Tài liệu ôn thi đại học môn toán

24 318 0
  • Loading ...
1/24 trang

Thông tin tài liệu

Ngày đăng: 07/05/2014, 09:59

Tài liệu ôn thi đại học môn toán NGUYỄN ðỨC TUẤN TỰ ÔN LUYỆN THI MÔN TOÁN MÔN TOÁNMÔN TOÁN MÔN TOÁN Hà nội, 1 - 2005 Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 1 Chương 1: Phương trình và bất phương trình Bài 1: PHƯƠNG TRÌNH BẬC NHẤT VÀ BẬC HAI I. Cách giải 1) Phương trình bậc nhất: ax + b = 0, a,b ∈ IR. • Nếu a ≠ 0 thì phương trình có nghiệm duy nhất x = - a b . • Nếu a = 0, b ≠ 0 thì phương trình vô nghiệm. • Nếu a = b = 0 thì phương trình nghiệm ñúng với mọi x ∈ IR. 2) Phương trình bậc hai: ax 2 + bx + c = 0, a ≠ 0. • Nếu ∆ = b 2 – 4ac < 0 phương trình vô nghiệm. • Nếu ∆ = 0 phương trình có nghiệm kép = = 21 xx - a 2 b . • N ế u ∆ > 0 ph ươ ng trình có hai nghi ệ m phân bi ệ t = 2,1 x a 2 b ∆±− . II. ðịnh lí Viét và hệ quả về dấu các nghiệm 1) ðịnh lí Viét : N ế u ph ươ ng trình ax 2 + bx + c = 0, a ≠ 0 có hai nghi ệ m 21 x,x thì S = = + 21 xx - a b và P = = 21 x.x a c . 2) Hệ quả: Ph ươ ng trình b ậ c hai ax 2 + bx + c = 0, a ≠ 0 có hai nghi ệ m: Trái d ấ u ⇔ 0 a c < Cùng d ấ u ⇔      > ≥∆ 0 a c 0 Cùng dương          >− > ≥∆ ⇔ 0 a b 0 a c 0 Cùng âm          <− > ≥∆ ⇔ 0 a b 0 a c 0 III. ðịnh lí về dấu của tam thức bậc hai Cho tam thức bậc hai f(x) = ax 2 + bx + c, a ≠ 0 ta có 1. ðịnh lí thuận: • Nếu ∆ = b 2 – 4ac < 0 thì a.f(x) > 0 với ∀ x. • Nếu ∆ = 0 thì a.f(x) > 0 với ∀ x ≠ - a 2 b . • Nếu ∆ > 0 khi ñó f(x) có hai nghiệm phân biệt x 1 < x 2 và a.f(x) > 0 với x ngoài ]x;x[ 21 . a.f(x) < 0 với 21 xxx < < . 2. ðịnh lí ñảo: Nếu tồn tại số α sao cho a.f( α ) < 0 thì tam thức có hai nghiệm phân biệt và số α nằm trong khoảng hai nghiệm ñó: 21 xx < α < . Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 2 IV. Ứng dụng 1. ðiều kiện ñể f(x) = ax 2 + bx + c không ñổi dấu với mọi x f(x) > 0 với ∀ x           <∆ >    > == ⇔ 0 0a 0c 0ba f(x) ≥ 0 v ớ i ∀ x           ≤∆ >    ≥ == ⇔ 0 0a 0c 0ba f(x) < 0 v ớ i ∀ x           <∆ <    < == ⇔ 0 0a 0c 0ba f(x) ≤ 0 v ớ i ∀ x           ≤∆ <    ≤ == ⇔ 0 0a 0c 0ba 2. So sánh nghiệm tam thức bậc hai với số thực α • ð i ề u ki ệ n ñể f(x) có hai nghi ệ m phân bi ệ t và 21 xx < α < là: a.f( α ) < 0. • ð i ề u ki ệ n ñể f(x) có hai nghi ệ m phân bi ệ t và α n ằ m ngoài kho ả ng hai nghi ệ m:    >α >∆ 0)(f.a 0 - N ế u α n ằ m bên ph ả i hai nghi ệ m: α < < 21 xx ⇒        <−= >α >∆ a a2 b 2 S 0)(f.a 0 - N ế u α n ằ m bên trái hai nghi ệ m: 21 xx < < α        >−= >α >∆ ⇒ a a2 b 2 S 0)(f.a 0 • ð i ề u ki ệ n ñể f(x) có hai nghi ệ m phân bi ệ t và m ộ t nghi ệ m n ằ m trong, m ộ t nghi ệ m n ằ m ngoài ñ o ạ n [ β α ; ] là: f( α ).f( β ) < 0. 3. ðiều kiện ñể f(x) có nghiệm thỏa mãn x > α : • Tr ườ ng h ợ p 1: f(x) có nghi ệ m 21 xx < α < ⇔ a.f( α ) < 0. • Tr ườ ng h ợ p 2: f(x) có nghi ệ m 21 xx < < α ⇔        <α >α ≥∆ 2 S 0)(f.a 0 • Tr ườ ng h ợ p 3: f(x) có nghi ệ m 21 xx < = α      <α =α ⇔ 2 S 0)(f ( Làm t ươ ng t ự v ớ i tr ườ ng h ợ p x < α và khi x ả y ra d ấ u b ằ ng) Ngoài ra ta chú ý thêm ñị nh lí sau: Gi ả s ử hàm s ố y = f(x) liên t ụ c. Khi ñ ó ñ i ề u ki ệ n ñể ph ươ ng trình f(x) = m có nghi ệ m là minf(x) ≤ m ≤ maxf(x). Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 3 Bảng tóm tắt ñịnh lý thuận về dấu của tam thức bậc hai N ế u 0 < ∆ N ế u 0 = ∆ N ế u 0 > ∆ a.f(x) > 0 v ớ i ∀ x a.f(x) > 0 v ớ i ∀ x ≠ - a 2 b a.f(x) > 0 v ớ i x ngoài ]x;x[ 21 a.f(x) < 0 v ớ i 21 xxx < < Bảng tóm tắt so sánh nghiệm tam thức bậc hai với số thực α ð i ề u ki ệ n ñể f (x) = ax 2 + bx + c có hai nghi ệ m phân bi ệ t và α n ằ m gi ữ a kho ả ng hai nghi ệ m 21 xx < α < α n ằ m ngoài kho ả ng hai nghi ệ m    >α >∆ 0)(f.a 0 α < < 21 xx α < < 21 xx a.f( α ) < 0        <−= >α >∆ a a2 b 2 S 0)(f.a 0        >−= >α >∆ a a2 b 2 S 0)(f.a 0 Ví dụ 1 . Tìm m ñể ph ươ ng trình 08mx)4m(2x 22 =+++− có 2 nghi ệ m d ươ ng. Ví dụ 2 . Xác ñị nh a ñể bi ể u th ứ c 3a3x)1a(2x)1a( 2 −+−−+ luôn d ươ ng Ví dụ 3 . Tìm m ñể b ấ t ph ươ ng trình m 2 x x 2 ≥ − + nghi ệ m ñ úng v ớ i m ọ i x. Ví dụ 4 . Tìm m ñể ph ươ ng trình m 2 mx x 2 + + = 0 có hai nghi ệ m 21 x,x th ỏ a mãn -1< 21 xx < Ví dụ 5 . Tìm m ñể ph ươ ng trình 01m2mx2x 22 =−+− có nghi ệ m th ỏ a mãn 4xx2 21 ≤ ≤ ≤ − Ví dụ 6 . Cho ph ươ ng trình 2m3x)2m(x 2 −+++ =0 Tìm m ñể ph ươ ng trình có hai nghi ệ m phân bi ệ t nh ỏ h ơ n 2 Ví dụ 7 . Tìm m ñể ph ươ ng trình 02mmx2x 2 =++− có nghi ệ m l ớ n h ơ n 1 Ví dụ 8. Tìm m ñể ph ươ ng trình 02m2m9mx6x 22 =+−+− có nghi ệ m 3xx 21 ≤ ≤ Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 4 Bài 2: PHƯƠNG TRÌNH TRÙNG PHƯƠNG VÀ PHƯƠNG TRÌNH CHỨA GIÁ TRỊ TUYỆT ðỐI I. Phương trình trùng phương 0a,0cbxax 24 ≠=++ (1) ðặ t t = 2 x ≥ 0 ph ươ ng trình (1) tr ở thành: at 2 + bt + c = 0 (2) • PT (1) có nghi ệ m khi và ch ỉ khi (2) có ít nh ấ t m ộ t nghi ệ m không âm. • PT (1) có ñ úng hai nghi ệ m phân bi ệ t khi và ch ỉ khi (2) có ñ úng m ộ t nghi ệ m d ươ ng. • PT (1) có ñ úng 3 nghi ệ m phân bi ệ t khi và ch ỉ khi (2) có m ộ t nghi ệ m b ằ ng 0 và m ộ t nghi ệ m d ươ ng. • PT (1) có ñ úng 4 nghi ệ m phân bi ệ t khi và ch ỉ khi (2) có hai nghi ệ m d ươ ng phân bi ệ t. Ví dụ 1 . Cho ph ươ ng trình: x 4 + (1-2m)x 2 + m 2 – 1 = 0. a)Tìm các giá tr ị c ủ a m ñể ph ươ ng trình vô nghi ệ m. b)Tìm các giá tr ị c ủ a m ñể ph ươ ng trrình có 4 nghi ệ m phân bi ệ t. Ví dụ 2. Tìm m sao cho ñồ th ị hàm s ố y = x 4 -2(m+4)x 2 + m 2 + 8 c ắ t tr ụ c hoành l ầ n l ượ t t ạ i 4 ñ i ể m phân bi ệ t A, B, C, D v ớ i AB = BC = CD. II. Phương trình chứa giá trị tuyệt ñối 1) Các dạng cơ bản: | a | = b    ±= ≥ ⇔ ba 0b | a | = | b | ba ± = ⇔ | a | ≤ b    ≤ ≥ ⇔ 22 ba 0b | a | ≥ b         ≥ ≥ < ⇔ 22 ba 0b 0b | a | ≥ | b | 22 ba ≥⇔ Ví dụ 1. Giải phương trình | x 2 – 3x + 2 | - 2x = 1. Ví dụ 2. Giải bất phương trình x 2 - | 4x – 5 | < 0. Ví dụ 3. Giải và biện luận phương trình | 2x – m | = x. Ví dụ 4. Giải phương trình 4|sinx| + 2cos2x = 3. Ví dụ 5. Giải và biện luận bất phương trình | 3x 2 -3x – m | ≤ | x 2 – 4x + m |. 2)Phương pháp ñồ thị: a) Cách vẽ ñồ thị hàm số y = | f(x) | khi ñã biết ñồ thị hàm số y = f(x). - Chia ñồ thị hàm số f(x) ra 2 phần: phần ñồ thị nằm phía trên trục hoành (1) và phần ñồ thị nằm phía dưới trục hoành (2). - Vẽ phần ñồ thị ñối xứng với phần ñồ thị (2) qua trục hoành ñược phần ñồ thị (3). - ðồ thị hàm số y = | f(x) | là ñồ thị gồm phần ñồ thị (1) và phần ñồ thị (3) vừa vẽ. b) ðịnh lí: Số nghiệm của phương trình g(x) = h(m) là số giao ñiểm của ñường thẳng nằm ngang y = h(m) với ñồ thị hàm số y = g(x). Khi gặp phương trình có tham số ta tách riêng chúng về một vế của phương trình rồi vẽ ñồ thị hàm số y = g(x) và ñường thẳng y = h(m) rồi áp dụng ñịnh lí trên ñể biện luận. Ví dụ 6. Tìm m ñể phương trình | x 2 – 1 | = m 4 – m 2 +1 có 4 nghiệm phân biệt. Ví dụ 7. Biện luận theo m số nghiệm của phương trình | x – 1 | + | x + 2 | = m. Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 5 Bài 3: PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH VÔ TỶ I.Các dạng cơ bản Dạng 1: )x()x(f 1n2 ϕ= + , n ∈ N * ⇔ f(x) = [ )x( ϕ ] 2n+1 Dạng 2: )x()x(f n2 ϕ= , n ∈ N * ⇔    ϕ= ≥ϕ n2 )]x([)x(f 0)x( D ạ ng 3:      ϕ< >ϕ ≥ ⇔ϕ< 2 )]x([)x(f 0)x( 0)x(f )x()x(f ,      ϕ≤ ≥ϕ ≥ ⇔ϕ≤ 2 )]x([)x(f 0)x( 0)x(f )x()x(f D ạ ng 4:           ϕ> ≥ϕ    <ϕ ≥ ⇔ϕ> 2 )]x([)x(f 0)x( 0)x( 0)x(f )x()x(f ,           ϕ≥ ≥ϕ    ≥ϕ < ⇔ϕ≥ 2 )]x([)x(f 0)x( 0)x( 0)x(f )x()x(f Ví dụ 1 . Gi ả i ph ươ ng trình 1x23x2x 2 +=+− Ví dụ 2. Gi ả i b ấ t ph ươ ng trình x12xx 2 <−− Ví dụ 3. Gi ả i b ấ t ph ươ ng trình x26x5x2 2 −>−+ Ví dụ 4 . Tìm m ñể ph ươ ng trình có nghi ệ m 3mxx2mx 2 −+=− II. Các phương pháp giải phương trình, bất phương trình vô tỷ không cơ bản 1) Phương pháp lũy thừa hai vế: - ðặ t ñ i ề u ki ệ n tr ướ c khi bi ế n ñổ i - Ch ỉ ñượ c bình ph ươ ng hai v ế c ủ a m ộ t ph ươ ng trình ñể ñượ c ph ươ ng trình t ươ ng ñươ ng (hay bình ph ươ ng hai v ế c ủ a m ộ t b ấ t ph ươ ng trình và gi ữ nguyên chi ề u) nếu hai v ế c ủ a chúng không âm. - Chú ý các phép bi ế n ñổ i c ă n th ứ c AA 2 = . Ví dụ 5 . Gi ả i ph ươ ng trình 4x31x +−=+ Ví dụ 6 . Gi ả i b ấ t ph ươ ng trình x78x23x −+−≥+ Ví dụ 7 . Gi ả i b ấ t ph ươ ng trình 15x5x3 >+− Ví dụ 8. Gi ả i b ấ t ph ươ ng trình x1x2x ≤+−+ Ví dụ 9 .Gi ả i ph ươ ng trình 2x21x6x8x2 22 +=−+++ Ví dụ 10 .Gi ả i b ấ t ph ươ ng trình 1x1x3x23x4x 22 −≥+−−+− 2)Phương pháp ñặt ẩn phụ: - Nh ữ ng bài toán có tham s ố khi ñặ t ẩ n ph ụ ph ả i tìm t ậ p xác ñị nh c ủ a ẩ n m ớ i. - Chú ý các h ằ ng ñẳ ng th ứ c 222 bab2a)ba( +±=± , )ba)(ba(ba 22 −+=− , … Ví dụ 11 .Gi ả i b ấ t ph ươ ng trình x2x71x10x5 22 −−≥++ Ví dụ 12. i ả i ph ươ ng trình 47x1x7x28x =+−+++++ Ví dụ 13 .Gi ả i ph ươ ng trình 4x415x42x2x 2 −+−=−++ Ví dụ 14 .Gi ả i ph ươ ng trình x 2x2x3 x 4 x9 2 2 2 −+ =+ Ví dụ 15 .Gi ả i b ấ t ph ươ ng trình 4 x2 1 x2 x2 5 x5 ++<+ Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 6 Bài 4: HỆ PHƯƠNG TRÌNH ðỐI XỨNG I. Hệ phương trình ñối xứng loại 1 1)Khái niệm : Là h ệ mà m ỗ i ph ươ ng trình không ñổ i khi ta thay x b ở i y và thay y b ở i x. 2)Tính chất : N ế u (x o , y o ) là m ộ t nghi ệ m c ủ a h ệ thì (y o, x o ) c ũ ng là nghi ệ m c ủ a h ệ . 3)Cách giải: Bi ế n ñổ i h ệ ph ươ ng trình v ề d ạ ng: H ệ ñ ã cho ⇔    = =+ Py.x Syx (1) Khi ñ ó x, y là nghi ệ m c ủ a ph ươ ng trình: 0PStt 2 =+− (2) N ế u ∆ = S 2 – 4P > 0 thì ph ươ ng trình (2) có hai nghi ệ m t 1 ≠ t 2 nên h ệ ph ươ ng trình (1) có hai nghi ệ m phân bi ệ t (t 1, t 2 ), (t 2 , t 1 ). N ế u ∆ = 0 thì ph ươ ng trình (2) có nghi ệ m kép t 1 = t 2 nên h ệ (1) có nghi ệ m duy nh ấ t (t 1, t 2 ). ð i ề u ki ệ n ñể h ệ (1) có ít nh ấ t m ộ t c ặ p nghi ệ m (x, y) th ỏ a mãn x ≥ 0, y ≥ 0      ≥ ≥ ≥−=∆ 0P 0S 0P4S 2 Ví dụ 1 .Gi ả i h ệ ph ươ ng trình    =+ =+ 26yx 2yx 33      =+ =+ 35yyxx 30xyyx    =++ =−− 1xyyx 3xyyx 22 Ví dụ 2. Tìm m ñể h ệ sau có nghi ệ m      +−=+ =−++ 6m4myx m1y1x 2    =+++ −=++ m2)yx(2yx 6m5)2y)(2x(xy 22 II. Hệ phương trình ñối xứng loại 2 1)Khái niệm: Là h ệ ph ươ ng trình mà trong h ệ ph ươ ng trình ta ñổ i vai trò x, y cho nhau thì ph ươ ng trình n ọ tr ở thành ph ươ ng trình kia. 2)Tính chất: N ế u (x o , y o ) là m ộ t nghi ệ m c ủ a h ệ thì (y o, x o ) c ũ ng là nghi ệ m c ủ a h ệ . 3)Cách giải: Tr ừ v ế v ớ i v ế hai ph ươ ng trình c ủ a h ệ ta ñượ c ph ươ ng trình có d ạ ng: (x – y).f(x,y) = 0 ⇔ x – y = 0 ho ặ c f(x,y) = 0. Ví dụ 3 .Gi ả i các h ệ ph ươ ng trình      =+ =+ x40yxy y40xyx 23 23      =− =− 22 22 x4xy y4yx        += += x 1 xy2 y 1 yx2 2 2 Ví dụ 4 .Tìm m ñể h ệ sau có nghi ệ m:      =−+ =−+ m1xy2 m1yx2      +−= +−= mxxy myyx 2 2 Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 7 Bài 5: MỘT SỐ HỆ PHƯƠNG TRÌNH DẠNG KHÁC I. Hệ vô tỷ Ví dụ 1. Gi ả i h ệ ph ươ ng trình      =+ =++ 4yx 28xy2yx 22 Ví dụ 2. Gi ả i và bi ệ n lu ậ n      =− =++ ayx axyyx Ví dụ 3 . Gi ả i h ệ ph ươ ng trình      =−−+ =−++ 1xyxy 2yxyx Ví dụ 4. Giải hệ phương trình      =+− =−− 2yx2 2y2x Ví dụ 5. Tìm m ñể hệ có nghiệm      =++ =++ 1x1y my1x II. Hệ hữu tỷ Ví dụ 6. Giải hệ phương trình        =++ =+ −+ 22 y x4 yx 1 x y2 1yx 3 22 22 Ví dụ 7 . Gi ả i h ệ ph ươ ng trình    =− =− 2)yx(xy 7yx 33 Ví dụ 8. Gi ả i h ệ ph ươ ng trình      +=+ +=+ )x1(5y1 x16yy4x 22 33 Ví dụ 9 . Tìm a ñể h ệ có nghi ệ m    =+++ +=− 02yxxy )xy1(ayx Ví dụ 10 . Gi ả i h ệ ph ươ ng trình      =+ =− y10)yx(x x3)yx(y2 22 22 Ví dụ 11 .Tìm m ñể h ệ có hai nghi ệ m phân bi ệ t:    =+− =+ 2x2yx myx 22 Ví dụ 12. Gi ả i h ệ ph ươ ng trình      =− −=−− 180xy)yx( 11yxyx 22 22 Ví dụ 13 . Gi ả i h ệ ph ươ ng trình      +=+ −=− )yx(7yx )yx(19yx 33 33 ========================================================== Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 8 Chương 2: Phương trình lượng giác, mũ, logarit Bài 1: PHƯƠNG TRÌNH LƯỢNG GIÁC I. Phương trình lượng giác cơ bản Khi gi ả i các ph ươ ng trình l ượ ng giác cu ố i cùng d ẫ n ñế n phép gi ả i các ph ươ ng trình l ượ ng giác c ơ b ả n. Ta c ầ n ghi nh ớ b ả ng sau ñ ây: Ph ươ ng trình ð i ề u ki ệ n có nghi ệ m ðư a v ề d ạ ng Nghi ệ m sinx = m 1 m 1 ≤ ≤ − sinx = sin α    π+α−π= π+α= 2kx 2kx cosx = m 1 m 1 ≤ ≤ − cosx = cos α α ± + k2 π tgx = m m ọ i m tgx = tg α α + k π cotgx = m m ọ i m cotgx = cotg α α + k π Ở b ả ng trên k nh ậ n m ọ i giá tr ị nguyên ( Z k ∈ ) . ðơ n v ị góc th ườ ng dùng là radian. ðể thu ậ n l ợ i cho vi ệ c ch ọ n α ta c ầ n nh ớ giá tr ị c ủ a hàm l ượ ng giác t ạ i các góc ñặ c bi ệ t. ðườ ng tròn l ượ ng giác s ẽ giúp ta nh ớ m ộ t cách rõ ràng h ơ n. Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 9 Ví dụ 1. Gi ả i ph ươ ng trình: a) sin3x = 2 2 ; b) sin(2x - 5 π ) = 1; c) sin( π x ) = 0. Ví dụ 2 . Gi ả i ph ươ ng trình: a) cos2x = cos 5 π ; b) cos(3x - 3 π ) = cos(x + 2 π ); c) cosx = sin(2x + 4 π ). Ví dụ 3 . Gi ả i ph ươ ng trình: 0) 3 8 xcos 3 (cos 2 = π − π . Ví dụ 4. Gi ả i ph ươ ng trình: )xsin3cos()xsincos( π = π Ví dụ 5 . Gi ả i ph ươ ng trình: 1)x2(sinxcos 22 =− II . Phương trình bậc nhất ñối với sinx và cosx: asinx + bcosx = c (1) , 0ba 22 ≠+ Chia hai v ế c ủ a ph ươ ng trình (1) cho 22 ba + , ta ñượ c: (1) ⇔ 222222 ba c xcos ba b xsin ba a + = + + + (2) ðặ t 22 ba a + = sin ϕ ; 22 ba b + = cos ϕ . Khi ñ ó ph ươ ng trình l ượ ng giác có d ạ ng: cos(x - ϕ ) = 22 ba c + (3) Ph ươ ng trình có nghi ệ m khi và ch ỉ khi: 222 22 cba1 ba c ≥+⇔≤ + Khi ñ ó t ồ n t ạ i [ ] π ∈ α ;0 sao cho 22 ba c cos + =α nên ta có: (1) ⇔ α = ϕ − cos)xcos( ⇔ π + α ± ϕ = 2kx ; Z k ∈ Ví dụ 6 . Gi ả i ph ươ ng trình: 2sin4x + 3 sinx = cosx. Ví dụ 7 . Cho ph ươ ng trình: sinx + mcosx = 1 a) Gi ả i ph ươ ng trình v ớ i m = - 3 . b) Tìm m ñể ph ươ ng trình vô nghi ệ m. Ví dụ 8 . Gi ả i ph ươ ng trình: 1xsin3xcosxsin32xcos 22 =++ Ví dụ 9 . Tìm α ñể ph ươ ng trình sau có nghi ệ m x ∈ IR: 2)xsin(xcos3 =α++ Ví dụ 10 . Gi ả i ph ươ ng trình: ).x8cosx6(sin3x6cosx8sin +=− Ví dụ 11 . Tìm m ñể ph ươ ng trình sau có nghi ệ m       π ∈ 2 ;0x : cos2x – msin2x = 2m – 1 Ví dụ 12 . Gi ả i ph ươ ng trình: sin8x – cos6x = 3 (sin6x + cos8x). Ví dụ 13 . Gi ả i ph ươ ng trình: 0 4 1 xsinx4cos.xcosx4cos 22 =+−− [...]... ð i h c Th y l i Hà n i 15 T ôn luy n thi ñ i h c môn toán Chương 3: Kh o sát hàm s và các bài toán liên quan Bài 1: KH O SÁT HÀM S Sơ ñ kh o sát hàm s 1) Tìm t p xác ñ nh c a hàm s (Xét tính ch n l , tính tu n hoàn (n u có)) 2) Kh o sát s bi n thi n hàm s a) Xét chi u bi n thi n c a hàm s • Tính ñ o hàm • Tìm các ñi m t i h n (ði m t i h n thu c TXð và t i ñó f ′( x ) không xác ñ nh ho c b ng 0) •... b t phương trình: log 1 ( 5 − x ) < log 1 (3 − x ) 3 3 Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 14 T ôn luy n thi ñ i h c môn toán III Các phương trình, b t phương trình không cơ b n • Ph i ñ t ñi u ki n • Nh ng bài toán có tham s , ñ t n ph ph i tìm t p xác ñ nh c a n m i • Nh ng bài toán phương trình, b t phương trình mũ, logarit mà n x v a mũ c a lũy th a, v a s h s , thư ng chuy n v vi c... e) L p b ng bi n thi n (ghi t t c các k t qu tìm ñư c vào b ng bi n thi n) 3)V ñ th • Chính xác hóa ñ th (tìm giao ñi m c a ñ th v i các tr c t a ñ và nên l y thêm m t s ñi m c a ñ th , nên v ti p tuy n • m t s ñi m ñ c bi t) V ñ th (ñ c l i các ví d m u SGK t trang 80 ñ n trang 97) Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 16 T ôn luy n thi ñ i h c môn toán BÀI 2: CÁC BÀI TOÁN LIÊN QUAN ð N... chú ý ñ n chi u c a b t phương trình trong quá trình bi n ñ i Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 12 T ôn luy n thi ñ i h c môn toán b)Các công th c chú ý: b > 0 log a b có nghĩa ⇔  0 < a ≠ 1 • log c b log c a • log a b = • log a n b m = • log a b 2 k = 2k log a | b | ( Công th c ñ i cơ s v i b > 0 , 0 < a ≠ 1 , 0 < c ≠ 1 ) m log a b ( V i b > 0 và 0 < a ≠ 1 ) n v i k∈Z II Các phương... Hà n i 10 T ôn luy n thi ñ i h c môn toán IV Phương trình ñưa v d ng tích Các phương trình lư ng giác không có d ng như nh ng phương trình ñã trình bày các m c trư c, ngư i ta thư ng nghĩ t i phân tích chúng thành nh ng phương trình cơ b n Vi c phân tích thành tích th c ch t là ñi tìm th a s chung c a các s h ng có trong phương trình ð làm ñư c ñi u ñó, chúng ta c n ph i thành th o các công th c lư... ti p tuy n vông góc v i ñư ng th ng y = x x +1 Ví d 13 Tìm m ñ ñ th y = 2mx 3 − ( 4m 2 + 1) x 2 + 4m 2 ti p xúc v i tr c hoành Ví d 14 Tìm m ñ ñ th y = mx 2 + 3mx + 2m + 1 ti p xúc v i ñư ng th ng y = m x+2 Ví d 15 Tìm a ñ ti m c n xiên c a ñ th y= 2 x 2 + (a + 1) x − 3 x+a ti p xúc v i parabôn y = x 2 + 5 Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 19 T ôn luy n thi ñ i h c môn toán III S ñ... ti p tuy n ñó Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 18 T ôn luy n thi ñ i h c môn toán 1 3 Ví d 5 Cho hàm s y = − x 4 − 3x 2 + có ñ th là (C) 2 2 a) Vi t phương trình ti p tuy n c a ñ th (C) t i các ñi m u n 3 b) Tìm ti p tuy n c a (C) ñi qua ñi m A (0; ) 2 Ví d 6 Cho hàm s y= 3x + 2 có ñ th là (C) x+2 Ch ng minh r ng, không có ti p tuy n nào c a ñ th (C) ñi qua giao ñi m c a hai ti m c n... 4 2 Ví d 4.Gi i phương trình: Ví d 5.Gi i phương trình: Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 11 T ôn luy n thi ñ i h c môn toán Bài 2: PHƯƠNG TRÌNH, H PHƯƠNG TRÌNH MŨ, LOGARIT I Các k t qu cơ b n 1) Hàm s mũ: y = ax, 0 < a ≠ 1 • T p xác ñ nh: IR • T p giá tr : IR+ (ñ th luôn n m phía trên tr c hoành) • Khi a > 1 hàm s ñ ng bi n Khi 0 < a < 1 hàm s ngh ch bi n • D ng ñ th : 2) Hàm s logarit:... c ñ i 9 Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 21 T ôn luy n thi ñ i h c môn toán Ví d 9 Cho hàm s y = 2 x 2 + 2mx + m − 1 Xác ñ nh m sao cho hàm s có c c tr trong kho ng ( −1,+∞) Ví d 10 Xác ñ nh m sao cho hàm s y= mx 2 + (2 − 4m) x + 4m − 1 x −1 Có c c tr trong mi n x > 0 Ví d 11 Cho hàm s y = mx 2 + x + m x+m Tìm m ñ hàm s không có c c tr Ví d 12 Cho hàm s y = x 3 − 3mx 2 + (m 2 + 2m... 0 < a < 1  f ( x ) < log a b  D ng 4: a f ( x ) < a g ( x ) a > 1  f ( x ) < g ( x ) ⇔ 0 < a < 1  f ( x ) > g ( x )  Nguy n ð c Tu n l p 44C1 ð i h c Th y l i Hà n i 13 T ôn luy n thi ñ i h c môn toán 2)Phương trình logarit D ng 1: log a f ( x ) = b ⇔ f ( x ) = a b a > 1  b 0 < f ( x ) < a D ng 2: log a f ( x ) < b ⇔  0 < a a b   a > 1  b  f ( x ) . TUẤN TỰ ÔN LUYỆN THI MÔN TOÁN MÔN TOÁNMÔN TOÁN MÔN TOÁN Hà nội, 1 - 2005 Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 1 . 21 xx < α < . Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 2 IV. Ứng dụng 1. ðiều kiện ñể f(x) = ax 2 + bx + c không ñổi dấu với mọi x f(x). Tự ôn luyện thi ñại học môn toán Nguyễn ðức Tuấn lớp 44C1 ðại học Thủy lợi Hà nội 11 IV. Phương trình ñưa về dạng tích Các ph ươ ng trình l ượ ng giác không có d ạ ng nh ư
- Xem thêm -

Xem thêm: Tài liệu ôn thi đại học môn toán, Tài liệu ôn thi đại học môn toán, Tài liệu ôn thi đại học môn toán

Gợi ý tài liệu liên quan cho bạn