Bài tập có lời giải chương 1 TOÁN CAO CẤP 2

48 3.1K 54
Bài tập có lời giải chương 1 TOÁN CAO CẤP 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BÀI TẬP TOÁN CAO CẤP 2

LỜI GIẢI MỘT SỐ BÀI TẬP TOÁN CAO CẤP 2 Lời giải một số bài tập trong tài liệu này dùng để tham khảo. một số bài tập do một số sinh viên giải. Khi học, sinh viên cần lựa chọn những phương pháp phù hợp và đơn giản hơn. Chúc anh chị em sinh viên học tập tốt BÀI TẬP VỀ HẠNG CỦA MA TRẬN Bài 1: Tính hạng của ma trận: 1) A = 2 −4 3 1 0 1 −2 1 −4 2 0 1 −1 3 1 1 −7 4 −4 5             η1↔η2  → 1 −2 1 −4 2 2 −4 3 1 0 0 1 −1 3 1 1 −7 4 −4 5             h1(−2)+η2 η1(−1)+η4  → 1 −2 1 −4 2 0 0 1 9 −4 0 1 −1 3 1 0 −5 3 0 3             η 2↔ η 3  → 1 −2 1 −4 2 0 1 −1 3 1 0 0 1 9 −4 0 −5 3 0 3             η2(5)+η4  → 1 −2 1 −4 2 0 1 −1 3 1 0 0 1 9 −4 0 0 −2 15 8             η 3(2)+ η 4  → 1 −2 1 −4 2 0 1 −1 3 1 0 0 1 9 −4 0 0 0 33 0             ⇒ ρ Α ( ) = 4 2) A = 0 2 −4 −1 −4 5 3 1 7 0 5 −10 2 3 0               η 1↔ η 2  → −1 −4 5 0 2 −4 3 1 7 0 5 −10 2 3 0               η 1 3 ( ) + η 3 η 1 2 ( ) + η 4  → −1 −4 5 0 2 −4 0 −11 22 0 5 −10 0 −5 10               η 2 1 2        → −1 −4 5 0 1 −2 0 −11 22 0 5 −10 0 −5 10               η 2 11 ( ) + η 3 η 2 −5 ( ) + η 4 η 2 5 ( ) + η 5  → −1 −4 5 0 1 −2 0 0 0 0 0 0 0 0 0               ⇒ ρ Α ( ) = 2 1 2) A = 2 −1 3 −2 4 4 −2 5 1 7 2 −1 1 8 2         η1(−2)+η2 η1(−1)+η3  → 2 −1 3 −2 4 0 0 −1 5 −1 0 0 −2 10 −2         h2(-2)+η3  → 2 −1 3 −2 4 0 0 −1 5 −1 0 0 0 0 0         ⇒ ρ Α ( ) = 2 3) A = 1 3 5 −1 2 −1 −5 4 5 1 1 7 7 7 9 −1             η1 −2 ( ) +η2 η1 −5 ( ) +η3 η1 −7 ( ) +η4  → 1 3 5 −1 0 −7 −15 6 0 −14 −24 12 0 −14 −26 6             η2 −2 ( ) +η3 η2 −2 ( ) +η4  → 1 3 5 −1 0 −7 −15 6 0 0 6 0 0 0 4 −6             η3 1 6        → 1 3 5 −1 0 −7 −15 6 0 0 1 0 0 0 4 −6             η4 −4 ( ) +η4  → 1 3 5 −1 0 −7 −15 6 0 0 1 0 0 0 0 −6             ⇒ ρ Α ( ) = 4 4) A = 3 −1 3 2 5 5 −3 2 3 4 1 −3 −5 0 7 7 −5 1 4 1             η1↔ η3  → 1 −3 −5 0 7 5 −3 2 3 4 3 −1 3 2 5 7 −5 1 4 1             η1 −5 ( ) +η2 η1 −3 ( ) +η3 η1 −7 ( ) +η4  → 1 −3 −5 0 7 0 12 27 3 −31 0 8 18 2 −16 0 16 36 4 −48             η3 1 2       ↔ η2  → 1 −3 −5 0 7 0 4 9 1 −8 0 12 27 3 −31 0 16 36 4 −48             η2 −3 ( ) +η3 η2 −4 ( ) +η4  → 1 −3 −5 0 7 0 4 9 1 −8 0 0 0 0 −7 0 0 0 0 −16             η3 − 16 7       + η4  → 1 −3 −5 0 7 0 4 9 1 −8 0 0 0 0 −7 0 0 0 0 0             ⇒ ρ Α ( ) = 3 5) 2 A = 2 2 1 5 −1 1 0 4 −2 1 2 1 5 −2 1 −1 −2 2 −6 1 −3 −1 −8 1 −1 1 2 −3 7 −2                   η 1↔ η 2  → 1 0 4 −2 1 2 2 1 5 −1 2 1 5 −2 1 −1 −2 2 −6 1 −3 −1 −8 1 −1 1 2 −3 7 −2                   η 1(−2)+ η 2 η 1(−2)+ η 3 η 1+ η 4 η 1(3)+ η 5 η 1(−1)+ η 6  → 1 0 4 −2 1 0 2 −7 9 −3 0 1 −3 2 −1 0 −2 6 −8 2 0 −1 4 −5 2 0 2 −7 9 −3                   η 2↔ η 3  → 1 0 4 −2 1 0 1 −3 2 −1 0 2 −7 9 −3 0 −2 6 −8 2 0 −1 4 −5 2 0 2 −7 9 −3                   η 2(−2)+ η 3 η 2(2)+ η 4 η 2+ η 5 η 2(−2)+ η 6  → 1 0 4 −2 1 0 1 −3 2 −1 0 0 −1 3 −1 0 0 0 −4 0 0 0 1 −3 1 0 0 −1 3 −1                   η 3+ η 5 η 3(−1)+ η 6  → 1 0 4 −2 1 0 1 −3 2 −1 0 0 −1 3 −1 0 0 0 −4 0 0 0 0 0 0 0 0 0 0 0                   ⇒ ρ Α ( ) = 4 6) A = 1 −1 2 3 4 2 1 −1 2 0 −1 2 1 1 3 1 5 −8 −5 −12 3 −7 8 9 13               η 1(−2)+ η 2 η 1+ η 3 η 1(−1)+ η 4 η 1(−3)+ η 5  → 1 −1 2 3 4 0 3 −5 −4 −8 0 1 1 3 7 0 6 −10 −8 −16 0 −4 2 0 1               η 2↔ η 3  → 1 −1 2 3 4 0 1 1 3 7 0 3 −5 −4 −8 0 6 −10 −8 −16 0 −4 2 0 1               η 2(−3)+ η 3 η 2(−6)+ η 4 η 2(4)+ η 5  → 1 −1 2 3 4 0 1 1 3 7 0 0 −8 −13 −29 0 0 −16 −26 −58 0 0 6 12 29               h3(−1)+ η 4 η 3+ η 5  → 1 −1 2 3 4 0 1 1 3 7 0 0 −8 −13 −29 0 0 0 0 0 0 0 −2 −1 0               η 5(−4)+ η 3  → 1 −1 2 3 4 0 1 1 3 7 0 0 0 −9 −29 0 0 0 0 0 0 0 −2 −1 0               3 h5↔ η 4↔ η 3  → 1 −1 2 3 4 0 1 1 3 7 0 0 −2 −1 0 0 0 0 −9 −29 0 0 0 0 0               ⇒ ρ ( Α ) = 4 7) A = −3 2 −7 8 −1 0 5 −8 4 −2 2 0 1 0 3 7             η 1↔ η 2  → −1 0 5 −8 −3 2 −7 8 4 −2 2 0 1 0 3 7             η 1(−3)+ η 2 η 1(4)+ η 3 η 1+ η 4  → −1 0 5 −8 0 2 −22 32 0 −2 22 −32 0 0 8 −1             η 2(−1)+ η 3  → −1 0 5 −8 0 2 −22 32 0 0 0 0 0 0 8 −1             η 3↔ η 4  → −1 0 5 −8 0 2 −22 32 0 0 8 −1 0 0 0 0             ⇒ ρ ( Α ) = 3 8) A = −1 3 3 −4 4 −7 −2 1 −3 5 1 0 −2 3 0 1             η 1(4)+ η 2 η 1(−3)+ η 3 η 1(−2)+ η 4  → −1 3 3 −4 0 5 10 −15 0 −4 −8 12 0 −3 −6 9             η 2 1 5       η 3 1 4       η 4 1 3        → −1 3 3 −4 0 1 2 −3 0 −1 −2 3 0 −1 −2 3             η 2+ η 3 η 2+ η 4  → −1 3 3 −4 0 1 2 −3 0 0 0 0 0 0 0 0             ⇒ ρ ( Α ) = 2 9) A = 1 3 −1 6 7 1 −3 10 17 1 −7 22 3 4 −2 10             η 1(−7)+ η 2 η 1(−17)+ η 3 η 1(−3)+ η 4  → 1 3 −1 6 0 −20 4 −32 0 −50 10 −80 0 −5 1 −8             η 2 1 4       η 3 1 10        → 1 3 −1 6 0 −5 1 −8 0 −5 1 −8 0 −5 1 −8             η 2(−1)+ η 3 η 2(−1) η 4  → 1 3 −1 6 0 −5 1 −8 0 0 0 0 0 0 0 0             ⇒ ρ ( Α ) = 2 10) 4 A = 0 1 10 3 2 0 4 −1 16 4 52 9 8 −1 6 −7             η 1↔ η 2  → 2 0 4 −1 0 1 10 3 16 4 52 9 8 −1 6 −7             η 1 −8 ( ) + η 3 η 1 −4 ( ) + η 4  → 2 0 4 −1 0 1 10 3 0 4 20 17 0 −1 −10 −3             η 2 −4 ( ) + η 3 η 2+ η 4  → 2 0 4 −1 0 1 10 3 0 0 −20 5 0 0 0 0             ⇒ ρ ( Α ) = 3 Bài 2: Biện luận theo tham số λ hạng của các ma trận: 1) A = 3 1 1 4 λ 4 10 1 1 7 17 3 2 2 4 1             η2↔ η4  → 3 1 1 4 2 2 4 1 1 7 17 3 λ 4 10 1             χ1↔ χ 4  → 4 1 1 3 1 2 4 2 3 7 17 1 1 4 10 λ             h1↔ η2  → 1 2 4 2 4 1 1 3 3 7 17 1 1 4 10 λ             η1 −4 ( ) +η2 η1 −3 ( ) +η3 η1 −1 ( ) +η4  → 1 2 4 2 0 −7 −15 −5 0 1 5 −5 0 2 6 λ − 2             η2↔ η3  → 1 2 4 2 0 1 5 −5 0 −7 −15 −5 0 2 6 λ − 2             η2 7 ( ) +η3 η2 −2 ( ) +η4  → 1 2 4 2 0 1 5 −5 0 0 20 −40 0 0 −4 λ +8             η3 1 5       + η4  → 1 2 4 2 0 1 5 −5 0 0 20 −40 0 0 0 λ             Vậy : - Nếu λ = 0 thì r(A) = 3 - Nếu λ ≠ 0 thì r(A) = 4 2) A = 3 1 1 4 λ 4 10 1 1 7 17 3 2 2 4 3             η2↔ η4  → 3 1 1 4 2 2 4 3 1 7 17 3 λ 4 10 1             χ1↔ χ 4  → 4 1 1 3 3 2 4 2 3 7 17 1 1 4 10 λ             5 c1↔ χ 2  → 1 4 1 3 2 3 4 2 7 3 17 1 4 1 10 λ             η1 −2 ( ) +η2 η1 −7 ( ) +η3 η1 −4 ( ) +η4  → 1 4 1 3 0 −5 2 −4 0 −25 10 −20 0 −15 6 λ −12             η2 −5 ( ) +η3 η2 −3 ( ) +η4  → 1 4 1 3 0 −5 2 −4 0 0 0 0 0 0 0 λ             η3↔ η4  → 1 4 1 3 0 −5 2 −4 0 0 0 λ 0 0 0 0             Vậy: - Nếu λ = 0 thì r(A) = 2 - Nếu λ ≠ 0 thì r(A) = 3 3) A = 4 1 3 3 0 6 10 2 1 4 7 2 6 λ −8 2             Χ2↔Χ4  → 4 3 3 1 0 2 10 6 1 2 7 4 6 2 −8 λ             η1↔ η3  → 1 2 7 4 0 2 10 6 4 3 3 1 6 2 −8 λ             h1 −4 ( ) +η3 η1 −6 ( ) +η4  → 1 2 7 4 0 2 10 6 0 −5 −25 −15 0 −10 −50 λ − 24             η2 1 2        → 1 2 7 4 0 1 5 3 0 −5 −25 −15 0 −10 −50 λ − 24             η 2 5 ( ) + η 3 η 2 10 ( ) + η 4  → 1 2 7 4 0 1 5 3 0 0 0 0 0 0 0 λ + 6             η3↔ η4  → 1 2 7 4 0 −1 −5 −3 0 0 0 λ + 6 0 0 0 0             Vậy: - Khi λ + 6 = 0 ⇔ λ = −6 thì r(A) = 2 - Khi λ + 6 ≠ 0 ⇔ λ ≠ −6 thì r(A) = 3 4) A = −3 9 14 1 0 6 10 2 1 4 7 2 3 λ 1 2             Χ2↔Χ4  → −3 1 14 9 0 2 10 6 1 2 7 4 3 2 1 λ             η1↔η3  → 1 2 7 4 0 2 10 6 −3 1 14 9 3 2 1 λ             h1 3 ( ) +η3 η1 −3 ( ) +η4  → 1 2 7 4 0 2 10 6 0 7 35 21 0 −4 −20 λ −12             η2 1 2        → 1 2 7 4 0 1 5 3 0 7 35 21 0 −4 −20 λ −12             6 h2 −7 ( ) +η3 η2 4 ( ) +η4  → 1 2 7 4 0 1 5 3 0 0 0 0 0 0 0 λ             η3↔ η4  → 1 2 7 4 0 1 5 3 0 0 0 λ 0 0 0 0             Vậy : - Nếu λ = 0 thì r(A) = 2 - Nếu λ ≠ 0 thì r(A) = 3 7 BÀI TẬP VỀ MA TRẬN NGHỊCH ĐẢO VÀ PHƯƠNG TRÌNH MA TRẬN Bài 1: Tìm ma trận nghịch đảo của các ma trân sau: 1) A = 3 4 5 7       Ta có: A I ( ) = 3 4 1 0 5 7 0 1       η1 − 5 3       + η2  → 3 4 1 0 0 1 3 − 5 3 1           η 1 1 3       η 2 3 ( )  → 1 4 3 1 3 0 0 1 −5 3           η 2 − 4 3       + η 1  → 1 0 7 −4 0 1 −5 3       ⇒ Α −1 = 7 −4 −5 3       2) A = 1 −2 4 −9       Ta có: A −1 = 1 −2 4 −9       −1 = 1 αδ − βχ δ − β − χ α       = 1 1.(−9)− (−2).4 −9 2 −4 1       = 9 −2 4 −1       3) A = 3 −4 5 2 −3 1 3 −5 −1         Ta có: A I ( ) = 3 −4 5 1 0 0 2 −3 1 0 1 0 3 −5 −1 0 0 1         η2(−1)+ η 1  → 1 −1 4 1 −1 0 2 −3 1 0 1 0 3 −5 −1 0 0 1         η1 −2 ( ) +η2 η1 −3 ( ) +η3  → 1 −1 4 1 −1 0 0 −1 −7 −2 3 0 0 −2 −13 −3 3 1         η2(−2)+ η 3  → 1 −1 4 1 −1 0 0 −1 −7 −2 3 0 0 0 1 1 −3 1         η2(−1)  → 1 −1 4 1 −1 0 0 1 7 2 −3 0 0 0 1 1 −3 1         η3 −7 ( ) +η2 η3 −4 ( ) +η1  → 1 −1 0 −3 11 −4 0 1 0 −5 18 −7 0 0 1 1 −3 1         η2+η1  → 1 0 0 −8 29 −11 0 1 0 −5 18 −7 0 0 1 1 −3 1         8 Vậy ma trận A là ma trận khả nghịch và A -1 =           − −− −− 131 7185 11298 4) A = 2 7 3 3 9 4 1 5 3         Ta có: A I ( ) = 2 7 3 1 0 0 3 9 4 0 1 0 1 5 3 0 0 1         η3↔η1  → 1 5 3 0 0 1 3 9 4 0 1 0 2 7 3 1 0 0         η1 −3 ( ) +η2 η1 −2 ( ) +η3  → 1 5 3 0 0 1 0 −6 −5 0 1 −3 0 −3 −3 1 0 −2         η3↔η2  → 1 5 3 0 0 1 0 −3 −3 1 0 −2 0 −6 −5 0 1 −3         h2(-2)+η3  → 1 5 3 0 0 1 0 −3 −3 1 0 −2 0 0 1 −2 1 1         η2 − 1 3        → 1 5 3 0 0 1 0 1 1 − 1 3 0 2 3 0 0 1 −2 1 1             h3 −1 ( ) +η2 η3 −3 ( ) +η1  → 1 5 0 6 −3 −2 0 1 0 5 3 −1 − 1 3 0 0 1 −2 1 1             η2(−5)+η1  → 1 0 0 − 7 3 2 − 1 3 0 1 0 5 3 −1 − 1 3 0 0 1 −2 1 1               ⇒ Α −1 = − 7 3 2 − 1 3 5 3 −1 − 1 3 −2 1 1               5) A = 1 2 2 2 1 −2 2 −2 1         Ta có: 9 ( ) ( ) ( ) 1 2 2 1 2 3 1 2 3 1 3 2 2 3 9 1 2 2 1 0 0 1 2 2 1 0 0 2 1 2 0 1 0 0 3 6 2 1 0 2 2 1 0 0 1 0 6 3 2 0 1 1 2 2 1 0 0 1 2 2 1 0 0 2 1 0 3 6 2 1 0 0 1 2 0 3 3 0 0 9 2 2 1 2 2 1 0 0 1 9 9 9 h h h h h h h h A − + − +   −  ÷      ÷ − +        ÷  ÷ = − → − − −  ÷  ÷  ÷  ÷ − − − −        ÷    ÷  ÷  ÷ → − − − → −  ÷  ÷  ÷ −  ÷    ÷ −   ( ) ( ) ( ) 3 2 2 3 2 1 2 2 1 5 4 2 1 2 2 1 2 0 1 0 0 9 9 9 9 9 9 2 1 2 2 1 2 0 1 0 0 1 0 9 9 9 9 9 9 2 2 1 2 2 1 0 0 1 0 0 1 9 9 9 9 9 9 h h h h h h − + − + − +     −  ÷  ÷  ÷  ÷  ÷  ÷ → − → −  ÷  ÷  ÷  ÷  ÷  ÷ − −  ÷  ÷     1 1 2 2 9 9 9 2 1 2 9 9 9 2 2 1 9 9 9 A −    ÷  ÷  ÷ ⇒ = −  ÷  ÷  ÷ −  ÷   Bài 2 Giải các phương trình ma trận sau 1) 1 2 3 5 3 4 5 9 X     =  ÷  ÷     Đặt 1 2 3 5 ; 3 4 5 9 A B     = =  ÷  ÷     Ta có: 1 AX B X A B − = ⇔ = 1 1 2 1 1 2 4 2 1 1 3 1 3 4 3 1 1.4 2.3 2 2 2 1 3 5 1 1 3 1 5 9 2 3 2 2 d b A c a ad bc X − − −   − −        ÷ = = = = −  ÷  ÷  ÷  ÷ − − − −         −   − −      ÷ ⇒ = = −  ÷  ÷  ÷       2) 3 2 1 2 5 4 5 6 X − −     =  ÷  ÷ − −     10 [...]... 35 1 0 0 2 0 2 4 12 0 −5 −7 9 0 3 5 14 1 0 D= 1 1 1 0 1 2 0 1 1 1 2 1 2 1 h1( 1) + h3 4 ˆ h1+ hˆ ˆˆ 1 0 1 ‡ ˆˆ ˆ 1+ ˆ 5ˆˆ † ˆ h h 1 0 2 1 1 1 1 0 0 0 0 0 1 2 0 1 1 1 2 1 1 2 1 2 0 1 1 = 1 0 2 1 4 1 2 0 3 1 2 1 0 1 1 2 1 4 2 0 3 1 1 2 1 2 −3 1 2 −3 0 2 −3 1 h1( 2) + h 2 ˆ ˆ ˆˆ † = 1 2 1 4 2 1 ‡ ˆˆh1(ˆ 1) +ˆˆ3ˆˆ ˆ h 0 2 1 4 1 2 4 1 2 0 1 2 4 = 8 − 12 − 4 + 1 − 16 + 24 = 1 7)... 1 1 1 1 1 0 2 0 0 = 1 ( 2) × ( 2) × ( 2) = −8 0 0 2 0 0 0 0 2 2) 0 1 D= 1 1 1 0 1 1 1 1 0 1 1 1 0 1 c1↔ c 2 0 1 ˆ ‡ ˆˆ ˆˆ ˆˆ † − ˆ 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 1 h1( 1) + h 3 0 1 1 1 ˆ ˆ ˆˆ ˆ ‡ ˆˆh1(ˆ 1) +ˆˆ4† − ˆ h 1 0 1 1 0 0 0 1 0 1 1 1 1 1 1 = − 1 × 11 0 1 1 1 0 1 1 0 = − ( 1 + 1 + 1) = −3 3) 34 2 −5 1 −3 7 1 D= 3 −9 2 4 −6 1 2 1 −5 2 4 c1↔c 3 1 7 −3 ˆ ‡ ˆˆ ˆˆ ˆˆ † − ˆ 7 2 −9 3 2. ..  22 x1 − x2 + x3 − x4 = 1 2 x − x − 3x = 21 2 4 12 )  3 x1 − x3 + x4 = −3  2 x1 + 2 x2 − 2 x3 + 5 x4 = −6  Giải2 1 1 1 1   2 1 1 1 1   ÷ h1( 1) + h 2  ÷ h1( 1) + h 3  2 1 0 −3 2 ÷   0 0 1 2 1 ÷ ( A B ) =  3 0 1 1 −3 ÷ h1( 1) +h 4→  1 1 2 2 −4 ÷    2 2 2 5 −6 ÷ ÷  0 3 −3 6 −7 ÷ ÷      1 1 2 2 −4   1 1 2 2 −4   ÷  ÷ 0 0 1 2 1 ÷ h1 ( 2) + h 2 ... trình:  x1 − 13 x2 = 15  x1 = 2    x2 + 7 x3 = 6 ⇔  x2 = 1 36 x = 36 x = 1  3  3 2 x1 + x2 − 2 x3 = 10  2) 3x1 + 2 x2 + 2 x3 = 1 5 x + 4 x + 3 x = 4  1 2 3 Giải: Ta có:  2 1 2 10  h1( 1) + h 22 1 2 10   1 1 4 −9   ÷ h1( 2) + h 3  ÷ h1↔ h 2  → ( A B ) =  3 2 2 1 ÷  1 1 4 −9 ÷→  2 1 2 10 ÷ ÷ 5 4 3 4 ÷  1 2 7 16 ÷  1 2 7 16 ÷       1 1 4 −9  1 1 4 −9... 12 x1 + 3x2 + 11 x3 + 5 x4 = 2  x + x + 5x + 2 x = 11 2 3 4 2)  2 x1 + x2 + 3x3 + 2 x4 = −3  x1 + x2 + 3x3 + 4 x4 = −3  Giải: Ta có:  2 3 11 5 21  ÷  h1↔ h2  1 1 5 2 1 ÷  2 → ( A / B) =  2 2 1 3 2 −3 ÷  ÷   1 1 3 4 −3  1 1 5 2 1 ÷ 3 11 5 2 ÷ 1 3 2 −3 ÷ ÷ 1 3 4 −3  16 1  0    → 0  0 1 1 ÷  1 1 1 0 ÷ h2+ h3  0  → 0 1 −7 2 −5÷ ÷  0 2 2 −4  0 1 ... 1 5 40 ÷ h1( 2) +h 4→  1 2 5 1 16 ÷    6 4 5 3 41 ÷ ÷  0 −6 11 11 7 ÷ ÷      1 2 5 1 16   1 2 5 1 16   ÷  ÷ 0 1 ÷ h1↔ h 3 h1( 1) + h 21 −7 8 1 15 ÷   0 −5 3  → →  3 5 −3 2 12 ÷ h1( −3) + h 3  0 11 18 1 −36 ÷    0 −6 11 11 7 ÷ ÷  0 −6 11 1 17 ÷ ÷      1 2 5 1 16  1  ÷  0 1 ÷ h 2 ↔ h 4  0 h 2( 2) + h 3  0 −5 3  → → h 2( 1) + h 4  0 1 12 1. .. x = 21 2 3 4 18 )   2 x1 + 3x2 + 5 x3 + 9 x4 = 2  x1 + x2 + 2 x3 + 7 x4 = 2  Giải: 1 1 1 1 2 1  ÷ h1( 1) + h 21 2 3 42 0 h1( 2) + h 3 → ( A B ) =  2 3 5 9 2 ÷  0 h1( 1) + h 4  ÷   ÷  1 1 2 7 2 0    1  0 h 3( 1) + h 4   → 0  0  1 1 0 0 1 2 1 0 1 1 1 0 1 2 3 1 1 2 1 ÷  3 0 ÷ h 2( 1) + h 3  0  → 0 7 2 ÷ ÷  0 6 0÷   1 2 ÷ 3 0÷ 4 2 ÷ ÷ ÷ 2 2 Hệ... 1 2 3 4 1)  8 x1 + 5 x2 − 3 x3 + 4 x4 = 12 3x1 + 3 x2 − 2 x3 + 2 x4 = 6  Giải: Ta có: 15 ( 2  4 A B) =  8  3 2 3 5 3 2  h2( −3) + h3  0  → 0  0 1 4  h1(( 2) ) + h2  2 2 1 1 h1 −4 + h3 ÷ h1 − 3  + h4  2 6÷ 0 1 1 0  ÷  2   →  0 −3 4 12 ÷ 1 0 ÷  2 6  0 0 1/ 2 1/ 2 2 1 1 4  2 2 1 ÷ 1 1 0 2 ÷ h3( 1/ 4)+ h4  0 1 1 →   0 0 2 0 2 0 2 ÷  0 1/ 2 1/ 2. .. 3 3 2 2) D = = 3.5 – 8 .2 = 15 – 16 = -1 8 5 n +1 n 3) D = = (n +1) (n -1) – n2 = n2 - 1 - n2 = -1 n n 1 cos α − sin α 4) D = = cos2 α +sin2 α = 1 sin α cos α Bài 2: Tính các định thức cấp 3: 2 1 3 1) D = 5 3 2 = 18 +2+ 60-9 -16 -15 = 40 1 4 3 3 2 1 2) D = 2 5 3 = 30 +18 +8 -15 -36-8 = -3 3 4 2 4 −3 5 3) D = 3 − 2 8 = 40 -24 -10 5 +10 +22 4-45 =10 0 1 −7 −5 3 2 −4 4) D = 4 12 =-9 -20 - 32+ 20 + 12 +24 = -5 5 2 −3 1 1 1 5)... −9 3 2 1 −6 4 2 1 −5 2 h1+ h 2 4 h1( 2) + h 3 0 2 1 ˆ ˆ ˆˆ † ‡ ˆˆh1(ˆ 1) +ˆˆ4ˆˆ − ˆ h 7 0 1 1 2 0 1 2 2 6 3 0 2 1 6 2 1 = 1 × 1 1 3 11 1 2 0 1 2 = − ( 3 + 12 − 6 − 12 ) = 3 4) 3 −3 −5 8 1 0 0 2 h1( −3) + h 2 −3 2 4 −6 h 4+ h1 −3 2 4 −6 h1( 2) + h 3 ˆ ˆˆ ˆˆ ˆ† ˆ ˆˆ ˆˆ ˆˆ ˆˆ † D= ‡ ˆˆ ‡ h1( −4) + h 4ˆ ˆ 2 −5 −7 5 2 −5 −7 5 −4 3 5 −6 −4 3 5 −6 2 4 12 1 2 −6 1 2 = 1 −5 −7 9 = 1 2 × −5 . =  Giải: Ta có: ( ) 1( 1) 2 1( 2) 3 1 2 1( 2) 2 1( 1) 2 2 3 2 1 2 10 2 1 2 10 1 1 4 9 3 2 2 1 1 1 4 9 2 1 2 10 5 4 3 4 1 2 7 16 1 2 7 16 1 1 4 9 1 1 4. 3 1( 2) 2 2 1 1 1 1 0 0 1 2 1 2 1 0 3 2 2 1 0 3 2 3 0 1 1 3 1 1 1 4 5 3 2 2 5 6 0 3 2 8 8 1 1 1 4 5 1 1 1 4 2 1 0 3 2 0 3 2 11 0 0 1 2 1 0 0 1 2 0 3 2

Ngày đăng: 11/03/2014, 16:53

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan