Chemistry part 40, Julia Burdge,2e (2009) pot

19 376 0
Chemistry part 40, Julia Burdge,2e (2009) pot

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

14.81 Since the methanol contains no oxygen-I 8, the oxygen atom must come from the phosphate group and not the water. The mechanism must involve a bond-breaking process like: o II CH-O+P - O-H 3 I O- H 14.83 Most transition metals have several stable oxidation states. This allows the metal atoms to act as either a source or a receptor of electrons in a broad range of reactions. 14.85 (a) Rate = k[CH 3 COCH 3 l[H+l. (b) 3.8 X 10- 3 M - IS-I. (c) k = k l k 2 /L I .14.87 (1) Fe 3+ oxidizes 1- : 2Fe 3+ + 21 - • 2Fe 2+ + 1 2 ; (2) Fe2+ reduces S l O ~- : 2Fe l + + S 2 0 ~ - - - 2Fe 3+ + 2S0 ~- ; overall reaction: 2r + S20 ~ - •. I2 + 2S0 ~- (Fe 3+ undergoes a redox cycle: Fe 3+ • Fe 2+ • Fe 3+ ). The uncatalyzed reaction is slow because both 1- and S 2 0 ~ - are negatively charged which makes their mutual approach unfavorable. 14.89 (a) rate = k[Al o = k, [A] [Al = -kt + [Alo, slope = k Time [Al o t =-"'- (b) 112 2k. (c) t = 2t l/2 ' 14.91 There are three gases present and we can measure only the total pressure of the gases. To measure the partial pressure of azomethane at a particular time, we must withdraw a sample of the mixture, analyze and determine the mole fractions. Then, Pa zo me th ane = Xazome thane X P total . 14.93 2XG G l + X l 2EG Reaction progress 14.95 (a) A catalyst works by changing the reaction mechanism, thus lowering the activation energy. (b) A catalyst changes the reaction mechanism. (c) A catalyst does not change the enthalpy of reaction. (d) A catalyst increases the forward rate of reaction. (e) A catalyst increases the reverse rate of reaction. 14.97 At very high [Hll, k l [H 2 l > > 1 and , • , ANSWERS TO ODD-NUMBERED PROBLEMS k [NOF[H ?l k rate = I - = 1 [NOF . At very low k 2 [ H l l k 2 [H2l, k l [H 2 l < < I and kl[NOF[H zl rate = -' - -=- 14.99 I • :2 2.50, - :; , :::;;:: Initial Rate vs. Cone. ~ 8 2.00 o - o o - 1.50 x " ~ '" 1.00 e::: .,& 0. 50 JL- r - , ,- - 1 - 0.50 1.00 1.50 2.00 2.50 [Dinitrogen Pentoxide] (M) AP- 11 rate = k[N 1 0 5 ], k = 1.0 X 10- 5 S - I. 14.101 The red bromine vapor absorbs photons of blue light and dissociates to form bromine atoms: Br l • 2Bf". The bromine atoms collide with methane molecules and abstract hydrogen atoms: Br· + CH 4 • HBr + ·CH 3 . The methyl radical then reacts with Br l, giving the observed product and regenerating a bromine atom to start the process over again: ·CH 3 + Br 2 • CH 3 Br + Bf" , Bf" + CH 4 • HBr + ·CH 3 and so on. 14.103 Lowering the temperature would slow all chemical reactions, which would be especially important for those that might damage the brain. 14.105 (a) Rate = k[X][yf ( b) k = 0.019 M - lS - I. 14.107 Second order, k = 2.4 X 10 7 M - I S - 1 14.109 During the first five minutes or so the engine is relatively cold, so the exhaust gases will not fully react with the components of the catalytic converter. Remember , for almost all reactions, the rate of reaction increases with temperature. 14.111 (a) Ea has a large value. (b) Ea = O. Orientation factor is not important. 14.113 5.7 X 105 yr. 14.115 (a) Catalys t: Mn 2+ ; intermediate: Mn 3+ . First step is rate-determining. (b) Without the catalyst, the reaction would be a termolecular one involving 3 cations! (Tl+ and two Ce 4 +) . The reaction would be slow. (c) The catalyst is a homogeneous catalyst because it has the s ame phase (aqueous) as the reactants. 14.1170.45 atm. 14.119 (a) 6.[Bl/M = kl [Al - k2[Bl. (b) [Bl = (k l lk 2 )[Al. 14.121 (a) k = 0.0247 yr- I . (b) 9.8 X 10- 4 (c) 186 yr. 14.123 (a) Three steps. (b) Two intermediates. (c) The third step is rate determining. (d) The reaction overall is exothermic. 14.125 1.8 X 10 3 K. 14.127 (a) 2.5 X 10- 5 Mi s. (b) 2.5 X 10- 5 Mi s. (c) 8.3 X 10- 6 M . 1 14.129 11 = 0, ti l? = C I = C[Al o; - [Al o 1 t = C :- = C· 112 [Al g , 11 = 1 1 11 = 2, t ill =C [Al a 14.131 (a) 1.13 X 10- 3 Mlmin. (b) 6.83 X 10- 4 Mlmin; 8.8 X 10- 3 M. 14.133 Second order, 0.42 I M·min. 14.135 kl is 60% larger than k l • Chapter 15 • 15.11 1.08 X 10 7 15.21 (1 ) Diagram (a), (2) Diagram (d). Volume cancels in the Kc expression. 15.232.40 X 10 33 15.253.5 X 10- 7 15.27 (a) 8.2 X 10- 2 . (b) 0.29.15.29 Kp = 0.105, Kc = 2.05 X 10- 3 . 15.317.09 X 10- 3 15.33 Kp = 9.6 X 10- 3 , Kc = 3.9 X 10 - 4 .15.35 4.0 X 10- 6 15.375.6 X 10 13 15.39 The equilibrium pressure is less than the initial pre ssure. 15.41 0.173 mol H 2 . 15.43 [H2l = [Brll = 1.80 X 10- 4 M. [HBrl = 0.267 M. 15.45 P eoCl , = 0.408 atm , P eo = AP-12 ANSWERS TO ODD-NUMBERED PROBLEMS PC! , = 0.352 atm. 15.47 P co = 1.96 atm, P co , = 2.54 atm. 15.49 The - - forward reaction will not occur . 15.55 (a) The equilibrium would shift to the right. (b) The equilibrium would be unaffected. (c) The equilibrium would be unaffected. 15.57 (a) No effect. (b) No effect. (c) Shift to the left. (d) No effect. (e) Shift to the left. 15.59 (a) Shift to the right. (b) Shift to the left. (c) Shift to the right. (d)Shift to the left. (e) A catalyst ha s no effect on equilibrium position. 15.61 No change. 15.63 (a) Shift to right. (b) No effect. (c) No effect. (d) Shift to left. (e) Shift to the right [because NaOH ( aq ) reacts with CO (g) to produce NaHC0 3 (aq)]. ( f) Shift to the left [because HCl(aq ) reacts ;.'l ith CaC0 3 (s) to produce CO z( g) and other products]. (g) Shift to the right (the decomposition of CaC0 3 is endothermic). 15.65 (a) 20 3 (g) • • 30 2 (g), !:ili0 = -284.4 kJ. (b) Equilibrium would shift to the left. 15.67 (a) P 0 = 0.24 atm; PC! , = 0.12 atm. (b) 0.017.15.69 (a) No effect. (b) More CO 2 and H 2 0. 15.71 (a) 8 X 10- 44 . (b) A mixture of Hz and Oz can be kept at room temperature because of a v er y large activation energy. 15.73 Kp = 1.7, P A = 0.69 atm, P B = 0.81 atm. 15.75 1.5 X 10 5 15.77 PH , = 0.28 atm, PC! = 0.051 atm, P HCI = 1.67 atm. 15.795.0 X 10 1 atm. i5.81 0.0384. , 15.83 328 atm. 15.85 6.3 X 10- 4 15.87 P N , = 0.860 atm. PH , = 0.366 atm. P NH = 4.40 X 10- 3 atm. 15.89 (a) 1.16. (b) 53.7% .15.91 ( it ) 0.49 atm. 3 (b) 0.23 (23% ). (c) 0.037 (3.7%). (d) Greater than 0.037 mol. 15.93 [H 2 ] = 0.070 M. [1 2 ] = 0 .1 82 M. [HI] = 0.825 M. 15.95 (c) N 2 0 i colorless) -_. 2N0 2 (brown) is consistent with the observations. The reaction is endothermic so heating darkens the color. Abo ve 150°C, the O 2 breaks up into colorless NO and O 2 : 2N0 2 (g) • 2NO (g) + 0 2( g). An increase in pressure shifts the equilibrium to the left , restoring the color by producing N0 2 . 15.97 (a) 4.2 X 10- 4 . (b) 0.83. (c) 1.1. (d) 2.3 X 10 3 and 2.1 X lO- z . 15.99 (a) Color deepens. (b) Increases. (c) Decreases. (d) Increases. (e) Unchanged. 15.101 Pota ss ium is more volatile than sodium. Therefore, its removal shifts the equilibrium from left to right. 15.1033.6 X 10- 2 15.105 (a) Shifts to the right. (b) Shifts to the right. (c) No change. (d) No change. (e) No change. (f) Shifts to the left. 15.107 (a) 1.85 X 10- 16 (b) 1.02 X 10- 14 , 1.01 X 10- 7 M. 15.109 P , 0, = 0.09 atm, P NO , = 0.100 atm. 15.111 (a) 1.03 atm. (b) 0.39 atm. (c) 1.67 atm. (d) 0.620- (62.0% ).15.113 (a) Kp = 2.6 X 10- 6 , Kc = 1.1 X 10- 7 . (b) 2.2 g, 22 mg/m 3 , yes. 15.115 There is a temporary dynamic equilibrium between the melting ice cube s and the freezing of water between the ice cubes. 15.117 [NH 3 ] = 0.042 M, [N 2 ] = 0.086 M, [H z] = 0. 26 M . 4 ? ? x- ~ - 15.119 (a) Kp = ? P. (b) If P incr ea ses, the fraction z (and I-x- I - x therefore, x) must decrease. Equilibrium shifts to the left to produce less NO z and more N 2 0 4 , as predicted. 15.121 P sop , = 3.58 atm, P so , = P C! , = 2.71 atm. 15.1234.0. Chapter 16 16.3 (a) both. (b) ba se. (c) acid. (d) base. (e) acid. ( f) base. (g) neither. (h) ba se. (i) acid. CD acid. 16.5 (a) N0 2 . (b) HS0 4 . (c) HS- . (d) CN - . (e) HCOO - .16.7 (a) CH 2 CICOO- . (b) 10 4 , (c) H 2 P0 4 . (d) HPO ~ - . (e) PO ~ - . (f) HSO 4' (g) SO ~ - . (h) 10 3 , (i) SO ~ - . (j) NH 3 . (k) HS - . (1) S2- . (m) ClO- .16.17 7. 1 X 10- 12 M. 16.19 (a) 3.00. (b) 13.89. 16.21 (a) 3.8 X 10 - 3 M. (b) 6.2 X 10- 12 M. (c) 1.1 X 10- 7 M. (d) 1.0 X 10- 15 M. 16.23 pH < 7: [H+] > 1.0 X 10- 7 M, acidic; pH > 7: [H+] < 1.0 X 10- 7 M, basic; pH = 7: [H+] = 1.0 X 10- 7 M, neutral. 16.252.5 X 10- 5 M. 16.27 0.0022 g. 16.33 (a) - 0.0086. (b) 1.46. (c) 5.82.16.35 (a) 6.17 X 10- 5 M. (b) 2.82 X 10- 4 M. (c) 0.105 M. 16.37 (a) pOH = -0.093 , pH = 14.09. (b) pOH = 0.36, pH = 13.64. (c) pOH = 1.07, pH = 12.93.16.39 (a) 1.1 X 10- 3 M. (b) 5.5 X 10- 4 M. 16.47 (a) Strong. (b) Weak. (c) Weak. (d) Weak. (e) Strong. 16.492.59.16.515.17.16.534.80 X 10 - 9 .16.55 1.8 X 10- 3 M. 16.576.80. 16.61 6.97 X 10- 7 . 16.63 11.98.16.65 (a) A- has the smallest Kb value. (b) B- is the strongest base. 16.692.0 X 10- 5 ; 1.4 X 10- 11 ; 5.6 X 10- 10 ; 2.4 X 10- 8 16.71 (1) c. (2) band d. 16.73 1.40 (0.040 M HCI), 1.31 (0. 040 M H 2 S0 4 ), 16.75 1.0 X 10- 4 M , 1.0 X 10- 4 M, 4.8 X 10- 11 M. 16.77 1.00. 16.81 (a) H 2 S0 4 > H2 Se0 4' (b) H 3 P0 4 > H 3 As0 4 . 16.83 The conjugate ba ses are C 6 H s O- from phenol and CH 3 0 - from methanol. The C 6 H 5 0 - is stabilized by resonance: 0- o o o • • • • • • The CH 3 0 - ion has no such resonance stabilization. A more stable conjugate base means an increase in the strength of the acid. 16.89 (a) Neutral. (b) Ba sic. (c) Acidic. (d) Acidic. 16.91 HZ < HY < HX. 16.93 pH > 7 .16.95 4. 82.16.975.39.16 .101 (a) Al 2 0 3 < BaO < K 2 0. (b) Cr0 3 < Cr Z0 3 < CrO. 16.103 Al(OH)3(s) + OW(aq) • Al(OH)4 (aq), Lewis acid-base reaction. 16.107 AICl 3 (AI 3+ ) is a Lewis acid, Cl - is a Lewis base. 16.109 CO 2 , S0 2, and BCI 3 (other answers are possible). 16.111 (a) Acid = AlBr3, base = Br - . (b) Acid = Cr, ba se = CO. (c) Acid = Cu 2 +, base = CN- . 16.113 (b) represents a strong acid. (c) represents a weak acid. (d) represents a very weak acid. 16.115 In theory, the products will be CH 3 COO - (aq) and HCI (aq) but this reaction will not occur to any mea surable extent. 16.117 pH = 1.70, % ionization = 2.26%. 16.119 (c). 16.121 (a) For the forward reaction NH ~ and NH 3 are the conjugate acid and ba se pair, respectively. For the reverse reaction NH 3 and NH2 are the conjugate acid and base pair, respectively. (b) H+ correspo nd s to NH!; OH - corresponds to NH 2 · Fo r the neutral solution, [NH:] = [NH z ]. [W][A-] _ 16.123 K = , [HA] "" 0.1 M, and [A ] "" 0.1 M. Therefore, a [HA] K K K = [W] = w and [OW] = w. 16.125 1.7 X 1010. a [OW] Ka 16.127 (a) H- (basel) + H 2 0 (acid 2 ) • OH- (basez) + Hz (acid I) ' (b) H- is the reducing agent and H 2 0 is the oxidizing agent. 16.129 2.8 X 10- 2 16.131 PH 3 is a weaker base than NH 3 . 16.133 (a) HN0 2 . (b) HF. (c) BF 3 . (d) NH 3 . (e) H 2 S0 3 . (f) HC0 3 and CO j The reactions for ( f) are: HC0 3 (aq) + H +(aq) • CO z(g) + H 2 0(l), CO ~ -(aq) + 2H +( aq) • CO z(g) + HzO(I). 16.135 (a) trigonal pyramidal. (b) H 4 0 2+ does not exist be cause the positively charged H30+ ha s no affinity to accept the positive H+ ion. If H 4 0 2+ existed, it would ha ve a tetrahedral geometry. 16.137 The equations are: Cl z(g) + H 2 0(l) • • HCI(aq) + HCIO(aq), HCl(aq) + AgN0 3 (aq). • AgCl(s) + HN0 3 (aq). In the presence of OH - ions, the first equation is shifted to the right: H+ (from HCl ) + OH - • H 2 0. Therefore, the concentration of HCIO increases. ( The 'bleaching action' is due to C IO - ions.) 16.13911.80.16.141 (a) 0.181 (18.1 % ). (b) 4.63 X 10 - 3 .16.1434.26. 16.1457.2 X 10 - 3 g. 16.147 1.000. 16.149 (a) The pH of the solution ofHA would be lower. (b) The electrical conductance of the HA solution would be greater. (c) The rate of hydrogen evolution from the HA solution would be greater. 16.151 1.4 X 10 - 4 16.153 2.7 X 10- 3 g. 16.155 (a) NH 2 (aq) + H 2 0 ( l) • NH 3 (aq) + OW(aq), and N 3 -(aq) + 3H z O(l) -_. NH 3 (aq) + 30 H- (aq). (b) N 3 - . 16.157 In inhaling the sme lling salt, s ome of the powder dissolves in the basic solutio n. The ammonium ions react with the base as follows: NH; (aq) + OH -(aq) • NH 3(aq) + H 2 0. It is the pungent odor of ammonia that prevents a person from fainting. 16.159 (c). 16.16121 mL. 16.163 Mg. 16.165 Both NaF and SnF 2 provide F - ion s in solution. The F - ions replace OH- ions during the remineralization process 5Ca 2+ + 3Pol - + F - • Ca S(P04)3F (fluorapatite). Because F - is a weaker base than OH - , fluorapatite is more resistant to attacks by acids compared to hydroxyapatite. Chapter 17 17.5 (a) 2.57. (b) 4.44.17.9 (c) and (d). 17.11 8.89. 17.130.024.17.15 0.58.17.179.25 and 9.18.17.19 Na 2A1NaHA. 17.21 (1) a, b, and d; (2) a (highest concentration ). 17.27202 g!mol. 17.290.25 M. 17.31 (a) 1.10 X 10 2 g/mol. (b) 1.6 X 10- 6 .1 7.335.82.17.35 (a) 2.87. (b) 4.56. (c) 5.34. (d) 8.78. (e) 12.10. 17.37 (a) Cresol red or /phenolphthalein. (b) Most of the indicators in Table 17.3 are suitable for a strong acid-strong base titration. Exceptions are th ymo l blue and. to a les ser extent, bromophenol blue and methyl orange. (c) Bromophenol blue, methyl orange, methyl red, or chlorophenol blue. 17.39 Red. 17.41 (1) Diagram (c), (2) Diagram (b), (3) Diagram (d), (4) Diagram (a). 17.49 (a) 9.1 X 10- 9 M. (b) 7.4 X 10 - 8 M. 17.511.8 X lO - /l. 17.533.3 X lO -93 17.559.52.17.57 Yes. 17.63 (a) 1.3 X lO - z M. (b) 2.2 X lO - 4 M. (c) 3.3 X lO- 3 M. 17.65 (a) 1.0 X lO- s M. (b) 1.1 X 10- 10 M. 17.67 (b), (c), (d), and (e) 17.69 (a) l.6 X lO - z M. (b) 1.6 X lO - 6 M. 17.71 Fe(OH)z will precipitate. 17.73 [Cd 2+ ] = 1.1 X lO - 18 M, [Cd(CN)~ - ] = 4.2 X lO -3 M, [CW] = 0.48 M. 17.75 3.5 X lO - s M. 17.77 (a) The equations are as follows: Culz(s), • Cuz+(aq) + 2I - (aq), Cu 2+ (aq) + 4NH 3 (aq) • • [Cu(NH 3 )4 ] 2+( aq). The ammonia combines with the Cu 2+ ions formed in the first step to form the complex ion [Cu(NH 3 )4f+, effectively removing the Cu z + ions, causing the first equilibrium to shift to the right (resulting in more Culz dissolving). (b) Similar to part (a): AgBr(s) • • Ag +(aq) + Br - (aq), Ag +(aq) + 2CN - (aq) • • [Ag(CNhnaq). (c) Similar to parts (a) and (b): HgCl z( s). • Hg z+(aq) + 2CI- (aq), Hg 2+ (aq) + 4Cl -( aq)' • [HgCI 4 ] z- (aq). 17.81 At pH values between 2.68 and 8.11, Fe(OH)3 will precipitate but Zn(OH)z will not. 17.830.011 M. 17.85 Chloride ion will precipitate Ag + but not Cu 2+ . So, dissolve some solid in H 2 0 and add HCI. If a precipitate forms, the salt was AgN0 3' A flame test will also work: Cu 2+ gives a green flame test. 17.872.51 to 4.41. 17.89 1.3 M. 17.91 [Na+] = 0.0835 M, [HCOO-] = 0.0500 M , [OW] = 0.0335 M, [H+] = 3.0 X lO -13 M, [HCOOH] = 8.8 X 10 - 11 M. 17.93 Most likely the increase in solubility is due to complex ion formation: Cd(OH)z(s) + 20H - (aq)' • Cd(OH )~- (aq). This is a Lewis acid-base reaction. 17.95 (d). 17.97 [Ag+] = 2.0 X lO -9 M, [Cn = 0.080 M, [Zn z+ ] = 0.070 M, [N0 3 ] = 0.060 M .17.990 .035 gIL. 17.101 2.4 X lO - l3. 17.103 1.0 X lO - s M. Ba(N0 3 ) is too soluble to be used for this purpose. 17.105 (a) AgBr precipitates first. (b) [Ag+] = 1.8 X lO - 7 M. (c) 0.0018% .17.1073.0 X lO- 8 17.109 (a) H+ + OH - • HzO: K = l.0 X 10 14 . (b) H+ + NH3 • NH ~ : 1 1 K = = = l.8 X 10 9 K 5.6 X 10- 10 • Broken into two equations: CH 3 C OOH • CH 3 COO - + H+: Ka Broken into two equations: CH 3 COOH • CH 3 COO - + H+: K. NH 3 + H+ +. NH~: 11 K ~ K= Ka _ 1.8x10 - s =3.2 x I0 4 K' 5.6 X 10- 10 • 17.111 (a) 500 mL of 0.40 M CH 3 COOH mixed with 500 mL of 0.40 M CH 3 COONa. (b) 500 mL of 0.80 M CH 3 C OOH mixed with 500 mL of 0.40 M NaOH. (c) 500 mL of 0.80 M CH 3 COONa mixed with 500 mL of 0.40 M HCl. 17.113 (a) Increase. (b) No change. (c) No change. (d) pK . very large. 17.115 (a) Add sulfate. Na 2 S04 is soluble, BaS0 4 is not. (b) Add sulfide. K 2 S is soluble, PbS is not. (c) Add iodide. ZnI 2 is solubl e, HgI2 is not. 17.117 The amphoteric ox ides cannot be used to prepare buffer solutions because they are insoluble in water. 17.119 The ionized polyphenols have a dark color. In the presence of citric acid from lemon juice , the anions are converted to the lighter-colored acids. 17.121 Ye s. 17.123 (c). 17.125 Precipitation would be minimized by decreasing pH. 17.127 At pH = 1.0, the predominant species is +NH 3 -CH 2 -COOH. At pH = 7.0, the predominant species is + NH 3 -CH z -COO - . At pH = 12.0, the predominant species is NH 2 - CH z -COO - . 17.129 (a) pH = 4.74. The pH of a buffer does not change upon dilution. (b) Before dilution, pH = 2.52; after dilution, pH = 3.02.17.1314.75 .17.133 (a) The strongest acid group (with the lowest pK.) ionizes first, followed by the successively weaker acids. They are, in order: COOH: pK . = 1.82, ANSWERS TO ODD-NUMBERED PROBLEMS AP-' 3 NH +: pK . = 6.00, NH j : pKa = 9.17. (b) The dipolar ion is the product of the second ionization. (c) pi = 7.59. (d) The pair shown in the second ionization, since the pK a for that pair is closest to the required pH of 7.4. Chapter 18 18.9 The probability that all the molecules will end up in the same flask (either the flask on the left or the flask on the right) is (a) 0.125. (b) 1.95 X 10- 3 (c) 1.24 X lO -6o. The probability that all the molecules will end up in one particular flask is (a) 0.063. (b) 9 .8 X 10- 4 (c) 6.2 X lO -61. 18.11 (a) Negative. (b) Positive. (c) Positive. (d) Negative. 18.15 (c) < (d) < (e) < (a) < (b). 18.17 (a) 47.5 JI K . mol. (b) - 12.51 JI K . mol. (c) -242 .8 JI K· mol. 18.23 (a) -1139 kJ I K . mol. (b) - 140.0 kJI K . mo!. (c) - 2935.0 kJ/K . mol. 18.25 (a) Spontaneous at all temperatures. (b) Spontaneous below 111 K. 18.27 Fusion: 1.00 X 10 2 JI K . mol, vaporization: 93.6 JI K . mol. 18.29 -226.6 kJ/mol. 18.31 75 .9 kJ of Gibbs free energy release d. 18.350.35. 18.3779 kJ/mo!. 18.39 (a) 39 kJ/mol, 1 X lO -7. (b) 48 kJ/mol. 18.41 (a) 1.6 X lO -23 atm. (b) 0.535 atm. 18.4323.6 rrunHg. 18.4793. 18.49 When Humpty broke into pieces, he became more disordered (s pontaneously). Humpty couldn't be put together again because all the King's horses and a ll the King's men could not reverse the spontaneous process. (Too great a negative entropy change would have been required.) 18.51 E and H. 18.53 42 °C. 18.55 (a) t:.H is positive, t:.S is positive, t:.G is negative. (b) t:.H is positive, t:.S is positive, t:.G is zero. (c) t:.H is positive, t:.S is positive, t:.G is positive. 18.57 t:.S is positive. 18.59 (a) Trouton's rule is a statement about t:.S ~.P (See Equation 18.9 ). In most substances, the molecules are in constant and random motion in both the liquid and gas phases, so t:.S ~ ap = 90 J/mol·K. (b) But in ethanol and water, there is less randomness of the molecules due to the network of H -bonds, so t:.S ~a p is greater. 18.61 (a) 2CO(g) + 2NO(g) • 2CO z (g) + Nz(g). (b) CO is the reducing agent. NO is the oxidizing agent. (c) 3 X lO 120. (d) 1.2 X lO1 4, reaction proceeds to the right. (e) No. 18.632.6 X 10 - 9 18.65 703°C. 18.6738 kJ . 18.69174 kJ /mol. 18.71 (a) Positive. (b) Negative. (c) Positive. (d) Positive. 18.73625 K. We assume that t:.Ho and t:.S o do not depend on temperature. 18.75 No . A negative t:.G o tells us that a reaction has the potential to happen, but gives no indication of the rate. 18.77 (a) - lO6.4 kJ/mol, 4 X 10 18 ( b) - 53.2 kJ/mol, 2 X lO 9. 18.79 Talking involves various biological processes (to provide the necessary energy) that lead to an increase in the entropy of the universe. Since the overall process (talking) is spontaneous, the entropy of the universe must increase. 18.81 (a) 86.7 kJ /mol. (b) 4 X 10- 31 . (c) 3 X lO -7 (d) Lightning supplies the energy neces sa ry to drive this reaction, converting the two most abundant gases in the atmosphere into NO(g). The NO gas dissolves in the rain, which carries it into the soil where it is converted into nitrate and nitrite by bacterial action. This "fixed" nitrogen is a necessary nutrient for plants. 18.83 673.2 K.18.85 (a) 7.6 X lO I4 ( b) K = 4.1 X 10- 12 18.87 (a) Disproportionation redox. (b) 8.2 X lOI S. (c) Less effective. 18.89 1. 8 X 10 7 0. 18.91 t:.S sys = 91.1 J/K, t:.S surr = -9 1.1 J/K, t:.S uni v = O . Conclusion: the system is at equilibrium. 18.93 t:.G = 8.5 kJ /mol. 18.95 (a) CH 3 COOH, t:.G o = 27 kJ/mol, CH 2 CICOOH, t:.G o = 16 kJ/mo!. (b) Entropy dominates. (c) Breaking and making of specific 0- H bond s. Other contributions include solvent separation and ion solvation. (d) The CH 3 COO - ion, which is smaller than the CH zClCOO- ion, can participate in hydration to a greate ~ extent, leading to more ordered solutions. 18.97 Xeo , = 0.55 X eo = 0.45. 18.99249 J/K. 18.101 3 X - 13 - 10 s. 18.103 t:.S sys = - 327 JI K . mol, t:.S surr = 1918 JI K . mol, t:.S lIni v = 1591 JI K . mol. 18.105 q and ware not state functions. 18.107 t:.G, t:.S , and t:.H are all negative. 18.109 (a) S = 5.76 J/K(mol. (b) The fact that the actual residual entropy is 4.2 J/K(mol means that the orientation is not totally random. 18.111 t:,.H 0 = 33.89 kJ /mol, t:.s o = 96.4 J/ mol'K , t:.G o = 5.2 kJ /mo!. Chapter 19 19.1 (a) 2H+ + HzO z + 2Fe 2+ • 2Fe 3 + + 2H 2 0. (b ) 6H+ + 2HN0 3 + 3Cu • 3Cu 2+ + 2NO + 4H 2 0. (c) H 2 0 + 2Mn0 4 + 3CN - • AP-14 ANSWERS TO ODD-NUMBERED PROBLEMS 2Mn0 2 + 3CNO - + 20 H- . (d) 60 H- + 3 Br 2 • Br0 3 + 3H 2 0 + 5Br- . (e) 2SzO ~ - + 12 • S 4 0 ~- + 21 - . 19.11 3Ag +( l.0 M) + Al(s) -_. 3Ag(s) + AlH ( l.O M), E ~ell = 2.46 V. 19.13 CI 2 (g) and Mn0 4 (aq). 19.15 (a) Spontaneous. (b) Not spontaneous. (c) Not spontaneous. (d) Spontaneous. 19.17 (a) Li. (b) H 2 . (c) Fe 2+ . (d) Br - . 19.213 X 10 54 19.23 (a) 2 X 10 18 (b) 3 X 10 8 . (c) 3 X 10 62 . 19.25 - 81 kJ, 2 X 10 14 19.29 1.09 V. 19.31 E ~ell = 0.76 V; E eel! = 0.78 V. 19.33 6.9 X 10- 38 19.39 l.09 V. 19.43 12.2 g Mg. 19.45 It is less expensive to prepare 1 ton of sodium by electrolysis. 19.470.012 F. 19.495.33 g Cu, 13.4 g Br 2' 19.517.70 X 10 3 C. 19.53 l. 84 kg/h. 19.5563.3 g/mol. 19.5727.0 g/ mol. 19.63 (a) (i) H 2 (g) • 2H +(aq) + 2e - ; Ni 2+(aq) + 2e- • Ni(s); (ii) Hz(g) + Ni 2+ (aq) • 2H +(aq) + Ni(s); (iii) Re action will proceed to the left. (b) (i) 2Cqaq ) • Clz(g) + 2e-; 5 e- + 8H +(aq) + Mn0 4 (aq) • Mn 2+(aq) + 4H 2 0(l); (ii) l6H +(a q) + 2Mn0 4 (a q) + lOC qaq) • 2Mn2+(aq) + 8H 2 0 (l) + 5CI 2 (g); (iii) Re action will proceed to the right. (c) (i) Cr(s) • Cr H( aq) + 3e - ; Zn 2+ (aq) + 2e - • Zn (s); (ii) 2C r(s) + 3Z n2+(aq) • 2Cr 3+(aq) + 3Zn(s), (iii) 2Cr H (aq) + 3Zn(s) • 2Cr(s) + 3Zn 2+( aq ). Reaction will proceed to the left. 19.650.00 944 g S0 2' 19.67 (a) 2Mn0 4 + 6H+ + 5H 2 0 2 • 2Mn 2+ + 8H 2 0 + 50 2 , (b) 0.0602 M. 19.690.232 mg Ca/mL blood. 19.715 X 10- 13 . 19.73 (a) 3.14 V. (b) 3.13 V. 19.75 E eeu = 0.035 V. 19.77 Mercury(I) is Hg ;+ . 19.79 [Mg2+] = 0.0500 M, and Mg (s) + - = l.44 g. [Ag ] = 7 X 10-» M. 19.81 (a) Hydrogen gas, 0.206 L. (b) 6.09 X 10 23 e- / mol e- . 19.83 (a) -1356.8 kJ/mol. (b) 1.1 7 V. 19.85 +3 .19.876.8 kJ /mo l , 0.064.19.891.4 A. 19.91 +4.19 .93 l.60 X 10- 19 C le - . 19.95 Cells of high er volta ge require very reacti ve oxidizing and reducing agents, which are difficult to handle. Batteries ma de up of several cells in series are easier to us e. 19.972 X 10 20 19.99 (a) E ~ed for X is negative (- 0.25 V), E ~ed for Y is po sitive (+0 . 34 V). (b) E ~ll = 0.59 V. 19.101 (a) Gold does not tarnish in air becau se the reduction potential for oxygen is not sufficiently po sitive to result in the oxidation of gold. (b) Yes, E ~ell = 0.19 V. (c) 2Au(s) + 3F 2 (g) • 2A uF 3( aq). 19.103 [Fe 2 +] = 0.0920 M, [Fe H ] = 0.0680 M. 19.105 The t wo h alf reactions are: H 2 0 2 (aq) + 2H +(aq) + 2e - • 2H 2 0(l), 1.77 V; H 2 0 2 (aq) • Oz(g) + 2H +(aq) + 2e - , -0 .68 V. Overall: 2H 2 0z(aq) • 2H 2 0 (l) + 0 2(g ), EO = 1.09 V (s pontaneous). 19.107 (a) Unchanged. (b) Unchanged. (c) Squared. (d) Doubled. (e) Doubled. 19.109 As [H+] increases, F 2 (g) doe s beco me a stronger oxidizing age n t. 19.111 4.4 X 10 2 atm. 19.113 (a) Half-reaction s: 1120 2 (g) + 2e - • 0 2 - (aq), Zn(s) • Zn 2+(aq) + 2e - . O ve rall: Zn (s) + 1I20 z(g) • ZnO (s), E ~ell = 1.65 V. (b) 1.63 V. (c) 4.87 X 10 3 kJ/kg Zn. (d) 64 L of air. 19.115 -3.05 V. 19.117 1 X 10- 14 19.119 (a) 3600 C. (b) 105 A·h. (c) E ~ell = 2.01 V, t1G o = -388 kJ/ mol. 19.121 $217 .19.123 -0.03 7 V. 19.125 2 X 10 37 Chapter 20 20.5 (a) ~~ Na. (b) : H. (c) 6 n. (d) ~~ Fe. (e) __ ~ f3. 20.13 2.72 X 10 14 glc m 3 . 20.15 (a) Nl. (b) Se. (c) Cd. 20.174.85 X 10 L kg. 20.19 (a) 6.30 X 10- 12 J, 9.00 X 10- 13 J/nucleon. (b) 4.78 X 10- 11 J, 1. 37 X 10- 12 J/nucleon. 20.23 (a) 2~~ Th " ) 2~~ Ra ~) 2~~ Ac ~) 2~g Th. (b) 2~~U " ) 23 1 Th 90 ~ ) 231 Pa 91 " ) 2~~ Ac. ( c) 237 Np ") 233 Pa ~) 233 U " ) 229 Th 93 91 92 90' 20.254.89 X 10 19 atoms. 20.273.09 X 10 3 y r. 20.29 A = 0 mol , B = 0.25 mol , C = 0, D = 0.75 mol. 20.31 5.5 dpm. 20.33 Mass ratio UlP b = 43.3:1. 20.37 (a) 14N(ex, p) 17 0. (b) 9 Be (ex ,n) 12 c. (c) 238U( d,2n )238N p. 20.39 (a) 4o Ca(d,p)4ICa. (b) 32 S(n,p i2 p' (c) 239 Pu (ex, n) 242 Cm. 20.41 1§~ Hg + 6n ) 1 §6 Hg ) I j~ Au + :p. 20.53 Thef act that the radioisotope appears only in the 12 shows that the 10 3 is formed only from the 10 4' 20.55 Add iron-59 to the person's diet, and allow a few days for the iron-59 isoto pe to be incorporated into the perso n's body. Isolate red blood cells from a blood sample and monit or radioactivity from the hemoglobin molecules present in the red blood cells. 20.61 3.96 X 10 15 20.63 65.3 y r. 20.65 70.5 dpm. 2067 (a) 235 U + In -7 1 4° Ba + 3 In + 93 Kr • 92 0560 36 ' (b) 235 U + In -7 144CS + 90 Rb + 2 In 92 0 55 37 0 . ( c) 235 U + In -7 8 7 Br + 146 La + 3 In 92 0 35 57 0 . ( d) 235 U + In -7 160 S m + 72 Zn + 4 In 92 0 62 30 0 . 20.69 (a) ~ H -7 _ ~ f3 + ~ He (b) 2~~ Pu -7 i ex + 2~~U ( c) 13 1 1-7 0 (.) + I~I Xe 53 -1 1-' )4 ( d) 251 Cf -7 4 ex + 247 Cm 98 2 96 . 20.71 Because both Ca and Sr belong to Group 2A, radioactive strontium that has been ingested into the human body becomes concentrated in bone s (replacing Ca ) and can damage blood cell production. 20.73 Normally the human body concentrates iodine in the thyroid gland. The purpose of the lar ge doses of KI is to di splace radioactive iodine from the thyroid and allow its excretion from the body. 20.75 (a) 2~~ Bi + i ex ) 2~~ At + 2 6n. ( b) 209 Bi (ex 2n) 211 At 83' 85 ' 20.77 2.77 X 10 3 yr. 20.790.069 % .20.81 (a) 5.59 X 10- 15 J and 2.84 X 10- 13 J. (b) 0.024 mol. (c) 4.26 X 10 6 kJ. 20.83 2.8 X 10 14 .20.856.1 X 10 23 atoms/mol. 20.87 (a) 1.73 X 10- 12 J. (b) The a particle will move away fast er because it is smaller. 20.89 U-238, t 1/2 = 4.5 X 10 9 yr and Th-232, t ll2 = 1.4 X 10 10 yr. Th ey are still present be cause of their long half lives. 20.91 8 .3 X 10- 4 nm. 20.93 3H. 20.95 A small scale chain reaction ( fi ssion of 235 U ). 20.97 2.1 X 10 2 g/mol. 20.99 (a) r = roA 11 3 (ro is a proportionality constant). (b) 1. 7 X 10- 42 m 3 20.101 0.49 rem. Chapter 21 21.5 X = 3.30 X 10- 4 , ppm = 330.21.7 In the stratosphere, the air temperature ri ses with altitude. This warming effect is the result of exothermic reactions triggered by UV radiation from the sun. 21.11 260 nm. 21.21 3.2 X 10 12 kg 0 3 , 4.0 X 10 37 molecules 0 3 , 21.23 CC4 + HF • HCl + CFCl 3 ( Freon-II), CFCl 3 + HF • HCl + CF 2 Cl 2 (Freon-12). 21.25479 kJ/ mol , this is sufficient to break the C-Cl bond, but not enough to break the C- F bond. o. •• + :Cl-O-N-O: II • •• •• 4 21.27 :0:, .<;:) - Q'. 21.39 2.6 X 10 ton S0 2' 21.41 4.8 X 10 16 kg ic e. 21.49 5.2 X 10 8 L S0 2' 21.57 (a) rate = k [NOf[0 2]' ( b) rate = k[NO] 2 (c) tl l2 = 1.3 X 10 3 min. 21.594.1 X 10 - 7 atm , 1 X 10 16 moleculeslL. 21.65 378 g CO. 21.67 Of green house ga s, toxic to humans, attacks rubber; S0 2: toxic to humans, forms acid rain; N0 2 : forms acid rain, destroys ozone; CO: toxic to human s; PAN: a powerful lachrymator, causes breathing difficulties; Rn: causes lung cancer. 21.69 (a) Ke = [0 2 ][HbCO] / [CO][Hb0 2 ] (b) 4.7 X 10- 2 .21.71 (a) 2N 2 0 + O 2 +. 4NO and NO + 0 3 • N0 2 + O 2 . (b) N 2 0 is a more effective greenhouse ga s than CO 2 because it has a permanent dipole. (c) 3.0 X 10 10 mol. 21.731. 8 X 10 19 ,6.4 X 10 16 .21.75 (a) High reactivity of the OH radical. (b) OH has an unpaired electron; free radicals are always good oxidizing agents.(c) OH + N0 2 • HN0 3 . (d) Two reactions: OH + S0 2 • HS0 3 and HS0 3 + O 2 + H 2 0 • H 2 S0 4 + H0 2 . 21.77 The blackened bucket has a large deposit of elemental carbon. When heated over the burner, it forms poisonous carbon monoxide: C + CO 2 • 2CO. A smaller amount of CO is also formed as follows: 2C + O 2 • 2CO. 21.79 The use of the aerosol can liberate CFCs that de stroy the ozone layer. 21.81 C-Cl = 340 kJ/mol, so the photons that photolyze C-Cl bonds could easily photolyze the C- Br bonds as well. Light of wavelength 409 nm (visible) or shorter will break the C-Br bond. 21.83 ( a) 6.2 X 10 8 (b) The CO 2 liberated from limestone contributes to global warming. 21.85 Mo st water molecules contain oxygen-16, but a small percentage of water molecules contain oxygen- 18. The ratio of the two isotopes in the ocean is essentially constant, but the ratio in the water va por evaporated from the oceans is temperature- dependent, with the vapor becoming slightly enriched with oxygen-18 as temperature increases. The water locked up in ice cores provides a historical record of this oxygen-l8 enrichment, and thus ice cores contain information about past global temperatures. Chapter 22 22.11 (a) +3. (b) 6. (c) Oxalate ion. 22.13 (a) Na = + 1, Mo = +6 (0 = -2). (b) Mg = +2, W = +6 (0 = -2). (c) Fe = 0 (CO is a neutral ligand). 22.15 (a) Cis-dichlorobis(ethylenediamine)cobalt(III). ( b) Pentamminechloroplatinum(IV) chloride. (c) Pentamminechlorocobalt (III) chloride. 22.17 (a) [Cr(enhClzt . (b) Fe(CO)s. (c) Kz[Cu(CNM (d) [Co(NH 3 MH z O)CI]Cl z · 22.23 (a) 2, . (b) 2, 22.25 (a) 2 geometric isomers (trans- and cis-): (b)Twoopli'']i'o~,,, ~ ~ 22.31 When a substance appears to be yellow, it is absorbing light from the blue-violet, high energy end of the visible spectrum. Often this absorption is ju st the tail of a strong absorption in the ultraviolet. Substances that appear green or blue to the eye are absorbing light from the lower energy red or orange part of the spectrum. Cyanide ion is a very strong field ligand. It causes a larger crystal field splitting than water, resulting in the absorption of higher energy (shorter wavelength) radiation when a d electron is excited to a higher energy d orbita!. 22.33 (a) Orange. (b) 255 kJ/mo!. 22.35 2.0 mol, [Co(NH3 )4C l z]CI. 22.37 !:J. would be greater for the higher oxidation state. 22.41 Use a radioactive label such as 14CN - (in NaCN). Add NaCN to a solution of K3 Fe(CNk Isolate some of the K3Fe(CN)6 and check its radioactivity. If the complex shows radioactivity, then it must mean that the CN- ion has participated in the exchange reaction. 22.43 CU(CN)2 is the white precipitate. It is soluble in KCN(aq), due to formation of [CU(CN)4]2- , so [Cu 2 +] is too small for Cu 2 + ions to precipitate with sulfide. 22.451.4 X lO z . 22.47 The purple color is caused by the build-up of deoxyhemoglobin. When either oxyhemoglobin or deoxyhemoglobin takes up CO, the carbonylhemoglobin takes on a red color, the same as oxyhemoglobin. 22.49 Mn 3+ . 22.51 Ti 3+ lFe3+. 22.53 1.6 X 10 4 g/mo!. There are four iron atoms per hemoglobin molecule. 22.55 (a) [Cr(H z O)6]CI 3 , number of ions: 4. (b) [Cr(HzO)5CI]CI2' H zO , number of ions: 3. (c) [Cr(HzO)4ClzlC I'2H zO, number of ions: 2. Compare the compounds with equal molar amounts of NaCI, MgCl z, and FeCl 3 in an electrical conductance experiment. 22.57 -1.8 X 10 2 kJ/mol, 6 X 10 3 0. 22.59 Iron is much more abundant that cobalt. 22.61 Oxyhemoglobin absorbs higher energy light than deoxyhemoglobin. Oxyhemoglobin is diamagnetic (low spin), while deoxyhemoglobin is paramagnetic (high spin). These differences occur because oxygen (Oz) is a strong-field ligand. 22.63 Zn z +, Cu +, Pb z + are iO ions; V 5+, Ca z +, Sc 3 + are dO ions. 22.65 Dipole moment measurement. Only the cis isomer h as a dipole moment. 22.67 EDTA sequesters metal ions (like Ca2+ and Mg 2+ ) which are essential for growth and function, thereby depriving the bacteria to grow and multiply. a" /b b" /a a" /c 22.69 Three isomers: Pt P\ /P\ d/ "c d/ c d b 22.712.2 X lO- zo M. 22.73 (a) 2.7 X 10 6 (b) A soluble copper(I) salt could not be isolated from an aqueous solution because it would disproportionate before it could be crystallized. Chapter 23 23.13 4.5 X 10 5 .23.15 Ag, Pt, and Au will not be oxidized, but the other meta ls will. 23.17 (a) 8.9 X 10 IZ cm 3 . (b) 4.0 X 10 8 kg S02' 23.19 AI, Na, ANSWERS TO ODD-NUMBERED PROBLEMS AP-15 and Ca would require electrolysis. 23.33 (a) 2Na(s) + 2H 2 0(l) - 2NaOH(aq) + H2(g). (b) 2NaOH(aq) + COz(g) - Na2C03(aq) + HzO(l). (c) Na Z C0 3 (s) + 2HCI(aq) - 2NaCI(aq) + CO 2 (g) + H 2 0(l). (d) NaHC0 3 (aq) + HCI(aq) - NaCI(aq) + COz(g) + HzO(l). (e) 2NaHC0 3 (s) - Na Z C0 3 (s) + COz(g) + HzO(g). (f) Na2C03 (S) - no reaction. Unlike CaC0 3 (s), Na2C03 (S) is not decomposed by moderate heating. 23.35 5.59 L. 23.39 First magnesium is treated with concentrated nitric acid (redox reaction) to obtain magnesium nitrate: 3Mg(s) + 8HN0 3 (aq) - 3Mg(N0 3 )z(aq) + 4H z O(l) + 2NO(g). The magnesium nitrate is recovered from solution by evaporation, dried, and heated in air to obtain magnesium ox id e: 2Mg(N0 3 )z(s) - 2MgO(s) + 4NO z (g) + 0 2(g). 23.41 The electron configuration of magnesium is [Ne]3s2 The 3s electrons are outside the neon core (shielded), so they ha ve relatively low ionization energies. Removing the third electron means separating an electron from the neon (closed shell) core, which requires a great deal more energy. 23.43 Even though helium and the Group 2A metals have ns 2 outer electron configurations, helium has a closed shell noble gas configuration and the Group 2A metals do not. The electrons in He are much closer to and more strongly attracted by the nucleus. Hence, the electrons in He are not easily removed. Helium is inert. 23.45 (a) CaO. (b) Ca(OH)z. 23.49 60.7 h. 23.51 (a) 1.03 V. (b) 3.32 X 10 4 kllmo!. 23.53 4AI(N0 3 Ms) - 2AI 2 0 3 (s) + 12NO z (g) + 30 z (g). 23.55 The "bridge" bonds in Al z CI 6 break at high temperature: Al z CI 6 (g) ~ 2AICI 3 (g ). This increases the number of molecules in the gas phase and causes the pressure to be higher than expected for pure A1 z CI 6 . 23.57 A1 2 CI 6 : each aluminum atom is Sp 3 hybridized; A1CI 3 : the aluminum atom is Sp 2 hybridized. 23.59 65.4 glmol (Zn). 23.61 Water should not be affected by the copper purification process under standard conditions. 23.63 (a) 1482 kJ. (b) 3152.8 kJ. 23.65 Mg(s) reacts with Nz(g) to produce Mg 3N z( S) at high temperatures. 23.67 (a) In water the aluminum(III) ion causes an increase in the concentration of hydrogen ion (lower pH). This results from the effect of the small diameter and high charge (3 + ) of the aluminum ion on surrounding water molecules. The aluminum ion draws electrons in the 0- H bonds to itself, thus allowing easy formation of H+ ions. (b) A1(OH)3 is an amphoteric hydroxide. It will dissolve in strong base with the formation of a complex ion. AI(OHMs) + OW(aq) - A1(OH)4(aq). 23.69 CaO(s) + 2HCI(aq) - CaClz(aq) + HzO(l). 23.71 Metals have closely spaced energy levels and a very small energy gap between filled and empty levels. 23.73 NaF: cavity prevention. (F - ) LiC0 3 : antidepressant (Li+ ). Mg(OHh: laxative (Milk of Magnesia® ). CaC0 3 : calcium supplement; antacid. BaS04: radiocontrast agent. 23.75 Both Li and Mg form oxides (LizO and MgO). Other Group 1A metals (Na, K, etc.) also form peroxides and superoxides. In Group lA , only Li forms nitride (Li3 N) , like Mg (Mg 3 N 2 ). Li re sembles Mg in that its carbonate, fluoride, and phosphate have low solubilities. 23.77 Zn. 23.79 87.66% Na20 and 12.34% Na202' 23.81 727 atm. Chapter 24 24.11 Element number 17 is the halogen, chlorine. Since it is a nonmetal, chlorine will form the molecular compound HCI. Element 20 is the alkaline earth metal calcium which will form an ionic hydride, CaHz. A water solution of HCI is called hydrochloric acid. Calcium hydride will react according to the equation CaHz(s), + 2H z O(I) - Ca(OH)z(aq) + 2H 2 (g). 24.13 NaR: ionic compound, reacts with water as follows: NaR(s) + HzO(l) - NaOH(aq) + Hz(g) ; CaR 2 : ionic compound, reacts with water as follows: CaR 2 (s) + 2H 2 0(l) - Ca(OH)z(s) + 2H z (g); CH 4 : covalent compound, umeactive, bums in air or oxygen: CHig) + 20 z (g) - COz(g) + 2H z O(l); NH3: covalent compound, weak base in water: NH 3 (aq) + HzO(I) ~ NH ; (aq) + OH - (aq); HzO: covalent compound, forms strong intermolecular hydrogen bonds, good solvent for both ionic compounds and substances capable of forming hydrogen bonds; HCI: covalent compound (polar), acts as a strong acid in water: HCI(g) + Hz O(l) - H30 +(aq) + CC(aq). 24.15 CaHz(s) + HzO(l) - Ca(OHMaq) + 2Hig) , 22.7 g CaHz. 24.17 CuO(s) + Hz(g) - Cu( s) + HzO(g ). 24.25 ~C =Cp AP-16 ANSWERS TO ODD-NUMBERED PROBLEMS 24.27 (a) 2NaHC0 3 (s) • Na 2 C0 3 (S) + H 2 0( g) + CO 2 (g). (b) Ca( OHMaq) + CO 2 (g) • CaC0 3 (s) + H 2 0(l ). The visual proof is the formation of a white precipitate of CaC0 3 . 24.29 Heat causes bicarbonates to decompo se according to the reaction: 2HCO~ +. o COj- + H 2 0 + CO 2 , Generation of carbonate ion causes precipitation of the insoluble MgC0 3 . 24.31 The wet sodium hydroxide is first converted to sodium carbonate, 2NaOH (a q) + CO 2 (g) • Na2C0 3(aq) + H 2 0( I), and then to sodium hydrogen carbonate: Na 2 C0 3(aq) + H 2 0(l) + cO 2 (g) • 2NaHC0 3 (aq). Eventually, the sodium hydrogen carbonate precipitates (the water solvr nt evaporates since N aHC0 3 is not hygroscopic). Thu s, most of the white solid is NaHC0 3 plus some Na2C03' 24.33 Ye s. 24.39 (a) 2NaN0 3 (s) • 2NaN0 2 (s) + 0 2(g) . (b) NaN0 3 (s) + C(s) • NaN0 2 (s) + CO (g). 24.41 NH 3(g) + CO 2 (g) >. (NH 2 hCO(s) + H 2 0 (I) . The reaction should be run at high pressure. 24.43 The oxidation state of N in nitric acid is + 5, the highest oxidation state for N. N can be easily reduced to ox id ation state + 3. 24.45 (a) NH 4 N0 3 (s) • N 2 0(g) + 2H 2 0(I ). (b) 2KN0 3 (s) • 2KN0 2 (s) + 02(g) . (c) Pb(N0 3 Ms) • PbO(s) + 2N0 2 (g) + O zCg) . 24.47 KN0 3 (s) + C(s) • KN0 2 (s) + CO (g), 48.0 g KN0 2 . 24.49 (a) D.G ~ = 86.7 kJ/ mol. (b) K = Kp = Kc = 4 X 10- 31 . 24.51 125 g/ mol, P 4 . 24.53 4HN0 3 + P 4 0 lO • 2N 2 0 S + 4HP0 3 , 60.4 g. 24.55 Sp 3 24.63 - 198.3 kJ/mol , K = Kp = Kc = 6 X 10 34 24.65 (a) To exclude light. (b) 0.371 L. 24.67 F = - 1, 0= 0.24.69 (a) HCOOH (l) . • CO (g) + H 2 0(I). (b) 4H 3 PO il) . • P 4 0 IO (S) + 6H 2 0 (l ). (c) 2HN0 3 (l) +. ==' N 2 0 S (g) + H 2 0 (I). (d) 2HCl0 3 (l) • • CI 2 0 s (l ) + H 2 0 (l) . 24.71 To form OF 6 there would have to be six bonds (twelve electrons) around the oxygen atom. This would violate the octet rule. 24.73 35 g C1 2 . 24.75 9H 2 SOiaq) + 8Nal(aq) • 41 2 (s) + H 2 S(g) + 8Na HS0 4 (aq) + 4H 2 0(l). 24.79 (a) H- f.: H- f.: (b) W H- :f.f 24.81 (a) Linear. (b) Tetrahedral. (c) Trigonal bipyramidal. (d) See-saw. 24.83 25 .3 L C1 2 . 24.852.81 L. 24.87 1 2 0 5 (s) + 5CO (g) • 5C0 2 (g) + 12(s), iodine is reduced and carbon is oxidized. 24.89 (a) 2H 3 P0 3 (aq) • H 3 PO iaq) + PH 3 (g) + 0 2(g) . (b) Li 4 C(s) + 4HCI(aq) • 4LiCl(aq) + CH 4 (g). (c) 2HI(g) + 2HN0 2 (aq) , 1 2 (s) + 2NO (g) + 2H 2 0 (I). ( d) H 2 S(g) + 2CI 2 (g) • 2HCI(g) + SCI 2 (1) . 24.91 (a) SiC1 4 . (b) F (c) F. (d) CO 2 , 24.93 O. 24.95 PC!; , tetrahedral, Sp 3 hybrid s; PC1 6 , octahedra!, sp 3 d 2 hybrids. 24.97 K 298 = 9.61 X 10- 22 , Km = 1.2 X 10- 15 24.99 The glass is etched (dissolved) uniformly by the reac ti on 6 HF (aq) + Si0 2 (s) +. H 2 SiF 6 (aq) + 2H 2 0 (l). 24.101 1.18.24.1030. 833 gIL. The molar mass derived from the observed density is 74.41, which suggests that the molecules are associated to some extent in the gas phase. This makes sense due to strong hydrogen bonding in HF. Chapter 25 25.3 The monomer must have a triple bond. 25.5 There are two possible polymers, but if they are long enough, the difference would be negligible: ° II H? N-CH -C-O - I CH? I - SH ° II HN-CH-C-O 2 I CH-OH I CH 3 ° ° H II H II N-CH-C-O-N -C H-C-O I I CH-OH CH 2 I I CH 3 SH II ° ° H II H II N-CH-C -O -N -CH-C-O I I CH? CH-O H I - I SH CH 3 II ° H II N-CH-C-OH I CH-OH I CH 3 ° H II N -CH-C-OH I CH 2 I SH 25.9 (1) Sc (s) + 2C 2 H s OH(l) • Sc(OC 2 H s )(alc) + 2H+(alc) ("alc" indicates a solution in alcohol); (2) Sc(OC2Hs)(alc) + 2H 2 0(I) • Sc(OH Ms) + 2C 2 H s OH(alc); (3) Sc( OH Ms) • ScO(s) + 2H 2 0(g ). 25.11 Bakelite is best described as a thermosetting composite polymer. 25.15 No. These polymers are too flexible, and liquid crystals require long, relatively rigid molecules. 25.19 Alternating condensation copolymer of the polyester class. 25.21 Metal amalgams expand with age; composite fillings tend to shrink. 25.25 sp2 25.27 Dispersion forces. 25.31 (a) 4+ 5: n-type. (b) 4+ 3: p-type. 25.35 Bi2Sr2 Cu0 6' 25.37 Two are +2 ([Ar ]3£), one is + 3 ( [Ar]3d 8 ) . The +3 oxidation state is unusual ° ° II II for co pper. 25.39 H 2N -fCH 2)8 NH 2 HO-C-fCH:m C-OH 25.41 In a plastic (organic) polymer: covalent, disulfide (covalent), H-bonds and dispersion forces; in ceramics, mostly ionic and network covalent. 25.43 Fluoroapatite is less soluble than hydroxyapatite, particularly in acidic solutions. Dental fillings must also be insoluble. 25.45 The molecule is long, flat, and rigid, so it should form a liquid crystal. Answers To PRE-PROFESSIONAL PRACTICE EXAM PROBLEMS Chapter 1 Chapter 8 Chapter 15 Chapter 22 I.b I.e I.b I.e 2.d 2.a 2.a 2. a 3.e 3. a 3.b 3. b 4.a 4. b 4.d 4. b Chapter 2 Chapter 9 Chapter 16 Chapter 23 I.e I.e I.d 1. e 2.d 2. b 2. b 2.d 3. a 3. b 3. a 3. b 4. b 4. d 4. b 4.a Chapter 3 Chapter 10 Chapter 17 Chapter 24 l.d I.e I.e La 2.b 2.d 2. e 2. b 3.b 3.a 3. a 3.e 4.e 4.e 4.d 4. b Chapter 4 Chapter 11 Chapter 18 Chapter 25 La Lb Ld Lb 2. b 2.a 2. b 2.d 3.a 3. b 3.a 3. b 4.e 4.d 4.e 4.d Chapter 5 Chapter 12 Chapter 19 Ld I.e Lb 2.a 2. b 2.e 3.e 3.d 3.d 4. b 4.a 4.d Chapter 6 Chapter 13 Chapter 20 I.b Lb La 2.a 2.d 2.e 3.e 3.e 3.d 4.e 4.e 4.a Chapter 7 Chapter 14 Chapter 21 I.b La Lb 2.a 2. b 2.d 3. b 3.e 3.e 4.d 4. b 4.a AP-17 A absolute entropies, 735, 736 absolute temperature scale, 424 absolute zero, 10, 424 absorbed, 531 acceptor impurities, 890 accuracy, 18-19 acid-base indicators, 698-700 acid-base reactions, 121-122, 125-126 acid-base neutralization, 124 Br¢nsted acids and bases, 122-124 strong acids and bases, 122 acid-base titrations, 144-146, 690-691 acid-base indicators, 698-700 strong acid-strong base titrations, 691-692 strong acid-weak base titrations, 696-698 weak acid-strong base titrations, 693-696 acid ionization constant, 648 acid rain, 838, 843-845 acids in molecular compounds, 50, 51 oxoacids, 59 strong, 112, 113, 122 acids and bases, 634-635 acid-base properties of oxides and hydroxides, 667- 668 acid-base properties of salt solutions, 662-667 acid-base properties of water, 637-639 Br¢nsted, 636-637 conjugate acid-base pairs, 654-657 diprotic and polyprotic acids, 657-659 Lewis acids and bases, 668-670 molecular structure and acid strength, 660-662 pH scale, 639- 644 strong, 644-647 weak acids and acid ionization constants, 647-652 weak bases and base ionization constants, 652-654 actinide series, 225 action potential, 776 activated complex, 564 activation energy, 563 active metals, 130, 258 active site, 575 active transport, 643 activity series, 130, 131 actual yield, 96 addition polymerization, 936 addition polymers, 395-396, 397, 936-941 addition reactions, 386-388 adenosine diphosphate (ADP), 389 adenosine triphosphate (ATP), 389 adhesion, 468 adsorbed, 531 aerosol, 845 Agriculture, U.S. Department of , 159 airbag,433 alcohols, 367, 370, 372 aldehydes, 367, 370, 373 aliphatic compound s, 365 alkali metals, 45, 891 - 893 alkaline batteries, 777 alkaline earth metals, 45, 893-895 alkanes, 51, 52, 365, 368 alkyl group, 366, 367, 368 alkynes, 943 allotropes, 48, 910 alloys, 883 alpha (a) particles, 38 alpha (a) rays, 38 altitude sickness, 448 aluminum, 895-897 alums, 897 amalgam defined, 883 dental, 759, 950 amide group, 367, 370 amide ions, 912 amide linkages, 464 amides, 367, 370, 373 amines, 367, 370, 373 amino acid residue, 464 amino acids, 370, 397-399 amino group, 367, 370 ammonia, 912 amorphous solids, 484 amount-volume relationship, 425-426 amphoteric, 266, 637 amplitude, 194 analogues, 363 angular momentum quantum number, 213, 214 anions, 55 anisotropic, 947 Annan, Kofi, 829 anode, 36, 763, 766 antacids, 642- 643 antibonding molecular orbital, 343 aqueous solutions, 506 acid-base reactions, 121-126 Index aqueous defined, 77 aqueous reactions and chemical analysis, 142-147 concentration of solutions, 136-142 general properties of , 112-116 oxidation-reduction reactions, 126- 13 6 precipitation reactions, 117-121 Aristotle, 34 Armstrong, Lance, 73 aromatic compounds, 365 Arrhenius acid, 123 Arrhenius base, 123 Arrhenius equation, 564-565 Arrhenius, Svante, 122 arsenic, 905 artificial joints, 951- 952 ascorbic acid, 33, 635, 671 Aston, F. w., 43 atactic, 941 atmosphere Earth's, 830-833 phenomena in the outer layers, 83 3- 834 atmospheres (atm), 418 atmospheric pressure, 417 atomic bomb, 812 atomic ions, 55-56 atomic line spectra, 201-202 atomic mass, 46 atomic ma ss unit (amu), 46 atomic number (Z), 40, 239 atomic orbitals, 212, 216, 219 d orbitals and other higher-energy or bi tals. 217-218 energies of orbitals, 218, 219-220 forbitals,218 hybridization of, 327-334, 351 P orbitals, 217 s orbitals, 216-217 atomic radiu s, 246-247, 255 atomic theory, 34-36 atomic weight, 46 atoms, 4 atomic mass scale and average atomic mass 46-47 atomic number, mass number, an d isOl ope5_ 40-43 atomic theory, 34-36 defined, 36 hydrogen atom, 200- 208, 212 structure of, 36-40 attracti on, 160 1-2 INDEX attractive forces, 245, 457 Aufbau principle, 221 aurora australis, 833 aurora borealis, 833 autoionization of water, 638 average reaction rate s, 544-546 Avogadro, Amedeo, 425 Avogadro's law, 425-426, 440 Avogadro's number, 82 Axel, Richard, 313 axial, 316 B • balanced equations, 77-78 ball-and-stick models (molecular art), 5 Balmer, Johann, 202 band theory, 888 band theory of conductivity, 888 conductors, 888-889 semiconductors, 889-890 barometer, 418, 419 base Br0nsted acids and bases, 122-124 defined, 112 strong acids and bases, 122 base ionization constants, 652 basic oxygen process, 885-886 batteries defined, 777 dry cells and alkaline, 777 fuel cells, 778-779 lead storage, 777-778 lithium-ion, 778 Becquerel, Antoine, 38 belt of stability, 800 bends, the, 438 beta-particle emission, 800-801 beta (f3) particles, 39 beta (f3) rays, 39 bidentate ligands, 861 bimolecular, 569 binary hydrides, 907-908 binary molecular compounds, 49, 51 biological catalysts, 575-577 biological concentration cells, 776 biological polymer s, 397-401 biomedical material s, 949-952 bioterrorism agents, 3, 23 bipolar disorder, 267 birth defects, 363 blackbody radiation, 197 blast furnace, 884, 885 blood, maintaining pH of, 689-690 blood alcohol concentration (BAC), 111 blood doping, 591 blood plasma, 689, 690 body-centered cubic cell, 474 Bohr, Niels, 202 . Bohr's theory of the hydrogen atom, 200-201, 208,212 atomic line spectra, 201-202 line spectrum of hydrogen, 202-207 boiling point, 485 boiling-point elevation, 519-520 Boltzmann constant, 729 bomb calorimetry, 175 bond angle, 316, 319 bond dipoles, 321, 322 bond enthalp y, 286, 300-303, 324 bond length, 285 bond order, 343-344 bonding molecular orbital, 342 bonding theories, 351-353 bone, radioactive, ?65 Born-Haber cycle, 282-283 boron neutron capture therapy (BNCT), 797 Boyle, Robert, 421 Boyle's law, 421-423, 440 Bragg equation, 476 Breathalyzer test, Ill, 148 breeder reactors, 814 bromine, 927 Br0nsted acids and bases, 123, 636-637 Br 0nsted base, 123 Br0nsted, Johannes, 123 Buck, Linda, 313 buckyballs, 953 buffer, 683 buffer solutions, 683 with a specific pH, 688-689 calculating the pH of a buffer, 684-688 buret, 8, 9 bums, 489 burst lung, 415 c Cade, John, 267 Cade, Mary, 115 Cade, Robert, 114-115 caffeine, 653 calcium, 894-895 calcium ascorbate, 671 calories caloric content of food, 159 calorie (cal) defined, 162 Calorie (Cal) defined, 163 calorimeter, l7 5 calorimetry bomb (constant-volume ), l75-177 constant-pressure, l72-l74 defined, 171 specific heat and heat capacity, 171 - 172 cancer drugs, 73 nuclear chemistry in treating, 797 smoking and, 819-820 capillary action, 468 carbides, 910 carbocation, 387 carbohydrates, 80 carbon, 364-365, 910-911 carbon-14, 563, 806 carbon dating, 806 carbon dioxide, 838-842, 848, 911 carbon disulfide, 921 carbon monoxide, 348-349, 848, 911 carbon nanotubes, 953 carbonyl group, 367, 370 carborundum, 910 carboxy group, 367, 370 carboxylic acids, 367, 370, 372, 662 Carothers, Wallace, 397 cast iron, 885 catalysi s, 573-577 , 616-617 catalyst, 573 Category A agent s, 3, 23, 298 catenation, 365,910 cathode, 36, 763, 766 cathode ray tube, 36-37 cathodic protection, 785 cations, 55, 56, 714 cell potential, 764 Celsius scale, 10-11, 424 cementite, 886 Centers for Disease Control and Prevention (CDC), 3, 23 central science, 4 ceramic matrix composites, 946 ceramics, 945-946 Chadwick, James, 40 chain reactions, 396 chalco gens, 45 Charles, Jacque s, 423 Charles's and Guy-Lussac 's law, 423-425 Charles's law, 424, 440, 441 Chauvin, Yves, 935 chelating agents, 861 chelation therap y, 857, 873 chemical analysis, 873 chemical bonding, basic concept s, 276-277 bond enthalpy, 300-303 Born-Haber cycle, 282-284 comparison of ionic and covalent compounds, 286 covalent bonding, 284-286 drawing Lewis structures, 291 -2 92 e1ectronegativity and polarity, 286-290 exceptions to the octet rule, 296-300 ionic bonding, 279-284 lattice energy, 280-281 Lewis dot symbol s, 278-279 Lewis structures, 284-285 Lewis structures and formal charge, 292-295 multiple bond s, 285-286 resonance, 295-296 chemical bonds, 47 chemical change, 15 chemical energy, 160 chemical equation s, 76 balancing, 77-81 calculations with balanced, 89-91 interpreting and writing, 76-77 chemical equilibrium, 113, 590-591 concept of equilibrium, 592-594 equilibrium constant, 594-598 equilibrium expressions, 599-605 equilibrium expressions in problem solving, 606-611 factors that affect, 611-6l7 free energy and, 742-746 chemical formulas, 48 chemical kinetics, 542-543 catalysis, 573-577 dependence of reactant concentration on time, 555-562 dependence of reaction rate on reactant concentration, 551-555 dependence of reaction rate on temperature, 562- 568 reaction mechanisms, 568 -573 reaction rates, 544-550 chemical properties, 15 chemical reaction s, 4, 7 comparison of nuclear reactions and, 798 energy changes in, 160-161 chemical reduction, 884 chemistry defined, 4 study of, 4-6 chemotherapy, 73, 873 chiral, 383 chiral switching, 385 chloralkali process, 923 chlorine, 926-927 chlorofluorocarbons (CFCs), 829, 835, 837-838, 841 , 842 cholesteric, 947 cidofovir, 23 cis isomers, 337, 382, 865 -8 66 cisplatin, 73 Clausius-Clapeyron equation, 470 closed system, 163, 164 closest packing, 475, 478-479 coal, 910 cohesion, 468 coinage metals, 265 colligative properties, 517 collision theory, 562-564 colloids, 530- 532 color, 868-869 combination reaction s, 98, 133, 134 combustion analysis of compounds, 87-88 determination of empirical formula, 87 determination of molecular formula, 88 combustion reaction s, 98, 134 common ion effect, 682-683, 705-7l0 complex ion, 710 complex ion formation, 710-712 composite materials, 946 compounds, 6-7. See also inorganic compounds; organic compounds insoluble, 118 ionic, 55, 57-61 , 116, 117-119 molecular, 47, 49 - 51 , 116 ,417 percent composition of, 75-76 soluble, 118 compressibility, gas, 440 concentration cells, 775-776 concentration of solutions concentration defined, 136 dilution, 137, 140 molarity, 136-137, 138-139 preparing a solution from a solid, 138-139 solution stoichiometry, 141-142 condensation, 470 condensation polymers, 396-397, 941-944 condensation reactions, 396 condensed structural formulas, 376 condensed structures, 376 conducting polymers, 943-944 conduction band, 954 conductivity, 113-114 conductors, 888-889 conjugate acid, 636 conjugate acid-base pairs, 654-657 conjugate base, 636 conjugate pair, 636 constant-pressure calorimetry, 172- 174 constant-volume (bomb) calorimetry, 175-177 constant-volume calorimetry, 175 -177 constituent elements, 7 constitutional isomerism, 382 constructive interference, 195, 196 conversion factors, 20 coordinate covalent bonds, 297, 858 coordination chemistry, 856-857 applications of coordination compounds, 873-874 coordination compounds, 858-864 coordination compounds, defined, 858 crystal field theory, 867-872 naming coordination compounds, 862-864 reactions of coordination compounds, 872-873 structure of coordination compounds, 864-867 coordination number s, 473, 861 copolymers, 396, 939 copper, 898 core electrons, 244 con'osion, 784-785 coulomb (C), 289 Coulomb's law, 245, 386, 800 covalent bond, 284 types of covalent bonds, 285-286 covalent bonding, 284 covalent compounds, 286, 925 covalent crystals, 482, 483 covalent hydride s, 908 covalent radiu s, 246 cowpox, 3 crenation, 524-525 critical ma ss, 812 critical pressure, 486, 487 critical temperature, 486, 487 cross-links, 937 Crutzen, Paul, 829 crystal field splitting, 867, 868 crystal field theo ry , 867 color, 868-869 crystal field splitting in octahedral complexes, 867-868 magnetic properties, 869-871 tetrahedral and square-planar complexes, 871 crystal structure, 472 closest packing, 475, 478-479 packing spheres, 473-475 structures of crystals, 476-477 types of crystals, 480-484 unit cells, 472-473 crystalline solid, 472, 507 cubic cells, 474-475 cubic close-packed (ccp) structure, 478 Cunningham, Orville, 438 curie (Ci ), 818, 847 Curie, Marie, 38 cyanides, 911 INDEX D d-block elements, ions of, 253-254 d orbital s, 330- 334 Dalton, John, 34-36 Dalton's law of partial pressures, 434-435, 440,442 dative bond, 297 Davisson, Clinton Joseph, 210 de Broglie hypothesis, 208- 210 de Broglie wavelength, 209 Debye (D), 289 decomposition reactions, 98, 133- 134 decompression sickness (DCS), 438 definite proportions, law of, 35 degenerate, 221 delocalized bonding, 351-353 delocalized bonds, 352 delocalized electrons, 944 demineralization, 681 Democritu s, 34, 35 density, 12- 13, 15 dental implant s, 950 dental pain, electrochemistry of, 759 deoxyribonucleic acid (DNA), 400, 401 deposition, 488 derived units, 12-13 destructive interference, 195, 196,208 detergents, 874 dextrorotatory isomer, 384, 866 dialysis, 505 diamagnetic, 342 diatomic molecule s, 48 diffraction, electron, 210 diffusion, 444 dilution, 137, 140 dimensional analysis, 20 diodes, 955 dipole-dipole interactions, 462-463 dipole moment, 289-290 dipoles, bond, 321, 322 diprotic acids, 123,657-659 directionality, chemical bonds and, 325 dispersion forces, 465-467 displacement reactions, 130 disproportionation reaction, 134, 917 dissociation, 112, 523, 529 distillation, 887 distribution, 729 diving, 415, 438, 448 donor atoms, 860 donor impurities, 890 doping, 889, 955 double bonds, 285, 336, 338 double-sli experiment, nature of light and, 195-196 Douglas, Dwayne, 114-115 drugs chiral switching in, 385-386 organic chemistry and, 363 single-isomer versions, 385- 386 drunk driving, III dry cells, 777 dynamic chemical equilibrium, 113 dynamic equilibrium, 470 1-3 [...]... 835 depletion of stratospheric, 835-836 polar ozone holes, 836-838 p p orbitals, 217, 328-334 p-type semiconductors, 890, 955 packing spheres, 473-475 paramagnetic, 342 partial charges, 289 partial pressure, 434 particle accelerator, 810 particles (N), 84 pascal (Pa), 418 passivation, 785 patina, 785 Pauli exclusion principle, 220-221, 870 Pauling, Linus, 287 peptide bonds, 398, 399 per mole of the reaction,... 938 polyvinyl chloride (PVC), 938 positron, 798 potassium hydroxide, 893 potassium nitrate, 893 potential energy, 160 pounds, 14 precipitate, 117 precipitation, fractional, 712-713 precipitation reactions in aqueous solutions, 117-121 defined,117 solubility and, 704-705 precision, 18-19 prefixes, Greek, 49 pressure calculation of, 418 Dalton's law of partial pressures, 434 435 defined,418 equilibrium... 389 hydronium ion, 123 hydrophilic, 530, 531-532 hydrophobic, 530, 531- 532 hydroxide ion, 123 hydroxy group, 367, 370 hyperbaric oxygen therapy, 438 hypertonic, 525 hypothermia heat capacity and, 174 phase changes and, 489 hypothesis,S hypotonic, 525 hypoxic tents, 591, 623 I ideal behavior (gas), 445 factors that cause deviation from , 4-+ van der Waals equation, 445 447 ideal gas, 427 ideal gas equation,... elastomers, 937 electrocardiogram (EeG), 776 electrochemistry, 758-759 balancing redox reactions, 760- 762 batteries, 777-779 corrosion, 784-785 electrolysis, 780-784 galvanic cells, 763-764 spontaneity of redox reactions under conditions other than standard state, 773-777 spontaneity of redox reactions under standard-state conditions, 770-773 standard reduction potentials, 764-770 electrodes, 763 electrolysis... nonvolatile, 517 normal boiling point, 485 northem lights, 833 nuclear binding energy, 801 - 803 nuclear chain reaction, 812 nuclear chemistry, 796-797 biological effects of radiation, 818-8 19 natural radioactivity, 804-808 nuclear fi ssion, 811 - 815 1-7 1-8 INDEX nuclear chemistry- continued nuclear fusion , 815-817 nuclear stability, 799-804 nuclear transmutation, 808-811 nuclei and nuclear reactions,... dispersion forces, 465-467 hydrogen bonding, 463-464 ion-dipole interactions, 467 solutions and, 507-508 internal energy (U), 165 International System of Units, 9 International Union of Pure and Applied Chemistry, 242 internuclear axis, 335 interstitial hydrides, 908 intramolecular bonding, 286 intravenous fluid s, 524-526 iodine, 927 ion-dipole interactions, 467 ion pairs, 523 ion-product constant (Kw),... of, 6, 7 Maxwell, James Clerk, 195,442 measured numbers, 16- 18 measurement, uncertainty in, 15- 19 medicine lasers in, 193 nuclear, 817-818 Meissner effect, 956 melting, 486 melting point, 486 membrane potential, 776 Mendeleev, Dimitri, 238-239 meniscus, 468 Menkes disease, 881 mercury, 418-420, 422 mesosphere, 833 metabolic acidosis, 543 metabolism, stoichiometry of, 80 metal matrix composites, 946... mass, 84 molar solubility, 701 molarity (M), 136, 138- 139 mole and molar masses determining molar mass, 84 empirical formula from percent composition, 85-86 interconverting mass, moles, and numbers of particles, 84 85 the mole, 82- 84 mole defined, 82 moles of reactants and products, 89- 90 mole fractions, 435-436, 513 , 518 molecular art, 5 molecular compounds, 47 , 49-51 , 116,417 molecular crystals,... nanotubes, 953 NASA,14 natural rubber, 936-937 Nelmes, Sarah, 3 nematic, 947 Nernst equation, 773-775 net ionic equations, 120 neutralization reactions, 124 neutron-to-proton ratio (nip), 800 neutrons, 40, 41 Newlands, John, 238 Newton 's laws of motion, 212 newtons (N) , 14,418 nitric acid, 913-9 14 nitric oxide, 304, 845-846, 913 nitrogen, 911- 914 nitrogen dioxide, 913 nitrogen fixation, 831, 913... in a system, 730 733 entropy changes in the surroundings, 734-735 living systems in, 725 microstates, 727-729 probability, 726-727 standard, 729-730 third law of thermodynamics, 735-736 environmental chemistry, 828-829 acid rain, 843-845 depletion of ozone in the stratosphere, 835-838 Earth's atmosphere, 830-833 greenhouse effect, 838-843 indoor pollution, 846-848 phenomena in the outer layers of the . 890, 955 packing sphere s, 473-475 paramagnetic, 342 partial charges, 289 partial pressure, 434 particle accelerator, 810 particles (N), 84 pascal (Pa), 418 passivation, 785 patina,. 367, 370 hyperbaric oxygen therapy, 438 hypertonic, 525 hypothermia heat capacity and, 174 phase changes and, 489 hypothesis,S hypotonic, 525 hypoxic tents, 591, 623 I ideal behavior (gas),. Dalton, John, 34-36 Dalton's law of partial pressures, 434-435, 440,4 42 dative bond, 297 Davisson, Clinton Joseph, 210 de Broglie hypothesis, 208- 210 de Broglie wavelength, 209

Ngày đăng: 09/07/2014, 13:21

Tài liệu cùng người dùng

Tài liệu liên quan