industrial inorganic chemistry 2nd

663 412 0
industrial inorganic chemistry 2nd

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Karl Heinz Buchel Hans-Heinrich Moretto Peter Woditsch Industrial Inorganic Chemistry Industrial Karl Heinz Buchel Hans-Heinrich Moretto Peter Wodi t sc h Second, Completely Revised Edition inorganic Translated by C hemi s trv David R. Terrell BWILEY-VCH Weinheim - New York Chichester - Brisbane Singapore - Toronto Professor Dr. Dr. h. c. mult. Karl Heinz Buchel Member of the Board of Directors of Bayer AG D-5 I368 Leverkuaen Professor Hans-Heinrich Moretto Bayer AG Central Research D-5 1368 Leverkusen Professor Dr. Peter Woditsch Bayer AG CH-BS D-47829 Krefeld This book was carefully produced. Nevertheless, authors, translator and publisher do not warrant the information contained therein to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedu- ral details or other items may inadvertently be inaccurate. First Edition 1989 Second, Completely Revised Edition 2000 First Reprint 2003 Library of Congress Card No.: Applied for. British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the Britiah Library. Deutsche Bibliothek Cataloguing-in-Publication Data: A catalogue record for this publication is available from Die Deutsche Bibliothek 0 WILEY-VCH Verlag CmbH. D-69469 Weinheim (Federal Republic of Germany), 2000 Printed on acid-free and chlorine-free paper. All rights reserved (including those of translation in other languages). No part of this book may be reproduced in any form - by fotoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from :he publishers. Registered names, trademarks, etc. used in this book, even when not hpecifically marked as such, are not to be considered unprotected by law. Composition: Graphik & Text Studio, D-93 I64 Laaber-Waldetzenberg Printing: Straws Offsetdruck, D-69509 Morlenbach Bookbinding: Buchbinderei J. Schlffer, D-67269 Griinstadt Printed in the Federal Republic of Germany Preface to the Second English Edition In the more than 10 years, since the publication of the first edition of the book “Industrial Inorganic Chemistry”, the structure of inorganic industrial chemistry has not changed fundamentally. In most sectors the “state of the art” has been expanded and refined. This is addressed together with the updating of the economic data in this new edition. The pressure for change in the meantime was due in particular to globalization of the World economy and the resulting pressure for cost reduction through new and optimalized processes and to an expanding knowledge of ecological requirements e.g. energy saving and new production and development principles such as quality assurance and responsible care. To the extent that it is discernible in the products and processes, appropriate aspects have been incorporated in the revision, for example see membrane technology in the chloralkali and hydrochloric acid electrolysis. Expansion of the sections on the products of silicon chemistry, silanes, heavy duty ceramics and photovoltaics reflects their increased importance. Chapter 6 over the Nuclear Fuel Cycle has been updated as regards technical developments and in particular as regards its societal and political context. In inorganic chemistry there have been important changes particularly in inorganic materials such as new composite materials and so-called nano-materials, in the area of photovoltaics and in catalysis. Since these have not yet been widely used industrially, they have not been covered in the second edition of this book. In the revision of this book numerous colleagues have assisted us, we particularly wish to thank: Dr. J. Becker, Uranerzbergbau GmbH, Dr. H D. Block, Bayer AG Frau G. Blum, Bayer AG Dr. U. Brekau, Bayer AG Dip1 Ing. A. Bulan, Bayer AG Dr. G. Buxbaum, Bayer AG Dr. L. Puppe, Bayer AG Dr. F. Gestermann, Bayer AG Dr. Ch. Holzner, Bayer AG Wesseling Dr. H. Lange, Bayer AG Dr. J. Liicke, CFI GmbH & Co. KG, Rodenthal Dr. R. Miinstedt, Bayer AG Dr. W. Ohlendorf, Bayer AG Dr. K. Tagder, Wirtschaftsverband Frau Dr. H. Volker, Gottingen Dr. G. Wagner, Bayer AG Frau M. Wiegand, Bayer AG Dr. K. Wussow, Bayer AG Kernbrennstoff-Kreslauf e.V., Bonn We also thank Wiley-VCH for their patience and understanding in the production of the new edition and its excellent presentation. Leverkusen. Autumn 1999 The Authors VI Preface Preface to the First English Edition “Industrial Inorganic Chemistry” was first published in German in 1984. The book was well received by students and teachers alike, leading to the publication of a second German edition in 1986. The publishers, VCH Verlagsgesellschaft, were convinced that a wide circle of readers would welcome the appearance of our book in the English language, and their encouragement has led to the preparation of the present up-dated and revised edition in English. The basic structure of the German Edition has been retained. Changes in the industrial importance of some compounds and processes since the appearance of the German edition have been taken into account and data relating to the US market have been emphasised. Thus the chapter on potassium permanganate has been considerably abridged and that on the membrane process for the manufacture of chlorine and sodium hydroxide expanded. We are indebted to Dr Podesta and Dr Heine from Bayer AG for their assistance in the revision of the German edition in addition to the institutions and colleagues mentioned in the preface to the German edition. The book was translated by Dr D. R. Terrell from Agfa-Gevaert NV, to whom we are particularly grateful for the patience and care he devoted to this difficult task. We also wish to acknowledge the contribution of VCH Verlagsgesellschaft in producing this edition. Leverkusen. Autumn 1988 K. H. Buchel Preface VII Preface to the First German Edition The book “Industrielle Anorganische Chemie” will fill a long term need, which has become even more apparent since the appearance of “Industrielle Organische Chemie” by Wessermel and Arpe*. Although there are comprehensive chapters on this branch of chemistry in a number of encyclopedias and handbooks, a single volume text is lacking that describes concisely the current state of industrial inorganic chemistry. The authors have been made aware of this need in discussions with students, young chemists, colleagues in neighboring fields, teachers and university lecturers and willingly accepted the suggestion of the publishers to write this text. Changes in the supply of raw materials and their markets and economic and ecological requirements are responsible for the continual reshaping of the inorganic chemical industry. As a result the treatment of industrial processes in the available textbooks seldom keeps pace with these developments. The inorganic chemical industry is an important branch of industry and its structure is particularly diverse: including a large number of finished products (mineral fertilizers, construction materials, glass, enamels and pigments to name but a few) and basic products for the organic chemical industry such as mineral acids, alkalis, oxidizing agents and halogens. Modern developments in other branches of industry, such as chips for microelectronics, video cassettes and optical fibers have only been possible due to the continuous development of the inorganic chemical industry. This book emphasises the manufacturing processes, economic importance and applications of products. In the sections on production the pros and cons are considered in the context of the raw material situation, economic and ecological considerations and energy consumption, the different situations in different countries also being taken into account. Processes which are no longer operated are at most briefly mentioned. The properties of the products are only considered to the extent that they are relevant for production or applications. It was necessary to restrict the material to avoid overextending the brief. Metallurgical processes have not been included, except for the manufacture of “chemical” metals (e.g. alkali metals) which is briefly described. Several borderline areas with organic chemistry are considered (e.g. organo- phosphorus, -silicon and -fluoro products), others are deliberately excluded. A whole chapter is devoted to the nuclear fuel cycle, since it involves so much industrial scale inorganic chemistry and is currently so important. The layout follows that of its sister book “Industrielle Organische Chemie” with the main text being supplemented by marginal notes. These are essentially summaries of the main text and enable the reader to obtain a rapid grasp of the most important facts. The equations are printed on a gray background for the same reason. At the end of each main section a generally subtitled list of references is provided. This should enable the reader to obtain more detailed information on particular matters with the minimum of effort. In addition to references to original papers and reviews, readers are referred to the important VIII Prejuce handbooks: Ullmann, Winnacker-Kuchler and Kirk-Othmer. The Chemical Economic Handbook of the Stanford Research Institute has frequently been used for economic data. The documentation system at Bayer AG was invaluable in gathering the important facts for this book. Numerous colleagues have assisted us: Outside Bayer AG our thanks are due to Prof. P. Eyerer from Stuttgart University, Dr H. Grewe from Krupp AG, Essen, Dr Ch. Hahn from Hutschenreuther AG, Selb, Dr G. Heymer from Hoechst AG, Knapsack Works, Dr P. Kleinschmit from Degussa, Dr G. Konig from Martin & Pagenstecher GmbH, Krefeld, Dr R, Kroebel from the Kernforschungszentrum Karlsruhe, Dr G. Kuhner from Degussa AG, Prof. F. W. Locher from the Forschungsinstitut der Zementindustrie, Dusseldorf, H. Schmidt from the Ziegeleiforschungsinstitut, Essen, Dr M. Schwarzmann and his colleagues from BASF AG and Dr E. Wege from Sigri Elektrographit GmbH, Meitingen, for technical advice and critical perusal of sections of the manuscript. Inside Bayer AG our thanks are due to Dr H P. Biermann, Dr G, Franz, Dr P. Kiemle, Dr M. Mansmann, Dr H. H. Moretto and Dr H. Niederprum, who with many other colleagues have helped with the technical realization of the text. In particular we would like to thank Dr Hanna Soll, who with her many years of experience has substantially contributed to the editing of this book. We also thank Verlag Chemie, which has assimilated the suggestions of the authors with much understanding and has produced this book in such an excellent form. Leverkusen, Spring 1984 K. H. Buchel Contents 1 Primary Inorganic Materials 1 1.1 Water 1 1.1.1 Economic Importance 1 1.1.2 Production of Potable Water 2 1.1.2.1 Break-Point Chlorination and Ozonization 3 I. 1.2.2 Flocculation and Sedimentation 4 1 .I .2.3 Filtration 5 1.1.2.4 1.1.2.5 Activated Charcoal Treatment 7 1.1.2.6 Safety Chlorination 8 1.1.2.7 Production of Soft or Deionized Water 8 1.1.3 Production of Freshwater from Seawater and Brackish Water 10 1.1.3.1 Production by Multistage Flash Evaporation 10 1.1.3.2 References for Chapter 1.1 : Water 13 Removal of Dissolved Inorganic Impurities 5 Production using Reverse Osmosis 11 1.2 Hydrogen 14 I .2.1 Economic Importance I4 1.2.2 Hydrogen Manufacture I5 1.2.2. I Petrochemical Processes and Coal Gasification 15 1.2.2.2 Electrolysis of Water 16 I .2.2.3 Other Manufacturing Processes for Hydrogen I7 I .2.2.4 I .2.3 Hydrogen Applications 18 References for Chapter 1.2: Hydrogen 19 Production of Hydrogen as a Byproduct 18 1.3 1.3.1 1.3. I. I 1.3.1.2 1.3.1.3 1.3.2 1.3.2.1 1.3.2.2 I .3.2.3 I .3.2.4 I .3.2.5 Hydrogen Peroxide and Inorganic Peroxo Compounds 20 Economic Importance 20 Hydrogen Peroxide 20 Sodium Perborate and Sodium Carbonate Perhydrate 20 Alkali Peroxodisulfates and Sodium Peroxide 2 1 Production 21 Hydrogen Peroxide 21 Sodium Perborate 24 Sodium Carbonate Perhydrate 25 Alkali Peroxodisulfate 26 Sodium Peroxide 26 X Contents 1.3.3 Applications 27 1.3.3.1 1.3.3.2 Alkali Peroxodisulfates and Sodium Peroxide 28 References for Chapter 1.3: Hydrogen Peroxide and Inorganic Peroxo Compounds 28 Hydrogen Peroxide, Sodium Perborate and Sodium Carbonate Perhydrate 27 1.4 1.4.1 Ammonia 29 1.4.1.1 Economic Importance 29 1.4.1.2 Synthetic Ammonia Manufacture 29 1.4.1.2.1 General Information 29 1.4.1.2.2 Ammonia Synthesis Catalysts 30 1.4.1.2.3 Synthesis Gas Production 32 1.4.1.2.4 1.4. I .2.5 1.4.1.3 Ammonia Applications 43 References for Chapter I .4: Nitrogen and Nitrogen Compounds 43 1.4.2 Hydrazine 43 1.4.2.1 Economic Importance 43 1.4.2.2 Manufacture of Hydrazine 44 I .4.2.2.1 Raschig Process 44 1.4.2.2.2 Urea Process 45 1.4.2.2.3 Bayer Process 46 1.4.2.2.4 H,Oz Process 47 1.4.2.3 Applications of Hydrazine 48 References for Chapter 1.4.2: Hydrazine 49 I .4.3 Hydroxylamine 50 1.4.3.1 I .4.3.2 Manufacture 50 1.4.3.2.1 Raschig Process 5 1 1.4.3.2.2 I .4.3.2.3 References for Chapter 1.4.3: Hydroxylamine 53 1.4.4 Nitric Acid 53 1.4.4.1 Economic Importance 53 1.4.4.2 Manufacture 53 I .4.4.2. I Fundamentals of Nitric Acid Manufacture 53 1.4.4.2.2 Plant Types 57 1.4.4.2.3 Process Description 58 1.4.4.2.4 1.4.4.2.5 Tail Gases from Nitric Acid Manufacture 62 1.4.4.3 Nitric Acid Applications 64 References for Chapter 1.4.4: Nitric Acid 65 Nitrogen and Nitrogen Compounds 29 Conversion of Synthesis Gas to Ammonia 39 Integrated Ammonia Synthesis Plants 41 Economic Importance and Applications 50 Nitrogen(I1) Oxide Reduction Process 5 1 Nitrate Reduction Process (DSM/HPO-Stamicarbon) 52 Manufacture of Highly Concentrated Nitric Acid 59 1.5 1.5.1 1.5.1. I Raw Materials 65 Phosphorus and its Compounds 65 Phosphorus and Inorganic Phosphorus Compounds 65 [...]... Storage of Radioactive Waste 623 References for Chapter 6: Nuclear Fuel Cycle 624 Company Abbreviations Index 627 Subject Index 63 1 XXV Industrial inorganic Chemistry Karl Heinz Bbchel Hans-Heinrich Moretto & Peter Woditsch copyright0 WlLEY VCH Verldg GmbH, 2MlO 1 Primary Inorganic Materials 1.1 Water 1.1.1 Economic Importance Water is a raw material which is available on Earth in unlimited quantities... Applications 292 References for Chapter 3.5: Manganese Compounds and Manganese 293 3.5 4 Organo-Silicon Compounds 295 4.1 Industrially Important Organo-Silicon Compounds, Nomenclature 295 4.2 4.2.1 4.2.2 4.2.2.1 4.2.2.2 4.2.2.3 4.2.2.4 4.2.2.5 Industrially Important Silanes 296 Organohalosilanes 296 Industrial Important Silicon-functional Organo-Silanes 298 Organoalkoxysilanes 299 Acyloxysilanes 300 Oximino-... Silicon and its Inorganic Compounds 269 3.4 3.4.1 Elemental Silicon 269 3.4.1.1 General Information and Economic Importance 269 3.4.1.2 Manufacture 270 3.4.1.2.1 Ferrosilicon and Metallurgical Grade Silicon 270 3.4.1.2.2 Electronic Grade Silicon (Semiconductor Silicon) 272 3.4.1.3 Silicon Applications 278 3.4.2 Inorganic Silicon Compounds 279 References for Chapter 3.4: Silicon and its Inorganic Compounds... Importance 306 Linear and Cyclic Polyorganosiloxanes 307 Manufacture 307 Hydrolysis 307 Methanolysis 309 Cyclization 3 10 Polymerization 310 Polycondensation 3 I2 Industrial Realization of Polymerization 3 I3 Manufacture of Branched Polysiloxanes 3 14 4.4 Industrial Silicone Products 307 4.4.1 Silicone Oils 307 4.4.2 Products Manufactured from Silicone Oils 3 16 4.4.3 Silicone Rubbers 3 17 4.4.3.1 Room Temperature... 1.5.1.2 Products 67 1.5.1.2.1 Phosphoric Acid 67 1.5.1.2.2 Phosphoric Acid Salts 75 1.5.1.2.3 Phosphorus 80 Products Manufactures from Phosphorus 85 I 5 I 2.4 References for Chapter 1.5.1: Phosphorus and Inorganic Phosphorus Compounds 90 1.5.2 Organophosphorus Compounds 9 1 1.5.2.1 Neutral Phosphoric Acid Esters 9 1 1.5.2.2 Phosphoric Ester Acids 94 1.5.2.3 Dithiophosphoric Ester Acids 94 Neutral Esters... Rubbers 320 4.4.3.5 Properties of Silicone Rubber 322 4.4.4 Silicone Resins 322 4.4.5 Silicone Copolymers, Block Copolymers and Graft Copolymers 323 References for Chapters 4.3 and 4.4: Silicones 324 5 Inorganic Solids 325 5.1 Silicate Products 325 Glass 325 Economic Importance 325 Structure 32.5 Glass Composition 326 Glass Manufacture 329 Glass Raw Materials 329 Melting Process 33 I Melting Furnaces... 349 5.1.3.7.5 References for Chapter 5.1.3: Zeolites 350 5.2 5.2.1 5.2.1.1 5.2.1.2 5.2.1.3 5.2.1.4 5.2.1 5 5.2.2 5.2.2.1 5.2.2.2 5.2.2.3 5.2.3 5.2.3 I 5.2.3.2 5.2.3.3 5.2.4 5.2.5 5.2.5.1 5.2.5.2 5.2.5.3 Inorganic Fibers 351 Introduction 35 1 Definitions, Manufacture and Processing 35 1 Economic Importance 352 Properties 352 Classification and Applications 354 Physiological Aspects 354 Asbestos Fibers... 386 5.2.8 Ceramic Reinforcing Fibers 388 5.2.8.1 General information and Economic Importance 388 5.2.8.2 Oxide Fibers 389 5.2.8.3 Non-oxide Fibers 39 1 5.2.8.4 Whiskers 394 References for Section 5.2: Inorganic Fibers 395 5.3 5.3.1 5.3.2 5.3.2.1 5.3.2.2 5.3.2.3 5.3.2.4 5.3.2.4.1 5.3.2.4.2 5.3.2.4.3 5.3.2.5 5.3.2.6 5.3.3 5.3.3.1 5.3.3.2 5.3.3.3 5.3.3.3.1 5.3.3.3.2 5.3.3.3.3 5.3.3.3.4 5.3.3.4 5.3.3.5... Sulfates 544 Other Synthetic Fillers 545 5.8.4.5 5.8.5 Properties and Applications 545 References for Chapter 5.8: Fillers 546 5.9 5.9.1 5.9.2 5.9.2.1 5.9.2.2 5.9.2.2.1 5.9.2.2.2 5.9.2.2.3 5.9.2.2.4 5.9.2.3 Inorganic Pigments 548 General Information and Economic Importance 548 White Pigments 552 General Information 552 Titanium Dioxide Pigments 553 Economic Importance 553 Raw Materials for Ti02 Pigments 553... Pigments 581 5.9.5.3 Luminescent Pigments 581 5.9.6 Magnetic Pigments 582 5.9.7 General Information and Properties 582 5.9.7.1 5.9.7.2 Manufacture of Magnetic Pigments 584 References for Chapter 5.9: Inorganic Pigments 586 6 Nuclear Fuel Cycle 587 6.1 Economic Importance of Nuclear Energy 587 6.2 General Information about the Nuclear Fuel Cycle 591 6.3 Availability of Uranium 592 6.4 6.4.1 6.4.2 6.4.2.1 . Peter Woditsch Industrial Inorganic Chemistry Industrial Karl Heinz Buchel Hans-Heinrich Moretto Peter Wodi t sc h Second, Completely Revised Edition inorganic Translated by C hemi. Printed in the Federal Republic of Germany Preface to the Second English Edition In the more than 10 years, since the publication of the first edition of the book Industrial Inorganic Chemistry ,. Chemistry , the structure of inorganic industrial chemistry has not changed fundamentally. In most sectors the “state of the art” has been expanded and refined. This is addressed together with the

Ngày đăng: 02/04/2014, 15:41

Từ khóa liên quan

Mục lục

  • Cover

  • Contents

  • Chapter1

  • Chapter2

  • Chapter3

  • Chapter4

  • Chapter5

  • Chapter6

  • Company Abbreviations Index

  • Subject Index

Tài liệu cùng người dùng

Tài liệu liên quan