14: Tỷ lệ tải nhiệt để chọn máy nén

  • Hình 2-13: Sơ đồ nguyên lý hệ thống kho lạnh

  • Bảng 2-16: Công suất lạnh máy nén COPELAND, kW

  • Phạm vi nhiệt độ trung bình Môi chất R22

  • Phạm vi nhiệt độ thấp Môi chất R22

  • Bảng 2-19: Công suất lạnh máy nén trục Vít Grasso chủng lo

  • Hình 2-18: Dàn ngưng không khí

  • Hình 2-19: Cấu tạo dàn ngưng không khí

  • Hình 2-20: Dàn lạnh không khí Friga-Bohn

  • Bảng 2-28: Bảng thông số kỹ thuật của dàn lạnh FRIGA-BOHN

  • Hình 2-21: Cấu tạo dàn lạnh không khí Friga-Bohn

  • Hình 2-22: Cụm máy nén - bình ngưng, bình chứa

  • Bảng 3-1: Hàm lượng tạp chất trong nước đá công nghiệp

  • Bảng 3-2: ảnh hưởng của tạp chất đến chất lượng nước đá

  • Bảng 3-3: Hàm lượng cho phép của các chất trong nước

    • Hàm lượng tối đa

  • Bảng 3-4: Các lớp cách nhiệt bể đá cây

    • Hình 3-2: Kết cấu cách nhiệt tường bể đá

      • Hình 3-3: Kết cấu cách nhiệt nền bể đá

  • Bảng 3-5: Các lớp cách nhiệt nền bể đá

  • Bảng 3-6: Kích thước khuôn đá

    • Hình 3-4: Linh đá cây 50 kg

  • Hình 3-5: Bế trí bể đá với linh đá 7 khuôn đá

  • Bảng 3-7: Thông số bể đá

  • Hình 3-6: Dàn lạnh panel

    • Hình 3-7: Cấu tạo dàn lạnh xương cá

  • Hình 3-8: Bình tách giữ mức tách lỏng

    • Hình 3-9: Máy nén lạnh MYCOM

      • 1- Dao cắt đá; 2- Vách 2 lớp; 3- Hộp nước inox; 4- Tấm gạt n

        • Hình 3-10: Cấu tạo bên trong cối đá vảy

          • 1- Máy nén; 2- Bình chứa CA; dàn ngưng; 4- Bình tách dầu; 5-

            • Hình 3-11: Sơ đồ nguyên lý hệ thống lạnh máy đá vảy

  • Bảng 3-11: Diện tích yêu cầu của các cối đá

    • Hình 3-13: Cách nhiệt cối đá vảy

  • Bảng 3-13: Cối đá vảy của SEAREE

  • Bảng 4-1 : Khả năng phân giải của men phân giải mỡ lipaza

  • Bảng 4-2: Các hằng số thực nghiệm

  • Bảng 4-3. Các thông số về phương pháp cấp đông

  • Bảng 4-4: Kích thước kho cấp đông thực tế

  • Bảng 4-5 : Các lớp cách nhiệt panel trần, tường kho cấp đôn

  • Bảng 4-6: Các lớp cách nhiệt nền kho cấp đông

  • Hình 4-5: Bình trung gian kiểu nằm ngang R22

  • Hình 4-6: Bình tách lỏng hồi nhiệt

  • Bảng 4-9: Các lớp cách nhiệt tủ cấp đông

  • Bảng 4-10: Số lượng các tấm lắc

  • Bảng 4-12: Diện tích xung quanh của tủ cấp đông

  • Hình 4-12: Cấu tạo bình trống tràn

  • Bảng 4-13: Số lượng vách ngăn các tủ đông gió

  • Bảng 4-14: Thông số kỹ thuật tủ đông gió

  • Hình 4-14: Cấu tạo tủ đông gió 250 kg/mẻ

  • Bảng 4-15: Các lớp cách nhiệt tủ đông gió

  • Hình 4-16: Sơ đồ nguyên lý hệ thống cấp đông I.Q.F dạng xoắn

  • Bảng 4-16: Buồng cấp đông kiểu xoắn của SEAREFICO

  • Hình 4-19: Buồng cấp đông I.Q.F có băng chuyền thẳng

  • Bảng 4-17 Model: MSF-12 (Dây chuyền rộng 1200mm)

  • Bảng 4-18: Model: MSF-15 (Dây chuyền rộng 1500mm)

    • Bảng 4-19: Thông số kỹ thuật buồng cấp đông I.Q.F dạng thẳng

      • Bảng 4-20: Thời gian cấp đông và hao hụt nước

        • Bảng 4-21: Thông số buòng cấp đông I.Q.F siêu tốc của SEAREF

          • Bảng 4-22: Nhiệt độ không khí trong các buồng I.Q.F

            • Bảng 4-23: Các lớp cách nhiệt buồng I.Q.F

              • Hình 4-23: Sơ đồ nguyên lý hệ thống lạnh máy nén Bitzer 2 c

                • Bảng 4-24 : Năng suất lạnh máy nén Bitzer n = 1450 V/phút,

                • Bảng 4-25 : Năng suất lạnh máy nén Bitzer n = 1450 V/phút,

                • Bảng 4-26 : Năng suất lạnh máy nén 2 cấp MYCOM - R22

                • Bảng 4-27 : Năng suất lạnh máy nén 2 cấp MYCOM NH3

  • Hình 5-1 : Sơ đồ nguyên lý hệ thống lạnh nhà máy bia

  • Hình 5-2 : Bình bay hơi làm lạnh glycol

  • Hình 5-3: Sơ đồ nguyên lý hệ thống ngưng tụ CO2

  • Bảng 5-1: Các thông số các thiết bị

  • Thiết bị

  • Bảng 5-2 :Thông số cách nhiệt các thiết bị

  • Hình 5-6 : Sơ đồ nguyên lý hệ thống lạnh của cụm water chill

  • Bảng 5-3: Thông số nhiệt của cụm chiller Carrier

  • Bảng 5-3 : Thông số kỹ thuật FCU của hãng Carierr

  • Hình 5-8 : Sơ đồ nguyên lý hệ thống lạnh tủ lạnh gia đình

  • Hình 5-9 : Sơ đồ nguyên lý hệ thống lạnh của tủ lạnh thương

  • Hình 5-10 : Sơ đồ nguyên lý hệ thống lạnh hoạt động ở nhiều

  • Máy nén; 2- Dàn ngưng; 3- Bình chứa; 4- Lọc ẩm; 5- TB hồi n

  • Hình 5-11 : Sơ đồ nguyên lý hệ thống lạnh của xe tải lạnh

  • Hình 5-12: Sơ đồ nguyên lý hệ thống làm lạnh nước chế biến

  • Bảng 5-4: Nhiệt lượng qn(J/kg) phụ thuộc nhiệt độ nước vào

  • Hình 6-1 : Bình ngưng ống chùm nằm ngang

  • Hình 6-2: Bố trí đường nước tuần hoàn

  • Hình 6-9 : Dàn ngưng không khí đối lưu tự nhiên

  • Hình 6-10 : Dàn ngưng không khí đối cưỡng bức

  • Bảng 6-1: Hệ số truyền nhiệt và mật độ dòng nhiệt của các lo

  • Bảng 6-6 : Hệ số hiệu chỉnh số dãy ống Cz

  • Bảng 6-7: Hệ số A

  • Hình 7-3: Thiết bị bay hơi kiểu panen

  • Hình 7-4: Dàn lạnh xương cá

  • Hình 7-6: Dàn lạnh đối lưu tự nhiên có cánh

  • Bảng 7-1 : Hệ số truyền nhiệt k và mật độ dòng nhiệt các dàn

  • Bảng 7-2: Giới hạn mật độ dòng nhiệt, W/m2

  • Bảng 7-3 : Hệ số A

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan