Chương 5: Hệ tuần tự ppsx

21 168 0
  • Loading ...
1/21 trang

Thông tin tài liệu

Ngày đăng: 04/07/2014, 22:21

Chng 5. H tun t Trang 101 Chng 5  TUN T 5.1. KHÁI NIM CHUNG ch sc chia thành hai loi chính : H t hp và h tun t. i vi h t hp: tín hiu ngõ ra  trng thái k tip ch ph thuc vào trng thái hin ti ca ngõ vào, mà bt chp trng thái hin ti ca ngõ ra. Nh vy, khi các ngõ vào thay i trng thái (b qua thi gian tr ca tín hiu i qua phn t logic) thì lp tc ngõ ra thay i trng thái. i vi h tun t: Các ngõ ra  trng thái k tip va ph thuc vào trng thái hin ti ca ngõ vào, ng thi còn ph thuc trng thái hin ti ca ngõ ra. Do ó, vn  thit k h tun t s khác so vi h t hp và c s thit k h tun t là da trên các Flip - Flop (trong khi vic thit k h t hp da trên các cng logic). ûc khác, i vi h tun t, khi các ngõ vào thay i trng thái thì các ngõ ra không thay i trng thái ngay mà chn cho n khi có mt xung u khin (gi là xung ng h Ck) thì lúc ó các ngõ ra mi thay i trng thái theo các ngõ vào. Nh vy h tun t còn có tính ng b và tính nh (có kh nng lu tr thông tin, lu tr d liu), nên h tun t là c s thit k các b nh. 5.2. BM 5.2.1. i cng m c xây dng trên c s các Flip - Flop (FF) ghép vi nhau sao cho hot ng theo t bng trng thái (qui lut) cho trc.  lng FF s dng là s hàng ca bm. m còn c s dng  to ra mt dãy a ch ca lnh u kin, m s chu trình thc hin phép tính, hoc có th dùng trong vn  thu và phát mã. Có th phân loi bm theo nhiu cách: - Phân loi theo c s các hm: m thp phân, bm nh phân. Trong ó bm nh phân c chia làm hai loi: + Bm vi dung lng m 2n. + Bm vi dung lng m khác 2n (m modulo M). - Phân loi theo hng m gm: ch m lên (m tin), mch m xung (m lùi), ch m vòng. - Phân loi mch m theo tín hiu chuyn: bm ni tip, bm song song, bm n hp. - Phân loi da vào chc nng u khin: + Bm ng b: S thay i ngõ ra ph thuc vào tín hiu u kin Ck. + Bm không ng b. c dù có rt nhiu cách phân loi nhng ch có ba loi chính: m ni tip (không ng ), m song song (ng b), m hn hp . Bài ging K THUT S Trang 102 5.2.2. Bm ni tip 1. Khái nim m ni tip là bm trong ó các TFF hoc JKFF gi chc nng ca TFF c ghép ni tip vi nhau và hot ng theo mt loi mã duy nht là BCD 8421. i vi loi bm này, các ngõ ra thay i trng thái không ng thi vi tín hiu u khin Ck (tc không chu su khin a tín hiu u khin Ck) do ó mch m ni tip còn gi là mch m không ng b. 2. Phân loi - m lên. - m xung. - m lên /xung. - m Modulo M. a. m lên Ðây là bm có ni dung tng dn. Nguyên tc ghép ni các TFF (hoc JKFF thc hin chc ng TFF)  to thành bm ni tip còn ph thuc vào tín hiu ng b Ck. Có 2 trng hp khác nhau: - Tín hiu Ck tác ng theo sn xung: TFF hoc JKFF c ghép ni vi nhau theo qui lut sau: Ck i+1 = Q i - Tên hiu Ck tác ng theo sn lên: TFF hoc JKFF c ghép ni vi nhau theo qui lut sau: Ck i+1 = i Q Trong ó T luôn luôn gi mc logic 1 (T = 1) và ngõ ra ca TFF ng trc ni vi ngõ vào Ck ca TFF ng sau.  minh ha chúng ta xét ví d v mt mch m ni tip, m 4, m lên, dùng TFF.  lng TFF cn dùng: 4 = 2 2 → dùng 2 TFF. Trng hp Ck tác ng theo sn xung (hình 5.1a): T Ck 1 T Ck 2 Q 2 Q 1 11 Ck Clr Hình 5.1a Ck Chng 5. H tun t Trang 103 Trng hp Ck tác ng theo sn lên (hình 5.1b): Trong các s mch này Clr (Clear) là ngõ vào xóa ca TFF. Ngõ vào Clr tác ng mc thp, khi Clr = 0 thì ngõ ra Q ca FF b xóa v 0 (Q=0). Gin  thi gian ca mch  hình 5.1a : ng trng thái hot ng ca mch hình 5.1a: Xung vào Trng thái hin ti Trng thái k tip Ck Q 2 Q 1 Q 2 Q 1 1 2 3 4 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 T Ck 1 T Ck 2 Q 2 Q 1 11 Ck Clr 1 Q Q 2 H 5.1b Ck 1 2 3 4 5 7 8 1 1 1 10 0 0 0 0 0 00 1 1 1 1 Ck Q 1 Q 2 Hình 5.2a. Gin  thi gian mch hình 5.1a Bài ging K THUT S Trang 104 Gin  thi gian mch hình 5.1b : ng trng thái hot ng ca mch hình 5.1b : Xung vào Trng thái hin ti Trng thái k tip Ck Q 2 Q 1 Q 2 Q 1 1 2 3 4 0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 b. m xung ây là bm có ni dung m gim dn. Nguyên tc ghép các FF cng ph thuc vào tín hiu u khin Ck: - Tín hiu Ck tác ng sn xung: TFF hoc JKFF c nghép ni vi nhau theo qui lut sau: Ck i+1 = i Q - Tín hiu Ck tác ng sn xung: TFF hoc JKFF c nghép ni vi nhau theo qui lut sau: Ck i+1 = Q i Trong ó T luôn luôn gi mc logic 1 (T = 1) và ngõ ra ca TFF ng trc ni vi ngõ vào Ck ca TFF ng sau. 1 2 3 4 5 7 8 1 1 1 10 0 0 0 00 00 11 1 1 Ck Q 1 Q 2 11 1 1 0 0 0 0 1 Q Hình 5.2b. Gin  thi gian mch hình 5.1b Chng 5. H tun t Trang 105 Ví d: Xét mt mch m 4, m xung, m ni tip dùng TFF.  lng TFF cn dùng: 4 = 2 2 ⇒ dùng 2 TFF.  mch thc hin khi s dng Ck tác ng sn xung và Ck tác ng sn lên ln lt c cho trên hình 5.3a và 5.3b : T Ck 1 T Ck 2 Q 2 Q 1 11 Ck Clr H 5.3b Ck Hình 5.3a Ck T Ck 1 T Ck 2 Q 2 Q 1 11 Ck Clr 1 Q Q 2 Hình 5.4a. Gin  thi gian mch H 5.3a 1 2 3 4 5 7 8 Ck Q 1 Q 2 11 1 1 0 0 0 0 1 Q 0 0 00 11 1 1 0 0 Bài ging K THUT S Trang 106 ng trng thái hot ng ca mch hình 5.3a: Xung vào Trng thái hin ti Trng thái k tip Ck Q 2 Q 1 Q 2 Q 1 1 2 3 4 0 1 1 0 0 1 0 1 1 1 0 0 1 0 1 0 Gin  thi gian ca mch hình 5.3b: ng trng thái hot ng ca mch hình 5.3b : Xung vào Trng thái hin ti Trng thái k tip Ck Q 2 Q 1 Q 2 Q 1 1 2 3 4 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 1 c. m lên/xung: i X là tín hiu u khin chiu m, ta quy c: + Nu X = 0 thì mch m lên. + Nu X = 1 thì m xung. Ta xét 2 trng hp ca tín hiu Ck: - Xét tín hiu Ck tác ng sn xung: Lúc ó ta có phng trình logic: iii1i QXQX.QXCk ⊕=+= + - Xét tín hiu Ck tác ng sn lên: Lúc ó ta có phng trình logic: iii1i QXX.QQ.XCk ⊕=+= + Hình 5.4b. Gin  thi gian mch hình 5.3b 1 2 3 4 5 7 8 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 Ck Q 1 Q 2 0 Chng 5. H tun t Trang 107 d. m modulo M: ây là bm ni tip, theo mã BCD 8421, có dung lng m khác 2 n . Ví d: Xét mch m 5, m lên, m ni tip.  lng TFF cn dùng: Vì 2 2 = 4 < 5 < 8 = 2 3 ⇒ duìng 3 TFF. y bm này s có 3 u ra (chú ý: S lng FF tng ng vi su ra). ng trng thái hot ng ca mch: Xung vào Trng thái hin ti Trng thái k tip Ck Q 3 Q 2 Q 1 Q 3 Q 2 Q 1 1 2 3 4 5 0 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 0 0 1 1/0 0 1 1 0 0 1 0 1 0 1/0 u dùng 3 FF thì mch có thm c 8 trng thái phân bit (000 → 111 tng ng 0→7). Do ó,  s dng mch này thc hin m 5, m lên, thì sau xung Ck th 5 ta tìm cách a t hp 101 v 000 có ngha là mch thc hin vic m li t t hp ban u. Nh vy, bm sm t 000 → 100 và quay v 000 tr li, nói cách khác ta ã m c 5 trng thái phân bit.  xóa bm v 000 ta phân tích: Do t hp 101 có 2 ngõ ra Q 1 , Q 3 ng thi bng 1 (khác vi các t hp trc ó) ( ây chính là du hiu nhn bit u khin xóa bm. Vì vy  xóa b m v 000: - i vi FF có ngõ vào Clr tác ng mc 0 thì ta dùng cng NAND 2 ngõ vào. - i vi FF có ngõ vào Clr tác ng mc 1 thì ta dùng cng AND có 2 ngõ vào. Nh vy s mch m 5 là s ci tin t mch m 8 bng cách mc thêm phn t cng NAND (hoc cng AND) có hai ngõ vào (tùy thuc vào chân Clr tác ng mc logic 0 hay mc logic 1) c ni n ngõ ra Q 1 và Q 3 , và ngõ ra ca cng NAND (hoc AND) sc ni n ngõ vào Clr ca bm (cng chính là ngõ vào Clr ca các FF). Trong trng hp Clr tác ng mc thp s mch thc hin m 5 nh trên hình 5.5 : T Ck 1 T Ck 2 Q 2 Q 1 11 Ck Clr T Ck 3 Q 3 1 Hình 5.5. Mch m 5, m lên Bài ging K THUT S Trang 108 Y 1 C1 R1 Y VCC 1 Hình 5.7. Mch Reset mc 0 Chú ý : Do trng thái ca ngõ ra là không bit trc nên  mch có thm t trng thái ban u là 000 ta phi dùng thêm mch xóa tng ban u  xóa b m v 0 (còn gi là mch RESET ban u). Phng pháp thc hin là dùng hai phn t thng R và C. Trên hình 5.7 là mch Reset mc 0 (tác ng mc 0). Mch hot ng nh sau: Do tính cht n áp trên t C không t bin c nên ban u mi cp ngun Vcc thì V C = 0 ( ngõ ra Clr = 0 và mch có tác ng Reset xóa bm, sau ó t C c np n t ngun qua n tr R vi thi ng np là τ = RC nên n áp trên t tng dn, cho n khi t C np y thì n áp trên t xp x ng Vcc ⇒ ngõ ra Clr = 1, mch không còn tác dng reset. Chú ý khi thit k: Vi mt FF, ta bit c thi gian xóa (có trong Datasheet do nhà sn xut cung cp), do ó ta phi tính toán sao cho thi gian t C np n t giá tr ban u n giá trn áp ngng phi ln n thi gian xóa cho phép thì mi m bo xóa c các FF. ch cho phép xóa bm tng (H 5.8) và bng tay (H 5.9): Ck Q 1 Q 2 1 1 1 1 0 0 0 0 0 0 00 0 1 1 1 1 1 0 0 0 1 2 3 4 5 7 8 9 106 0 0 0 0 00 00 1 Q 3 Hình 5.6. Gin  thi gian mch m 5, m lên T Ck 1 T Ck 2 Q 2 Q 1 1 1 Ck Clr T Ck 3 Q 3 1 Y 1 R1 C1 Y VCC 1 Hình 5.8. Mch cho phép xóa bm tng Chng 5. H tun t Trang 109 T Ck 1 T Ck 2 Q 2Q 1 1 1 Ck Clr T Ck 3 Q 3 1 Y 1 R1 C1 Y VCC 1 Y 1 Hình 5.9. Mch cho phép xóa bm tng và bng tay u m ca bm ni tip: n gin, d thit k. Nhc m: Vi dung lng m ln, s lng FF s dng càng nhiu thì thi gian tr tích ly khá ln. Nu thi gian tr tích ly ln hn mt chu k tín hiu xung kích thì lúc by gi kt qu m s sai. Do ó,  khc phc nhc m này, ngi ta s dng bm song song. 5.2.3. Bm song song 1. Khái nim m song song là bm trong ó các FF mc song song vi nhau và các ngõ ra s thay i trng thái di su khin ca tín hiu Ck. Chính vì vy mà ngi ta còn gi bm song song là bm ng b. ch m song song c s dng vi bt k FF loi nào và có thm theo qui lut bt k cho trc. Vì vy,  thit k bm ng b (song song) ngi ta da vào các bng u vào kích a FF. 2. Mch thc hin i vi bm song song dù m lên hay m xung, hoc là m Modulo M (m lên/m xung) u có cách thit k chung và không ph thuc vào tín hiu Ck tác ng sn lên, sn xung, mc 0 hay mc 1. Các bc thc hin : - T yêu cu thc t xây dng bng trng thái hot ng ca bm. - Da vào bng u vào kích ca FF tng ng  xây dng các bng hàm giá tr ca các ngõ vào d liu (DATA) theo ngõ ra. - Dùng các phng pháp ti thiu  ti thiu hóa các hàm logic trên. - Thành lp s logic. Ví d : Thit k mch m ng b, m 5, m lên theo mã BCD 8421 dùng JKFF. Trc ht xác nh s JKFF cn dùng: Vì 2 2 = 4 < 5 < 8 = 2 3 ⇒ dùng 3 JKFF ⇒ có 3 ngõ ra Q 1 , Q 2 , Q 3 . Ta có bng trng thái mô t hot ng ca bm nh sau: Bài ging K THUT S Trang 110 Xung vào Trng thái hin ti Trng thái k tip Ck Q 3 Q 2 Q 1 Q 3 Q 2 Q 1 1 0 0 0 0 0 1 2 0 0 1 0 1 0 3 0 1 0 0 1 1 4 0 1 1 1 0 0 5 1 0 0 0 0 0  chng 3 chúng ta ã xây dng c bng u vào kích cho các FF và ã có c bng u vào kích tng hp nh sau: Q n Q n+1 S n R n J n K n T n D n 0 0 0 X 0 X 0 0 0 1 1 0 1 X 1 1 1 0 0 1 X 1 1 0 1 1 X 0 X 0 0 1 ó ta suy ra bng hàm giá tr ca các ngõ vào data theo các ngõ ra nh sau : Xung Trng thái hin ti Trng thái k tip vào Q 3 Q 2 Q 1 Q 3 Q 2 Q 1 J 3 K 3 J 2 K 2 J 1 K 1 1 0 0 0 0 0 1 0 X 0 X 1 X 2 0 0 1 0 1 0 0 X 1 X X 1 3 0 1 0 0 1 1 0 X X 0 1 X 4 0 1 1 1 0 0 1 X X 1 X 1 5 1 0 0 0 0 0 X 1 0 X 0 X
- Xem thêm -

Xem thêm: Chương 5: Hệ tuần tự ppsx, Chương 5: Hệ tuần tự ppsx, Chương 5: Hệ tuần tự ppsx

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay