nghiệm dương của một số lớp bài toán biên cho phương trình vi phân bậc cao

56 736 0
nghiệm dương của một số lớp bài toán biên cho phương trình vi phân bậc cao

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH LƯƠNG NGỌC TIẾN NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC CAO LUẬN VĂN THẠC SĨ TOÁN HỌC Thành phố Hồ Chí Minh - 2011 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM TP. HỒ CHÍ MINH Lương Ngọc Tiến NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC CAO Chuyên ngành: Toán Giải Tích Mã số: 60 46 01 LUẬN VĂN THẠC SĨ TOÁN HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC PGS.TS. NGUYỄN ANH TUẤN Thành phố Hồ Chí Minh - 2011 LỜI CẢM ƠN Lời đầu tiên, tôi xin kính gửi đến PGS.TS.Nguyễn Anh Tuấn lời cảm ơn sâu sắc và chân thành nhất sự tận tình giúp đỡ và chỉ bảo của Thầy dành cho tôi trong suốt thời gian làm luận văn. Tôi cũng xin chân thành cảm ơn Quí Thầy Cô trường Đại học Sư Phạm TP. Hồ Chí Minh, trường Đại học KHTN TP. Hồ Chí Minh, trường Đại học Quốc Tế TP. Hồ Chí Minh đã tận tình giảng dạy và hướng dẫn tôi trong suốt khóa học. Tôi xin gửi lời cảm ơn đến Lãnh đạo, Chuyên viên Phòng Sau Đại học - trường Đại học Sư phạm TP. Hồ Chí Minh đã tạo mọi điều kiện thuận lợi cho tôi trong suốt quá trình học tập và hoàn thành luận văn. Tôi xin gửi lời cảm ơn đến Quý Thầy Cô trong Hội đồng chấm luận văn đã giành thời gian đọc, chỉnh sửa và đóng góp ý kiến giúp cho tôi hoàn thành luận văn này một cách hoàn chỉnh. Tôi cũng xin chân thành cảm ơn gia đình, bạn bè, các bạn học viên cao học lớp Giải tích K19, trường Đại học Sư Phạm TP. Hồ Chí Minh đã luôn động viên, khuyến khích và giúp đỡ tôi trong thời gian học tập và làm luận văn. kiến thức bản thân còn hạn chế và thời gian có hạn nên luận văn sẽ khó tránh khỏi những thiếu sót.Rất mong được sự nhận xét và chỉ bảo của Quí Thầy Cô và sự góp ý chân thành của các bạn đồng nghiệp để luận văn ngày càng hoàn thiện hơn. TP.Hồ Chí Minh 11/2011 Tác giả MỤC LỤC LỜI CẢM ƠN 3 MỞ ĐẦU 5 CHƯƠNG 0 6 MỘT SỐ KIẾN THỨC CHUẨN BỊ 6 CHƯƠNG 1 8 NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO 8 PHƯƠNG TRÌNH VI PHÂN BẬC BA 8 1.1 Mở đầu 8 1.2. Hàm Green và đánh giá tiên nghiệm của nghiệm dương 8 1.3 Các định lý tồn tại nghiệm dương 15 1.4 Các định lý về sự không tồn tại nghiệm dương 22 CHƯƠNG 2 25 NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO 25 PHƯƠNG TRÌNH VI PHÂN BẬC BỐN 25 2.1 Mở đầu 25 2.2 Hàm Green của bài toán (2.1),(2.2) 25 2.3 Các đánh giá cho nghiệm dương 27 2.4 Các định lý tồn tại nghiệm cho bài toán (2.1),(2.2) 29 2.5 Các định lý về sự không tồn tại nghiệm dương cho bài toán (2.1), (2.2) 35 CHƯƠNG 3 38 NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO 38 PHƯƠNG TRÌNH VI PHÂN BẬC N 38 3.1 Mở đầu 38 3.2 Hàm Green và các đánh giá tiên nghiệm 38 3.3 Các định lý về tồn tại, không tồn tại nghiệm dương của (3.1), (3.2) 44 3.6 dụ. Xét bài toán biên 52 KẾT LUẬN 55 TÀI LIỆU THAM KHẢO 56 MỞ ĐẦU Lý thuyết bài toán biên cho phương trình vi phân ra đời từ thế kỷ XVIII, song đến nay ngày càng phát triển mạnh mẽ do các ứng dụng to lớn của nó trong nhiều lĩnh vực của cuộc sống như:vật lý, cơ học, cơ khí, sinh học, kinh tế,… Vấn đề nghiệm dương của các bài toán biên trong những năm gần đây được sự quan tâm sâu sắc bởi nhiều nhà toán học trên thế giới như: R.P.Agarwal, D.O’Regan, D.R.Anderson, I.T.Kiguradze,…. Vấn đề nghiệm dương cho bài toán biên cho phương trình vi phân bậc cao ngày càng được nhiều người quan tâm và có nhiều kết qủa rộng lớn và sâu sắc theo các hướng khác nhau, nhưng có thể nói phương pháp chung là áp dụng định lý điểm bất động Guo – Krasnosel’skii trong nón. Mục đích chính của luận văn là ứng dụng định lý điểm bất động Guo – Krasnoselskii để nghiên cứu sự tồn tại nghiệm dương của các bài toán biên cho phương trình vi phân bậc cao. Nội dung của luận văn là nghiên cứu sự tồn tại, không tồn tại nghiệm dương của các phương trình vi phân bậc cao với các điều kiện biên khác nhau. Luận văn được chia làm 3 chương, cụ thể như sau Chương 1: Nghiên cứu về sự tồn tại và không tồn tại nghiệm dương của phương trình vi phân bậc ba dạng: '''( ) ( ) ( ( )), 0 1u t gt f ut t= ≤≤ , với điều kiện biên: (0) '(0) '( ) '(1) ''(1) 0u u up u u α βγ −==+= Chương 2: Nghiên cứu về sự tồn tại và không tồn tại nghiệm dương của phương trình vi phân bậc bốn dạng: ''''( ) ( ) ( ( )), 0 1u t gt f ut t= ≤≤ , với điều kiện biên: (0) '(0) ''(1) '''(1) 0uu u u= = = = Chương 3: Nghiên cứu về sự tồn tại và không tồn tại nghiệm dương của phương trình vi phân bậc n dạng: () () () ( ()) 0,0 1, λ + = << n u t at f ut t với các điều kiện biên cụ thể khác nhau. Luận văn có thể làm tài liệu tham khảo cho sinh viên năm cuối hoặc học viên cao học ngành Toán khi nghiên cứu về vấn đề nghiệm dương của phương trình vi phân bậc cao cũng như hệ phương trình vi phân. CHƯƠNG 0 MỘT SỐ KIẾN THỨC CHUẨN BỊ 0.1 Định nghĩa Cho ()ft xác định trên 0 t  , ()ft khả tích trên mọiđoạn   ,ab , (với 0 ab   ) và s là tham số thực (hoặc phức). Ta định nghĩa biến đổi Laplace của f là   00 () () () () lim () st st Fs L ft s e ftdt e ftdt        Ta sẽ ký hiệu L(f) là biến đổi Laplace của hàm f. Định lý 0.1.1 Giả sử   ()L ft và   ()L gt tồn tại. Cho a và b là các hằng số. Khi đó,   () ()L af t bg t tồn tại và       () () () ()L af t bg t aL f t bL g t  . Định lý 0.1.2 Giả sử rằng (1) f có đạo hàm cấp n và () n f liên tục từng phần trên   0, (2) Tồn tại các hằng số dương a, M, T sao cho   () ( ) , 0,1, , 1 , , n at f t Me i n t T    Khi đó, biến đổi Laplace của ()n f tồn tại với mọi sa và     ( ) 1 2 ( 1) ( ) ( ) (0) '(0) (0) nn n n n L f t sL ft s f s f f       . 0.2 Biến đổi Laplace ngược Định nghĩa 0.2.1 Giả sử F là biến đổi Laplace của hàm liên tục f, tức là   () ()()Fs L ft s . Khi đó hàm liên tục f được gọi là biến đổi Laplace ngược của hàm F và ký hiệu như sau   1 fLF   Định lý 0.2.2 Giả sử f, g là các hàm liên tục. Cho     ,F Lf G Lg , a và b là các hằng số. Khi đó,       1 11 L aF bG aL F bL G     . 0.3 Biến đổi Laplace của tích chập Cho hai hàm số f và g xác định trên  thì hàm số fg định bởi 0 ( )( ) ( ) ( ) t f g t f gt d      , với giả thiết là tích phân ở trên tồn tại, được gọi là tích chập của f và g . Nếu f và g là các hàm liên tục trên   0, , khi đó       ( )() () ()L f g t L ft L gt . 0.4 Định lý Guo – Krasnosel’skii Định nghĩa 0.4.1 Một toán tử gọi là hoàn toàn liên tục nếu nó liên tục và ánh xạ một tập bị chặn thành tập compact tương đối. Định nghĩa 0.4.2 Cho X là không gian Banach thực.Tập con lồi, đóng, khác rỗng P của X gọi là một nón trong X nếu nó thỏa mãn các điều kiện (1) Nếu , ,0xP   thì xP , (2) Nếu ,xP xP  thì 0x  . Định lý 0.4.3 (Guo - Krasnosel’skii) Cho ( ) ,.X là không gian Banach thực, PX⊂ , P là nón trên X. Giả sử 12 ,ΩΩ là các tập con mở bị chặn của X với 112 0∈Ω ⊂Ω ⊂Ω , và 21 : (\)TP P∩ Ω Ω  → là toán tử hoàn toàn liên tục thỏa một trong hai điều kiện (K1) Tu u≤ nếu 1 uP∈ ∩∂Ω , và Tu u≥ nếu 2 uP∈ ∩∂Ω . (K2) Tu u≥ nếu 1 uP∈ ∩∂Ω , và Tu u≤ nếu 2 uP∈ ∩∂Ω . Khi đó T có điểm bất động trong 21 (\)P ∩Ω Ω . Chương 1 NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC BA 1.1 Mở đầu Trong chương này ta sẽ nghiên cứu sự tồn tại và không tồn tại nghiệm dương của bài toán biên '''( ) ( ) ( ( )), 0 1u t gt f ut t= ≤≤ (1.1) (0) '(0) '( ) '(1) ''(1) 0u u up u u α βγ −==+= (1.2) Trong chương này ta giả sử rằng (H1) Hàm [ ) [ ) : 0, 0,f ∞  → ∞ và [ ] [ ) : 0,1 0,g  → ∞ là các hàm liên tục và () 0gt ≠ trên đoạn [ ] 0,1 , (H2) Các hằng số ,, αβγ và p là không âm thỏa: 0,0 1p βγ +> <≤ và 2 (1 ) 1p α +≥ , (H3) Nếu 1p = thì 0 γ > . 1.2. Hàm Green và đánh giá tiên nghiệm của nghiệm dương Trong phần này sẻ nghiên cứu hàm Green của bài toán (1.1) ,(1.2) và chứng minh một số đánh giá cho nghiệm dương của bài toán. Trong suốt phần này ta định nghĩa hằng số Mp βγβ = +− . Theo (H1), (H3) dễ thấy M là hằng số dương. Mệnh đề 1.2.1. Nếu [ ] 3 0,1uC∈ thỏa mãn điều kiện biên (1.2) và '''( ) 0ut= , [ ] 0,1∀∈t thì () 0ut = , 0 1.≤≤t Chứng minh. Do '''( ) 0ut= nên tồn tại các hằng số 123 ,,aaa sao cho: 2 12 3 ( ) ,0 1 ut a at at t= + + ≤≤ Vì ()ut thỏa điều kiện biên (1.2) nên ta có: 1 2 3 10 0 01 2 0 0 2( ) 0 a pa a α β βγ −           =           +      (1.3) (Do (0) '(0) '( ) '(1) ''(1) 0u uu u u α ββ γ −==+= ) Ma trận hệ số của hệ trên có định thức là 2M > 0 nên hệ chỉ có nghiệm tầm thường 123 0aaa= = = .Vậy () 0ut = trên [ ] 0,1 .  Nếu [ ] , (,)⊂ = −∞ +∞ab R là tập đóng, thì hàm chỉ χ của đoạn [ ] ,ab được định nghĩa như sau: [ ] [ ] [ ] , 1, , 0, , ab t ab t ab χ  ∈  =  ∉   Ta định nghĩa hàm [ ] [ ] [ ) : 0,1 0,1 0,G × → +∞ xác định bởi: ( ) [ ] 2 2 0,1 () (, ) 2 2 () 2( ) 2 s ts G t s p pt t s p βγβ αχ βγβ +− − = + −+ +− ( ) [ ] 2 0, 2( )( ) ( ) 2( ) p ps t ts p α βγ β χ βγβ − − + +− +− Ta sẽ chứng minh (, )Gts là hàm Green của bài toán (1.1), (1.2). Mệnh đề 1.2.2. Cho [ ] 0,1hC∈ . Nếu 1 0 () (, ) () , 0 1yt Gtshsds t= ≤≤ ∫ , thì ()yt thỏa điều kiện biên (1.2) và [ ] '''( ) ( ), 0,1y t ht t= ∀∈ . Chứng minh. Theo định nghĩa hàm (, )Gts ta có: ( ) [ ] 11 2 2 0, 00 () () 2 2 () ()() 22 t s ts y t p pt t h s ds s h s ds M βγβ αχ +− − = +− + ∫∫ ( ) [ ] 1 2 0, 0 2( )( ) ()() 2 p ps t t shsds M α βγ β χ − − + +− ∫ ( ) 1 2 2 00 () () 2 2 () () 22 t s ts y t p pt t h s ds h s ds M βγβ α +− − = +− + ∫∫ ( ) 2 0 2( )( ) ( ) 2 p ps t t h s ds M α βγ β − − + +− ∫ (1.4) Lấy đạo hàm hai vế của (1.4) ta được: ( ) ( ) 1 0 00 '() () ( )() () p t ps s y t thsds t shsds p t hsds MM βγβ βγβ − +− =− +− + − + − ∫ ∫∫ (1.5) Tiếp tục lấy đạo hàm hai vế của (1.5) ta được: 1 00 0 ''() () ( )() () p t ps s y t hsds t shsds hsds MM βγβ β − +− = +− − ∫∫ ∫ (1.6) Lại lấy đạo hàm hai vế của (1.6) cho ta: [ ] '''( ) ( ), 0,1y t ht t= ∀∈ Trong (1.5), cho tp= ta thu được: '( ) 0yp= Cho 0t = trong (1.4) và (1.5) ta được: 1 00 (0) ( )() () p ps s y h s ds ph s ds MM βγβ αβ γ α − +− =− ++ ∫∫ (1.7) 1 00 '(0) ( )() () p ps s y h s ds ph s ds MM βγβ βγ − +− =− ++ ∫∫ (1.8) Từ (1.7) và (1.8) ta có: (0) '(0)yy α = hay (0) '(0) 0yy α −= Cho 1t = trong (1.5) và (1.6) ta được: 1 00 '(1) () () p ps ps y h s ds h s ds MM γγ −− =−+ ∫∫ (1.9) 1 00 ''(1) ( ) ( ) p ps ps y h s ds h s ds MM ββ −− = − ∫∫ (1.10) Suy ra '(1) ''(1) 0yy βγ +=  Mệnh đề 1.2.3. Cho [ ] 0,1hC∈ và [ ] 3 0,1yC∈ .Nếu ()yt thỏa điều kiện biên (1.2) và [ ] '''( ) ( ), 0,1y t ht t= ∀∈ , thì 1 0 () (, ) () , 0 1yt Gtshsds t= ≤≤ ∫ . Chứng minh. Giả sử rằng y(t) thỏa điều kiện biên (1.2) và [ ] '''( ) ( ), 0,1y t ht t= ∀∈ Xét 1 0 () (, ) () , 0 1kt Gtshsds t= ≤≤ ∫ Theo mệnh đề (1.2.2) ta có: [ ] '''( ) ( ), 0,1k t ht t= ∀∈ và ()kt thỏa điều kiện biên (1.2). Đặt () () (),0 1.mt yt kt t= − ≤≤ Khi đó '''( ) 0mt= và ()mt thỏa điều kiện biên (1.2).Theo mệnh đề (1.2.1), () 0mt ≡ trên [ ] 0,1 . Vậy: 1 0 () (, ) () , 0 1yt Gtshsds t= ≤≤ ∫  Từ hai mệnh đề trên ta có kết quả: [...]... thì bài toán (1.14),(1.15) có ít nhất một nghiệm 3A B dương 1 + 3u  2  f (u ) = =1 − 3λu  λu  , u ≥ 0 dẫn đến λu ≤ f (u ) ≤ 3λu 1+ u  3(1 + u )  Theo Định lý 1.4.1 và 1.4.2, nếu Bf (u ) < u ⇔ 3λuB < u ⇔ λ < 1 1 ≈ 3, 45 hoặc Af (u ) > u ⇔ λuA > u ⇔ λ > ≈ 10, 613 thì bài 3B A toán (1.14),(1.15) không có nghiệm dương  Chương 2 NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC... Dễ thấy rằng phương trình tích phân (2.1) tương đương với phương trình toán tử = u, Tu u ∈ P Để tìm nghiệm dương của bài toán (2.1),(2.2), ta chỉ cần tìm điểm bất động u của T sao cho u ∈ P và u = u(1) Tiếp theo ta sẻ chứng minh các kết quả về sự tồn tại nghiệm dương của bài toán (2.1),(2.2) Định lý 2.4.5 Giả sử các điều kiện (H1) và (H2) được thỏa mãn Khi đó nếu BF0 < 1 < Af ∞ , thì bài toán (2.1),(2.2)... động của T trong P ∩ (Ω2 \ Ω1 ) Vậy bài toán (2.1),(2.2) có ít nhất một nghiệm dương  2.5 Các định lý về sự không tồn tại nghiệm dương cho bài toán (2.1), (2.2) Sau đây là một vài tiêu chuẩn về sự không tồn tại nghiệm dương, đồng thời ta đưa một dụ về sự tồn tại và không tồn tại nghiệm dương Định lý 2.5.1 Nếu (H1),(H2), và điều kiện sau được thỏa (H3) Bf ( x) < x với mọi x ∈ (0, +∞) , thì bài toán. .. động của T trong P ∩ (Ω2 \ Ω1 ) Do đó bài toán (1.1),(1.2) có ít nhất một nghiệm dương  1.4 Các định lý về sự không tồn tại nghiệm dương Sau đây là các tiêu chuẩn về sự không tồn tại nghiệm dương, đồng thời ta đưa một dụ về sự tồn tại và không tồn tại nghiệm dương Định lý 1.4.1 Giả sử rằng (H1) – (H3) thỏa mãn Nếu Bf ( x) < x với mọi x ∈ (0, +∞) , thì bài toán (1.1),(1.2) không có nghiệm dương. .. một nghiệm không âm của bài toán (2.1),(2.2), thì u(t) thỏa điều kiện (2.7) và (2.8) Chứng minh Nếu u(t) là một nghiệm không âm của bài toán (2.1),(2.2), thì u(t) thỏa điều kiện biên (2.2), và = g (t ) f (u (t )) ≥ 0, u ''''(t ) 0 ≤ t ≤1 Khi đó dễ thấy kết quả của mệnh đề được suy ra từ mệnh đề 2.3.2 và 2.3.3 2.4 Các định lý tồn tại nghiệm cho bài toán (2.1),(2.2) Trước hết ta định nghĩa các hằng số. .. tồn tại nghiệm dương của bài toán biên = g (t ) f (u (t )), 0 ≤ t ≤ 1 u ''''(t ) (2.1) u (0) u= u= u= 0 = '(0) ''(1) '''(1) (2.2) Trong chương này ta giả sử rằng (H1) Hàm f : [ 0, ∞ )  [ 0, ∞ ) liên tục, → → (H2) Hàm g : [ 0,1]  1 [0, ∞ ) liên tục và ∫ g (t )dt > 0 0 2.2 Hàm Green của bài toán (2.1),(2.2) Mệnh đề 2.2.1 Hàm Green G : [ 0,1] × [ 0,1]  → [0, +∞ ) của bài toán (1.2),(1.2) được cho bởi... định lý Guo –Krasnosel’skii tồn tại điểm bất động của T trong P ∩ (Ω2 \ Ω1 ) Vậy bài toán (2.1),(2.2) có ít nhất một nghiệm dương  Định lý 2.4.6 Giả sử các điều kiện (H1) và (H2) được thỏa mãn Khi đó nếu BF∞ < 1 < Af 0 , thì bài toán (2.1),(2.2) có ít nhất một nghiệm dương Chứng minh Từ Af 0 > 1 ,chọn ε > 0 sao cho ( f 0 − ε ) A ≥ 1 Tồn tại H1 > 0 sao cho f ( x) ≥ ( f 0 − ε ) x với 0 < x ≤ H1 Với mỗi... (K1) được thỏa mãn, theo định lý Guo –Krasnosel’skii tồn tại điểm bất động của T trong P ∩ (Ω2 \ Ω1 ) Do đó bài toán (1.1),(1.2) có ít nhất một nghiệm dương  Định lý 1.3.5 Nếu BF∞ < 1 < Af 0 , thì bài toán (1.1),(1.2) có ít nhất một nghiệm dương Chứng minh Từ Af 0 > 1 , chọn ε > 0 sao cho ( f 0 − ε ) A ≥ 1 Tồn tại H1 > 0 sao cho f ( x) ≥ ( f 0 − ε ) x , với 0 < x ≤ H1 Với mỗi u ∈ P và u = H1 , ta... 3 [ 0,1] , thỏa điều kiện (1.12) và điều kiện biên (1.2), thì u ( p ) = u và u (t ) ≥ a (t )u ( p ) , ∀t ∈ [ 0,1] 2) Nếu u ∈ C 3 [ 0,1] là nghiệm dương của bài toán giá trị biên (1.1),(1.2), thì u ( p ) = u và u ( p ) ≥ u (t ) ≥ a (t )u ( p ) , ∀t ∈ [ 0,1] Chứng minh 1) Được suy ra từ mệnh đề 1.2.6 và 1.2.7 2) Nếu u ∈ C 3 0,1 là nghiệm dương của bài toán (1.1),(1.2) thì,   u (t ) = max u (t )... , s ) =   1 t 2 (3s − t ), 6  gọi là hàm Green của bài toán (2.3) 0 ≤ s ≤ t ≤ 1, 0 ≤ t ≤ s ≤ 1 Áp dụng kết quả trên, mệnh đề 2.1.1 được chứng minh  Theo mệnh đề 2.1.1, bài toán (2.1),(2.2) tương đương với phương trình tích phân 1 u (t ) = ∫ G(t , s ) g ( s ) f (u ( s ))ds (2.5) 0 2.3 Các đánh giá cho nghiệm dương Trước hết ta định nghĩa hàm số a : [ 0,1]  → [0, +∞ ) xác định bởi: a(t= ) 3 2 . Ngọc Tiến NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC CAO Chuyên ngành: Toán Giải Tích Mã số: 60 46 01 . NGỌC TIẾN NGHIỆM DƯƠNG CỦA MỘT SỐ LỚP BÀI TOÁN BIÊN CHO PHƯƠNG TRÌNH VI PHÂN BẬC CAO LUẬN VĂN THẠC SĨ TOÁN HỌC

Ngày đăng: 18/02/2014, 22:39

Từ khóa liên quan

Mục lục

  • BÌA

  • LỜI CẢM ƠN

  • MỞ ĐẦU

  • CHƯƠNG 0

  • MỘT SỐ KIẾN THỨC CHUẨN BỊ

  • Chương 1

  • NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO

  • PHƯƠNG TRÌNH VI PHÂN BẬC BA

    • 1.1 Mở đầu

    • 1.2. Hàm Green và đánh giá tiên nghiệm của nghiệm dương

    • 1.3 Các định lý tồn tại nghiệm dương

    • 1.4 Các định lý về sự không tồn tại nghiệm dương

  • Chương 2

  • NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO

  • PHƯƠNG TRÌNH VI PHÂN BẬC BỐN

    • 2.1 Mở đầu

    • 2.2 Hàm Green của bài toán (2.1),(2.2)

    • 2.3 Các đánh giá cho nghiệm dương

    • 2.4 Các định lý tồn tại nghiệm cho bài toán (2.1),(2.2)

    • 2.5 Các định lý về sự không tồn tại nghiệm dương cho bài toán (2.1), (2.2)

  • Chương 3

  • NGHIỆM DƯƠNG CỦA MỘT LỚP BÀI TOÁN BIÊN CHO

  • PHƯƠNG TRÌNH VI PHÂN BẬC n

    • 3.1 Mở đầu

    • 3.2 Hàm Green và các đánh giá tiên nghiệm

    • 3.3 Các định lý về tồn tại, không tồn tại nghiệm dương của (3.1), (3.2)

    • 3.6 Ví dụ. Xét bài toán biên

  • KẾT LUẬN

  • TÀI LIỆU THAM KHẢO

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan