Mở rộng phạm trù các không gian mở hữu hạn chiều thành hệ đầy đủ. pot

4 268 0
Mở rộng phạm trù các không gian mở hữu hạn chiều thành hệ đầy đủ. pot

Đang tải... (xem toàn văn)

Thông tin tài liệu

T?-p chi Tin hoc va f)i'eu khi€n hqc, T. 17, S.2 (2001), 35-38 COMPLETION OF THE CATEGORY OF FINITE-DIMENSIONAL FUZZY SPACES NGUYEN NHUY, PHAM QUANG TRINH and VU THI HONG THANH Abstract. In this paper we introduce a method to expand the category 1 of all finite-dimensional fuzzy spaces associated with finite-dimensional Chu spaces into a complete system. Torn tli t. Ba.i nay tiep tuc nghien CUll pham tr u cac kh orig gian- mo' hiru han chie u d a dU'<TCde c~p den trong [7] va [8]. Nhtr da diro'c chirng minh trong [7], ph arn tru 1 cac khong gian me: hii'u h an chie u lien ket vO'icac khong gian Chu hiru han chieu 111. mot h~ thong tiro'ng du-o'ng, tuy nhien , 1 khorig dong doi vo'i ph ep lay tich cheo nen no khorig 111. mot h~ thong day duo Trong b ai nay, chiing toi du'a ra mot phiro'ng ph ap mo- r9ng pharn tru 1 th anh mot M tliong day duo Dg lam dieu do, chung toi xay dung mot ph am tru n-t~p ho-p doi ngiu 1* chtra 1 nh u' mot ph am tru con, trong do 1* la mot h~ thong day duo 1. INTRODUCTION It is shows in [71 that, the category 1 of all finite-dimensional fuzzy spaces associated with finite-dimensional Chu spaces is an equivalent system. Unfortunately, 1 is not closed under the cross product, therefore 1 is not a complete system. In this paper we introduce a method to expand the category 1 into a complete system, that is, we construct a "dual" n-set category 1* containing 1 as a subcategory, where 1* is a complete system. 2. FINITE-DIMENSIONAL *-FUZZY SPACES AND THE *-FUZZY FUNCTOR By n-set we mean a cartesian product X = 11;~1 Xi. Let S denote the n-set category, when the category S * is defined as follows: 1. Objects of S* are morphisms in S. 2. If a : X = 11;~1 X; -t Y = 11;~1 Y; and a ' : objects of S*, then a morphism <p : a -t a ' from a to ip : Y = 117=1 Y i -t X' = 117=1 X:. Let a : X = 11 n X· -t Y = 11 n y: a ' : X' = 11 n X' -t Y' = 11 n Y' and a" . X" = t=1 t t=l t) 1.=1 t t=1 t • 11;~1 X:' -t Y" = 11;~1 y';" be objects in S*, <p: a -t a ' and <p' : a ' -t a" be morphisms of S* (i.e., ip : Y = 117=1 Y; -t X' = 117=1 X: and <p' : Y' = 117=1 Y/ -t X" = 11;~1 X:'). Then composition of <p and ip", denoted by <p' * <p, is given by X I 11n X' Y' 11 n Y' = i=1 i -t = i=1 i are two a ' in S * is a map (in the n-set category) <p' * <p= <p'a'<p: a -t a". It is easy to check that with the above definition S * is a category. For a given set X = 11;'=1 Xi, let X* = [0, llx denote collection of all fuzzy sets of X. For a map a : X = 11;~1 Xi -t Y = 11;~1 Y; we define the conjugate a* : Y* -t X* of a by the formula a*(a)(x) = a(a(x)) for x E X and a E Y*. It is easy to see that (.Bar = a*.B* for every a : X -t Y and.B : Y -t Z. 36 NGUYEN NHUY, PHAM qUANG TRINH, VU THI HONG THANH Now for a : X = rr=l Xi t Y = TI~'=1 Y; we define F*(a) = (TI7=1 Xi, fa, Y*), where Y* denotes the collection of all fuzzy sets of Y = TI~~1 y;, and fa : TI7=1Xi X Y* t [0,1] is given by fa (Xl, X2,··· ,X n, a) = a(a(xI' X2, ,xn)) for every (Xl, X2, , Xn, a) E TI7=1Xi X Y*. The (n+1)-dimensional Chu space F*(a) = (TI7=1 Xi, fa, Y*) is called the (n+l)-dimensional *-fuzzy space associated with the map a : X = TI7=1Xi t Y = TI~1 Y;. The category of all (n+1)-dimensional *-fuzzy spaces associated with maps in the n-set category S is called the (n+l)- dimensional *-fuzzy category and denoted by 1*. 3. RESULTS At first, we will show that the (n+ 1)-dimensional *-fuzzy category 1* defined above contains the category 1 as a subcategory. In fact, we have the following theorem. Theorem 1. Any (n+l)-dimensional fuzzy space is a (n+l)-dimensional *-fuzzy space. Proof. If F(X) = (TI7=IX i ,fx',X*) then clearly that F(X) = F*(lx) is a (n+1)-dimensional *-fuzzy space. \ Theorem 2. 1* is a complete system. Proof. Assume that <I> = (TI7=1 <Pi,1f;) : F*(a) = (TI7=1 Xi, fa, Y*) t F*(a') = (TI7~1 X:, fa', Y'*) is a (n+1)-Chu morphism, where F*(a) and F*(a') are (n+1)-dimensional *-fuzzy spaces associated with the maps a = TI~'=1 cc; : X = TI:~1 Xi t Y = TI7=1 Y; and a' = TI~'=1 a; : X' = TI7=1X; t Y' TIn Y' . 1 P . (3 , TIn , X TIn X Y' TIn Y' = i=l i' respective y. utt mg = a <P = i=l ai<Pi: = i=l i t = i=l i' we get the cross product C = (TI7=1 Xi, fa X <I> fa', Y'*), which is a (n+1)-dimensional *-fuzzy space associated with the map (3 = TI7= I a; <Pi· In fact, for every (X I, ,X n , b) E TI7= I Xi X Y'*, we have (to X 'I' fa' )(XI,'" ,Xn, b) = fa' (<pdxd,··· ,<Pn(xn), b) = b(a~<pI(xd,··· ,a~<Pn(Xn)) = fa''P(xI,'" ,xn,b) = f{1(xI,'" ,xn,b). Thus, the category 1* is closed under the cross product. Therefore the theorem is proved. Theorem 3. F* S* t 1* is a covariant functor. Proof. For a morphism <P = TI7=1 <Pi a = TI:'=1 ai t a' = TI7=1 a;, with a,a' E S*, we define n F*(<p) = (II <Piai, <p*a'*) i=l where ip" and a'* are conjugated of <P = TI7=1 <Pi and a' = TI7=1 a;, respectively, that is n <p*(a)(YI"" ,Yn) = a(<pdyd,··· ,<Pn(Yn)) for every (Yl,'" ,Yn) E II Y; and a E X'* i=1 and n a/*(b)(x~, ,x~) = b(a~ (x~), ,a~(x~)) for every (x~, ,x~) E II X: and bE y'*. i=l We claim that F*(<p) : F*(a) = (TI7=IX,fo,Y*) t F*(a') = (TI7=IX:,fa"Y'*) is a (n+1)- dimensional Chu morphism. That is, the following diagram commutes: COMPLETION OF THE CATEGORY OF FINITE-DIMENSIONAL FUZZY SPACES 37 [[';=1 Xi X v': (L,'P*a'*) 1 ('Po,ly,.) IT n x: , >1 i=1 i X Y * In fact, for every (Xl, ,X n ) E IT;';" 1 Xi and bEY'*, we have fa(x1,'" ,xn,<p*a/*(b)) = <p*a'*(b)(adx1),'" ,an(xn)) = (a'<p)*(b)(adxd,··· ,an(xn)) = b(a~ <P1adxd, ,a~<Pnan(xn)) = fa' (<pa(x), b) Consequently the above diagram commutes. Hence F*(<p) = (IT7=1 <Piai, <p*a'*) is a (n+1)-Chu morphism. Now we will show that F* preserves the composition. In fact, let n n n n n n a' = II a: : X' = II X: -> Y' = II Y/ i=1 i=1 i=1 i= 1 n=l i=1 and n n n II - II II. X" - II X" yll - II yll Q - Ui' - i + - i i=1 i=1 i=1 be objects in the category S*. Let <p = IT7=1 <Pi: a = IT7=1 ai -> a' = IT7=1 a: and <p' = IT7=1 <p~: I IT n I II IT n II b hi . S* (. IT n y IT n y. X' a = i=1 a i -> a = i=1 a i e morp Isms In l.e., <p = i=1 <Pi: = i=;1 i -> = rr=1 X: and <p' = IT7=1 <p; : Y' = IT7=1 Y./ -> X" = IT7=1 X: ' are maps in the n-set category). By the definition we have <p' * <p = <p'a'<p = IT7=1 <p~a:<pi' Therefore F * (' ) (' I (' I ) * "*) <p * <p = <p a spec, <p a <p a ( I I * '* '* 11*) = <p a <pa, <p a <p a = F*(<p')F*(<p). Consequently F* preserves the composition, and hence F* : S* -> 1* is a covariant functor. The functor F* : S* -> 1* is called (n+l)-dimensional *-fuzzy functor. Acknowledgernerrt. The authors are thankful to N. T. Hung of New Mexico for his comments during the prepar ation of this paper. REFERENCES [1] Barr M., * -Autonomous categories, Lecture Notes in Mathematics, #752, Springer-Verlag; Electronic Notes in Theorestical Computer Science, 1979. [2] Barry Mitchell, Theory of Categories, NewYork and London, 1965. [3] Barwise J. and Seligman J., Information Flow, The Logic of Distributed Systems, Cambridge Univ. Pess, 1977. [4] Gupta V., "Chu spaces: a model of concurrency", Ph.D. thesis, Stanford Univ., Available at ftp:// boole.stanford.edu/pub/gupthes.ps.Z., 1994. [5] Nguyen H. T. and Walker E., A First Course in Fuzzy Logic, Boca Raton, FL: CRe, 1997 (2nd ed., 1999). [6] Nguyen H. T. and Sugeno M., Fuzzy Systems: Modeling and Control, Kluwer Academic, 1998. 38 NGUYEN NHUY, PHAM QUANG TRINH, VU THI HONG THANH [7] Nguyen Nhuy, Ph am Quang Trinh, and Vu Hong Thanh, Finite-dinesional Chu space, Journal of Computer Science and Cybernetics 15 (4) (1999). [8] Nguyen Nhuy and Vu Hong Thanh, Finite-dimensional Chu space, Fuzzy space and the game Invariance Theorem, to apper in Journal of Computer Science and Cybernetics. [9] Paradopoulos B. K. and Syropoulos A., Fuzzy sets and fuzzy relational structures as Chu spaces, Proceedings of the First International Workshop on Current Trends and Developments of Fuzzy Logic, Thessaloniki, Greece, Oct. 16-20, 1998; Electronic Notes in Theoretical Computer Science (1998). [10] Pratt V. R., Type as procsses, via Chu spaces, Electronic Notes in Theoretical Computer Science 7 (1997). [11] Pratt V. R., Chu spaces as a sematic bridge between linear logic and mathematics, Electronic Notes in Theoretical Computer Science 12 (1998). Received August 11, 2000 Department of Information Technology, Vinh University, Nqhe An, Vietnam. . orig gian- mo' hiru han chie u d a dU'<TCde c~p den trong [7] va [8]. Nhtr da diro'c chirng minh trong [7], ph arn tru 1 cac khong gian me: hii'u. tru 1 cac khong gian me: hii'u h an chie u lien ket vO'icac khong gian Chu hiru han chieu 111. mot h~ thong tiro'ng du-o'ng, tuy nhien

Ngày đăng: 12/03/2014, 04:20

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan