giáo án sự đồng biến và nghịch biến của hàm số -toán 12 chương 1 bài 1 - gv.ng.anh sơn

12 949 10
  • Loading ...
1/12 trang

Thông tin tài liệu

Ngày đăng: 14/03/2014, 08:50

GIÁO ÁN LỚP 12 MÔN TOÁN GIẢI TÍCH_____________________________________Chương1 : ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VẼ ĐỒ THỊ CỦA HÀM BÀI 1 : SỰ ĐỒNG BIẾN NGHỊCH BIẾN CỦA HÀM SỐTiết 1: Đ1. Sự đồng biến nghịch biến của hàm số Ngày dạy: A -Mục tiêu: - Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số. - Nắm được nội dung của định lý La - grăng hệ quả cùng ý nghĩa hình học của định lý.- Áp dụng được định lý La - grăng để chứng minh được hệ quả của định lý. B - Nội dung mức độ: - Nắm vững định nghĩa sự đồng biến, nghịch biến của Hàm số. - Nắm được nội dung của định lý La - grăng hệ quả cùng ý nghĩa hình học của định lý. - Áp dụng được định lý La - grăng để chứng minh được hệ quả của định lý. C - Chuẩn bị của thầy trò: Sách giáo khoa bảng minh hoạ đồ thị. D - Tiến trình tổ chức bài học:• Ổn định lớp: - Sỹ số lớp: - Nắm tình hình sách giáo khoa của học sinh.• Bài mới: I - TÍNH ĐƠN ĐIỆU CỦA HÀM SỐ 1 - Nhắc lại định nghĩa:Hoạt động 1:- Nêu lại định nghĩa về sự đơn điệu của hàm số trên một khoảng K (K ⊆ R) ?- Từ đồ thị ( Hình 1) trang 4 (SGK) hãy chỉ rõ các khoảng đơn điệu của hàm số y = sinx trên [ ], π0 2. Trong khoảng [ ],−π 0 hàm số tăng, giảm như thế nào ?Hoạt động của học sinh Hoạt động của giáo viên- Nêu lại định nghĩa về sự đơn điệu của hàm số trên một khoảng K (K ⊆ R).- Nói được: Hàm y = sinx đơn điệu tăng trên từng khoảng ,π   02; ,π π  322, đơn điệu giảm trên ,π π   32 2. Trên ,π −π −  2 hàm số đơn điệu giảm, trên ,π −  02 hàm số đơn điệu tăng nên trên [ ],−π 0 hàm số y = sinx không đơn điệu.- Nghiên cứu phần định nghĩa về tính đơn điệu của SGK (trang 4).- Uốn nắn cách biểu đạt cho học sinh.- Chú ý cho học sinh phần nhận xét:+ Hàm f(x) đồng biến trên K ⇔ tỉ số biến thiên: 2 11 2 1 22 1f (x ) f (x )0 x ,x K(x x )x x−> ∀ ∈ ≠−+ Hàm f(x) nghịch biến trên K ⇔ tỉ số biến thiên: 2 11 2 1 22 1f (x ) f (x )0 x ,x K(x x )x x−< ∀ ∈ ≠−Hoạt động 2: (Củng cố)Tìm các khoảng đơn điệu của hàm số y = f(x) = 2x2 - 4x + 7 trên tập R ?Hoạt động của học sinh Hoạt động của giáo viên- Trình bày kết quả trên bảng.- Thảo luận về kết quả tìm được.- Phân nhóm ( thành 10 nhóm) giao nhiệm vụ cho các nhóm: Nhóm 1, 3, 5, 7, 9 dùng đồ thị. Nhóm 2, 4, 6, 8, 10 dùng định nghĩa.- Gọi đại diện của hai nhóm 1, 2 lên trình bày kết quả. 2 - Định lí La - grăngHoạt động 3: (Dẫn dắt khái niệm) Dùng hoạt động 2 của SGK (trang 5)1) Xét xem có thể vẽ những tiếp tuyến với đồ thị mà song song với dây cung AB được không ?2) Nếu có, hãy tính hệ số góc của các tiếp tuyến đó theo các toạ độ của A(-3,-2), B( 1,2). B AHoạt động 4: (Dẫn dắt củng cố) Chứng minh hệ quả: Hoạt động của học sinh Hoạt động của giáo viên- Nhận xét được bằng cảm tính: Có tiếp tuyến với đồ thị mà song song với AB.- Tính được hệ số góc của các tiếp tuyến đó là:att = B AB Ay y 2 21x x 1 3− += =− +- Gọi một học sinh lên bảng nhận xét và tính att.- Thuyết trình, dẫn dắt đến định lí La grăng.- Nêu ý nghĩa hình học của định lí.-4 -3 -2 -1 1 2 3-2-1123xy Nếu F’(x) = 0 ( )x a,b∀ ∈ thì F(x) có giá trị không đổi trên khoảng đó.Hoạt động của học sinh Hoạt động của giáo viên- Hoạt động theo nhóm được phân công.- Nghiên cứu sách giáo khoa phần chứng minh hệ quả của định lí La - grăng.- Trình bày kết quả thu được.- Phân nhóm, giao nhiệm vụ cho học sinh nghiên cứu, tìm tòi cách chứng minh hệ quả.- Định hướng: Dùng định lí La - grăng chứng minh F(x) = F(x0) ( )x a,b∀ ∈Bài tập về nhà: Dùng định nghĩa tìm các khoảng đơn điệu của cac hàm số nêu trong bài tập 1 trang 11 (sgk).Tiết 2: Sự đồng biến nghịch biến của hàm số Ngày dạy: A -Mục tiêu: - Nắm được mối liên hệ của khái niệm này với đạo hàm. - Hình thành kĩ năng giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. B - Nội dung mức độ: - Mối liên hệ của tính đơn điệu dấu của đạo hàm.(Cả định lí mở rộng) - Các ví dụ 1, 2, 3. - Lập bảng biến thiên của Hàm số. Quy tắc xét tính đơn điệu của hàm số bằng đạo hàm. - Bài tập: 1, 2, 3, 4 - Trang 11 ( SGK). C - Chuẩn bị của thầy trò: - Sách giáo khoa bảng minh hoạ đồ thị. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học:• Ổn định lớp: - Sỹ số lớp: - Nắm tình hình sách giáo khoa của học sinh.• Bài mới: II - TÍNH ĐƠN ĐIỆU DẤU CỦA ĐẠO HÀM.Hoạt động 1:Cho hàm số y = f(x) = x2. Hãy xét dấu của đạo hàm f’(x) điền vào bảng sau: x- ∞ 0 +∞y’ 0y+∞ +Ơ 0Nêu nhận xét về quan hệ giữa tính đơn điệu của hàm số dấu của đạo hàm.Hoạt động của học sinh Hoạt động của giáo viên- Xét dấu của y’ = f’(x) = 2x ghi vào bảng.- Nhận xét về quan hệ giữa tính đơn điệu của hàm số và dấu của đạo hàm.- Thực hiện hoạt động 4 của Sgk (trang 6).- Gọi một học sinh lên thực hiện bài tập nêu nhận xét về quan hệ giữa tính đơn điệu của hàm số dấu của đạo hàm.- Hướng dẫn học sinh thực hiện hoạt động 4 của Sgk (trang 6).1 - Điều kiện để hàm số đơn điệu.Hoạt động 2: (Dẫn dắt khái niệm)Phát biểu chứng minh định lí:+ f’(x) > 0 ∀x ∈ (a, b) ⇒ f(x) đồng biến trên (a, b).+ f’(x) < 0 ∀x ∈ (a, b) ⇒ f(x) nghịch biến trên (a, b). Hoạt động của học sinh Hoạt động của giáo viên- Hoạt động theo nhóm.- Trả lời được các câu hỏi:+ Tại sao hàm số thoả mãn các điều kiện của định lí La - grăng ?+ Để chứng minh hàm số đồng biến ( nghịch biến) ta phải chứng minh điều gì ? Tại sao ?- Phân nhóm giao nhiệm vụ cho các nhóm: Nghiên cứu phần chứng minh định lí của SGK (trang 7).- Kiểm tra sự đọc hiểu của học sinh.- Uốn nắn sự biểu đạt của học sinh.Hoạt động 2: (Củng cố)Tìm các khoảng đơn điệu của các hàm số sau: a) y = 3x2 + 1 b) y = cosx trên 3;2 2π π − ÷ .Hoạt động của học sinh Hoạt động của giáo viêna) Hàm số xác định trên tập R.y’ = 6x. y’ = 0 khi x = 0 ta có bảng:x- ∞ 0 +∞y’ - 0 +y+∞ +Ơ 1Kết luận được: Hàm số nghịch biến trên (- ∞; 0) và đồng biến trên (0; +∞).b) Hàm số xác định trên tập 3;2 2π π − ÷ y’ = - sinx, y’ = 0 khi x = 0; x = π ta có bảng: x2π− 0 π 32π y’ + 0 - 0 +y 1 1 0 -1 Kết luận được: Hàm số đồng biến trên từng khoảng ;02π − ÷ , 3;2π π ÷  nghịch biến trên ( )0;π. - Gọi học sinh thực hiện bài tập theo định hướng:+ Tìm tập xác định của hàm số.+ Tính đạo hàm xét dấu của đạo hàm. Lập bảng xét dấu của đạo hàm+ Nêu kết luận về các khoảng đơn điệu của hàm số.- Chú ý cho học sinh:+ f’(x) > 0 f’(x) = 0 tại một số điểm hữu hạn x ∈ (a, b) ⇒ f(x) đồng biến trên (a, b).+ f’(x) < 0 x ∈ (a, b) ⇒ f(x) nghịch biến trên (a, b).- Uốn nắn sự biểu đạt của học sinh.Hoạt động 3: (Củng cố)Tìm các khoảng đồng biến, nghịch biến của hàm số: y = 2x3 + 6x2 + 6x - 7Hoạt động của học sinh Hoạt động của giáo viên- Học sinh thực hiện độc lập, cá nhân.- Thể hiện được tính chính xác về: Tính toán, cách biểu đạt.- Gọi học sinh thực hiện bài tập theo định hướng đã nêu ở hoạt động 2.- Uốn nắn sự biểu đạt của học sinh.Hoạt động 4: (Củng cố)Tìm các khoảng đơn điệu của hàm số: y = 3x + 3x + 5Hoạt động của học sinh Hoạt động của giáo viêna) Hàm số xác định với ∀x ≠ 0.b) Ta có y’ = 3 - 23x = ( )223 x 1x−, y’ = 0 ⇔ x = ± 1 và y’ không xác định khi x = 0.c) Ta có bảng xét dấu của đạo hàm các khoảng đơn điệu của hàm số đã cho:x- ∞ -1 0 1 + ∞ y’ + 0 - || - 0 +y -1 11d) Kết luận được: Hàm số đồng biến trên từng khoảng (- ∞; -1); (1; + ∞). Hàm số nghịch biến trên từng khoảng (- 1; 0); (0; 1). - Gọi học sinh thực hiện bài tập theo định hướng đã nêu ở hoạt động 2.- Chú ý những điểm làm cho hàm số không xác định. Những sai sót thường gặp khi lập bảng.- Uốn nắn sự biểu đạt của học sinh.- Phát vấn: Nêu các bước xét tính đơn điệu của hàm số bằng đạo hàm ?2 - Quy tắc xét tính đơn điệu của hàm số bằng đạo hàm.Hoạt động 5: (Củng cố) - Đọc phần quy tắc xét tính đơn điệu của hàm số bằng đạo hàm SGK (trang 8) - Chứng minh bất đẳng thức x > sinx với x ∈ 0;2π  ÷ .Hoạt động của học sinh Hoạt động của giáo viên- Đọc phát biểu phần quy tắc xét tính đơn điệu của hàm số bằng đạo hàm SGK (trang 8).- Tìm khoảng đơn điệu của hàm số f(x) = x - sinx trên khoảng 0;2π  ÷ - Từ kết quả thu được kết luận về bất đẳng thức đã cho.- Tổ chức cho học sinh đọc kiểm tra sự đọc hiểu của học sinh.- Hướng dẫn học sinh lập bảng khảo sát tính đơn điệu của hàm số: f(x) = x - sinx trên khoảng 0;2π  ÷  và đọc kết quả từ bảng để đưa ra kết luận về bất đẳng thức đã cho.- Hình thành phương pháp chứng minh bất đẳng thức bằng xét tính đơn điệu của hàm số.Bài tập về nhà: các bài tập 2, 3, 4, 5 trang 11 (SGK)Tiết 3: Sự đồng biến nghịch biến của hàm số Ngày dạy: A - Mục tiêu: - Có kỹ năng thành thạo giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - Áp dụng được đạo hàm để giải các bài toán đơn giản. B - Nội dung mức độ: - Luyện kĩ năng giải toán về xét tính đơn điệu của hàm số bằng đạo hàm. - Chứng minh Bất đẳng thức đơn giản bằng đạo hàm. - Chữa các bài tập cho ở tiết 2. C - Chuẩn bị của thầy trò: - Sách giáo khoa bài tập đã được chuẩn bị ở nhà. - Máy tính điện tử Casio fx - 570 MS. D - Tiến trình tổ chức bài học:• Ổn định lớp: - Sỹ số lớp: - Nắm tình hình sách giáo khoa, sự chuẩn bị bài tập của học sinh.• Bài mới: Hoạt động 1: (Kiểm tra bài cũ) Chữa bài tập 2 trang 11:Tìm các khoảng đơn điệu của các hàm số: a) y = 3x 11 x+− b) y = 2x 2x1 x−− c) y = 23x x− d) y = 22x 7x 12x 2x 3− +− − e) y = 2x x 20− − g) y = x + sinx [...]...Hoạt động của học sinh Hoạt động của giáo viên - Trình bày bài giải - Gọi học sinh lên bảng trình bày bài giải đã chuẩn bị ở nhà - Nhận xét bài giải của bạn - Gọi một số học sinh nhận xét bài giải của bạn theo định hướng 4 bước đã biết ở tiết 2 - Uốn nắn sự biểu đạt của học sinh về tính toán, cách trình bày bài giải Hoạt động 2: (Kiểm tra bài cũ) Chữa bài tập 5 trang 11 Chứng minh các bất... các bất đẳng thức sau: a) cosx > 1 - x2 (x > 0) 2 c) sinx + tgx > 2x ( 0 < x < b) tgx > x + π ) 2 Hoạt động của học sinh a) Hàm số f(x) = cosx - 1 + π x3 (0 0 ∀x ∈ (0 ;+ ∞) nên f(x) đồng biến trên (x ;+ ∞) + Thiết lập hàm số đặc trưng cho bất đẳng thức... Khảo sát về tính đơn điệu của hàm số đã lập ( nên lập bảng) x2 (x > 0) 2 + Từ kết quả thu được đưa ra kết luận về bất đẳng thức cần chứng minh suy ra cosx > 1 - b) Hàm số g(x) = tgx - x +   giá trị x ∈  0; π ÷ có: 2 x3 xác định với các 2 - Gọi học sinh lên bảng thực hiện theo hướng dẫn mẫu - Giới thiệu thêm bài toán chứng minh bất đẳng thức bằng tính đơn điệu của hàm có tính phức tạp hơn cho... sinx > 2x  π với x ∈  0; ÷ π  2   c) 2sinx + 2tgx > 2x +1 với x ∈  0; d) 1 < cos2x < π+2 với x ∈ 4 π ) 2 c) h(x) = sinx + tgx - 2x xác định với các giá trị   x ∈  0; π 1 -2 > ÷ có: h’(x) = cosx + 2 cos 2 x   0 ∀ x ∈  0; π ÷ ⇒ suy ra đpcm 2 Bài tập về nhà: 1) Hoàn thiện các bài tập còn lại ở trang 11 (SGK) 2) Chọn thêm bài tập trong các đề tuyển sinh hàng năm π ÷ 2  π  0; 4 ... các học sinh khá: g’(x) = Chứng minh các bất đẳng thức sau: 11 − x 2 = tg 2 x − x 2 2 cos x x3 x3 x5 a) x - x − với < sin x < x − + 3! 3! 5! = (tgx - x)(tgx + x)  π Do x ∈  0; ÷ ⇒ tgx > x, tgx + x > 0 nên suy  2   ra được g’(x) > 0 ∀ x ∈  0;   biến trên  0;   π ÷ Lại có g(0) = 0 ⇒ g(x) > g(0) 2 = 0 ∀ x ∈  0; < π ÷ ⇒ g(x) đồng 2 π x (0 x + 2 2 3 các giá trị x > 0 b) . BIẾN VÀ NGHỊCH BIẾN CỦA HÀM SỐTiết 1: 1. Sự đ ng biến và nghịch biến của hàm số Ng y dạy: A -Mục tiêu: - Nắm v ng định nghĩa sự đ ng biến, nghịch biến. cho:x - ∞ -1 0 1 + ∞ y’ + 0 - || - 0 +y -1 11 d) Kết luận được: Hàm số đ ng biến trên t ng kho ng (- ∞; -1 ) ; (1; + ∞). Hàm số nghịch biến trên từng
- Xem thêm -

Xem thêm: giáo án sự đồng biến và nghịch biến của hàm số -toán 12 chương 1 bài 1 - gv.ng.anh sơn, giáo án sự đồng biến và nghịch biến của hàm số -toán 12 chương 1 bài 1 - gv.ng.anh sơn, giáo án sự đồng biến và nghịch biến của hàm số -toán 12 chương 1 bài 1 - gv.ng.anh sơn

Từ khóa liên quan

Gợi ý tài liệu liên quan cho bạn

Nhận lời giải ngay chưa đến 10 phút Đăng bài tập ngay