Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

24 856 0
Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Xác định các đặc trưng của thanh nhiên liệu hạt nhân dựa vào những bức xạ gamma năng lượng thấp và tia X Nguyễn Hoàng Anh Trường Đại học Khoa học Tự nhiên Luận văn Thạc sĩ ngành: Vật lý Nguyên tử, hạt nhân và năng lượng cao Mã số: 60 44 05 Người hướng dẫn: TS. Phạm Đức Khuê Năm bảo vệ: 2012 Abstract: Trình bày một số đặc trưng của nhiên liệu hạt nhân: trình bày tổng quan về urani và các phương pháp xác định thành phần, hàm lượng trong mẫu urani. Nghiên cứu phương pháp xác định thành phần và hàm lượng urani: giới thiệu phương pháp phổ gamma năng lượng thấp, đường cong hiệu suất ghi tương đối, tính tỷ số hoạt độ các thành phần bằng phương pháp chuẩn trong và các giải pháp nâng cao độ tin cậy của kết quả thực nghiệm. Tiến hành thực nghiệm và kết quả: trình bày quy trình đo đạc, phân tích số liệu và kết quả thu được trong việc xác định thành phần và hàm lượng của một số mẫu urani. Keywords: Bức xạ Gamma; Tia X; Vật lý hạt nhân; Nhiên liệu hạt nhân Content MỞ ĐẦU Ngày nay, trong công cuộc công nghiệp hóa hiện đại hóa đất nước, việc phát triển công nghiệp năng lượng luôn được đặt lên hàng đầu, tiên quyết cho các ngành nghề, lĩnh vực khác có thể phát triển theo. Một trong các mục tiêu phát triển công nghiệp năng lượng một quốc gia như Việt Nam chính là phát triển năng lượng điện hạt nhân nhằm giải quyết các vấn đề thiếu hụt năng lượng thời điểm hiện tại cũng như thay thế dần các nguồn năng lượng hóa thạch khác đang ngày càng cạn kiệt dần trong tương lai. Nhờ sự phát triển của các hệ phổ kế gamma với đetectơ bán dẫn gecmani siêu tinh khiết với độ phân giải năng lượng cao, phương pháp phân tích urani dựa trên cơ sở đo bức xạ gamma phát ra từ phân rã phóng xạ tự nhiên được sử dụng rất phổ biến, đáp ứng được các yêu cầu trong nghiên cứu cũng như ứng dụng. Dựa vào đặc trưng của bức xạ gamma năng lượng thấp do các đồng vị trong nhiên liệu urani phát ra, ta có thể bổ sung phương pháp phân tích 2 nhiên liệu urani bằng đo phổ tia X và gamma mềm sử dụng sử dụng các đetetơ bán dẫn như HPGe giải rộng (BEGe), HPGe tinh thể mỏng (planar), Si(Li), Luận văn với đề tài: “Xác định các đặc trưng của thanh nhiên liệu hạt nhân dựa vào những bức xạ gamma năng lượng thấp và tia X”, trình bày mô ̣ t số kết quả nghiên cứu thực nghiệm trong việc phân tích một số mẫu urani sử dụng phương pháp đo phổ gamma năng lượng thấp với đêtectơ bán dẫn Ge siêu tinh khiết giải rộng. Việc sử dụng đường cong hiệu suất ghi tương đối như một kỹ thuật chuẩn trong kết hợp với đo các tia gamm vùng năng lượng thấp đã được áp dụng để xác định hàm lượng các thành phần trong mẫu vật liệu urani. Về bố cục, ngoài các phần mở đầu, kết luận, tài liệu tham khảo và phụ lục, luận văn được chia thành 3 chương sau: Chương 1: Một số đặc trưng của nhiên liệu hạt nhân. Chương 2: Phương pháp xác định thành phần và hàm lượng urani. Chương 3: Thực nghiệm và kết quả. CHƢƠNG 1. MỘT SỐ ĐẶC TRƢNG CỦA NHIÊN LIỆU HẠT NHÂN 1.1. Đặc điểm chung Để thay thế cho các nguồn nhiên liệu hóa thạch của tự nhiên, sự lựa chọn năng lượng hạt nhân là một trong số lựa chọn của nhiều quốc gia hiện nay. Dựa trên cơ sở sử dụng năng lượng được giải phóng sau phản ứng phân hạch của một số đồng vị nặng, qua quá trình chuyển hóa sẽ thu được điện năng phục vụ cho nhu cầu của con người. Hiện nay Urani được lựa chọn là nhiên liệu hạt nhân lý tưởng để phục vụ cho chúng ta. Việc hiểu biết về các đặc trưng của nguyên tố này cũng như nhiên liệu tạo ra từ Urani là một điều hết sức cần thiết trong quá trình sử dụng và khai thác chúng. 1.1.1 Nguyên tố Urani tự nhiên Urani là nguyên tố hóa học kim loại màu xám bạc, ăn mòn, trong không khí tạo lớp vỏ oxit màu đen thuộc nhóm Actini, có số nguyên tử là 92 trong bảng tuần hoàn, được kí hiệu là U. Trong tự nhiên, urani được tìm thấy dạng 238 U (99.284 %), 235 U (0.711 %), và một lượng rất nhỏ 234 U (0.0058 %). Urani phân rã rất chậm phát ra hạt anpha. Chu kỳ bán rã của 238 U là khoảng 4.47 tỉ năm và của 235 U là 704 triệu năm, do đó nó được sử dụng để xác định tuổi của Trái Đất. 3 1.1.2. Dãy phóng xạ Urani tự nhiên Các đồng vị 238 U và 235 U sinh ra các dãy phóng xạ cân bằng, tạo nên hai họ phóng xạ cơ bản là Uranium ( 238 U với 18 đồng vị con) và Actinium ( 235 U với 14 đồng vị con). Tất cả các hạt nhân con trong các dãy này (ngoại trừ đồng vị cuối dãy) đều là các đồng vị phóng xạ. Các họ phóng xạ tự nhiên có chung những đặc điểm như sau: - Các đồng vị trong dãy liên hệ với nhau bằng phân rã alpha hoặc beta. - Sau mỗi phân rã alpha hay beta, các đồng vị con đều phát ra các tia gamma để giải phóng năng lượng dư sau mỗi phản ứng. Các tia gamma này đều mang năng lượng và bước sóng đặc trưng cho đồng vị con đó. - Mỗi họ có một đồng vị sống lâu (chu kỳ bản rã lớn) đứng đầu và một đồng vị bền nằm vị trí cuối cùng. Bảng 1.1. Các đồng vị phóng xạ trong dãy 235 U và đặc trưng phân rã của chúng STT Đồng vị phóng xạ Loại phân rã Chu kỳ bán rã 1 235 U Αlpha 1.7 x 10 8 năm 2 231 Th Βeta 225 giờ 3 231 Pa Αlpha 3.25 x 10 4 năm 4 227 Ac Βeta 2.16 năm 5 227 Th Αlpha 18.2 ngày 6 223 Fr Βeta 22 phút 7 223 Ra Αlpha 11.44 ngày 8 219 Rn Αlpha 4 giây 9 215 Po Αlpha 1.78 x 10 -3 giây 10 211 Pb Βeta 36.1 giây 11 211 Bi Αlpha 2.16 phút 12 207 Pb (Bền) Bảng 1.2. Các đồng vị phóng xạ trong dãy 238 U và đặc trưng phân rã của chúng STT Đồng vị phóng xạ Loại phân rã Chu kỳ bán rã 1 238 U Αlpha 4.507 x 10 9 năm 2 234 Th Βeta 24.1 ngày 4 STT Đồng vị phóng xạ Loại phân rã Chu kỳ bán rã 3 234 Pa Βeta 1.18 phút 4 234 U Αlpha 2.48 x 10 5 năm 5 230 Th Αlpha 7.52 x, 10 4 năm 6 226 Ra Αlpha 1600 năm 7 222 Rn Αlpha 3.824 ngày 8 218 Po Αlpha 3.05 phút 9 214 Pb Βeta 26.8 phút 10 214 Bi Βeta 19.7 phút 11 214 Po Αlpha 1.85 x 10 -4 giây 12 210 Pb Βeta 22.3 năm 13 210 Bi Βeta 5.02 ngày 14 210 Po Αlpha 138.4 ngày 15 206 Pb (Bền) Khi hiện tượng cân bằng phóng xạ xảy ra, hoạt độ phóng xạ của nguyên tố trong cùng một dãy đều bằng nhau. Ta có phương trình cân bằng phóng xạ sau đây: λ 1 N 1 = λ 2 N 2 = … = λ i N i = … = λ k N k (1.1) Nếu biết hoạt độ phóng xạ của hạt nhân nào đó trong dãy sẽ suy ra hoạt độ phóng xạ của hạt nhân khác trong dãy đó và do đó biết được hàm lượng của các nguyên tố trong dãy. 1.2. Nhiên liệu Urani Trong các đồng vị tự nhiên này của Urani thì chỉ có 235 U mới có khả năng tự phân hạch hoặc phân hạch gây bởi nơtron năng lượng thấp, nơtron nhiệt [2] . Người ta đã phân loại các vật liệu Urani thành các dạng là: Urani tự nhiên, Urani nghèo, Urani giàu và siêu giàu, trong đó cơ sở để phân loại chính là hàm lượng 235 U trong tự nhiên (0.72 %). Khái niệm giàu hay nghèo là nói đến tỉ lệ 235 U trong một mẫu hỗn hợp Urani ít hơn hay nhiều hơn so với Urani tự nhiên. Nếu hàm lượng 235 U trong mẫu trên mức 0.72 % thì được coi là đã làm giàu. Tuy nhiên trong các vật liệu Urani đã làm giàu có thể chia làm 2 loại chính: độ giàu thấp (3-4%) dùng làm nhiêu liệu cho các lò phản ứng hạt nhân và độ giàu cao ( 90%) dùng làm vũ khí hạt nhân. 5 1.2.1. Quá trình làm giàu Urani Phương pháp ly tâm khí là phương pháp chủ yếu để tách đồng vị 235 U ra khỏi 238 U dựa trên sự khác nhau về lực ly tâm của các phân tử khí nhẹ và nặng hơn. (xem chi tiết thêm trong bản chính của luận văn). 1.2.2. Urani nghèo Urani nghèo (Depleted Uranium, viết tắt là DU) để chỉ loại Urani có hàm lượng đồng vị 235 U thấp. Trong kỹ thuật hạt nhân người ta dùng Urani thiên nhiên (chứa 0.71 % đồng bị 235 U) để làm giàu đồng vị này lên mức 3.2% hay 3.6% , được gọi chung là Urani đã làm giàu (Enriched Uranium). Quá trình tạo ra Urani làm giàu đồng thời sinh ra một sản phẩm phụ, cũng có thể xem là phế liệu, là DU chỉ còn chứa 0.2 – 0.3 % 235 U. Với công nghệ hiện nay từ 8.05 tấn Urani thiên nhiên chứa 0.71 % 235 U, người ta sản xuất được 1 tấn Urani làm giàu (chứa 3.6 % 235 U) đồng thời tạo ra 7.05 tấn DU (chứa 0.3 % 235 U). Như vậy, khái niệm giàu hay nghèo đây có nghĩa là nhiều hay ít 235 U hơn so với Urani thiên nhiên. Ngoài ra, các DU còn có thể là sản phẩm sau phân hạch của lò phản ứng, hàm lượng rất đáng kể do hầu hết các 235 U đều đã phân hạch, nên trong lượng “sỉ” đưa ra không còn 235 U nữa. Một phần nhỏ các 238 U cũng phân hạch trong quá trình thu neutron nhanh, nhưng không đáng kể, vì thế có thể coi sản phẩm của lò phản ứng cũng là hỗn hợp Urani nghèo. 1.3. Các phƣơng pháp dùng để xác định hàm lƣợng 235 U trong nhiên liệu 1.3.1.Các phƣơng pháp có phá hủy mẫu Trong các phương pháp phân tích có phá hủy mẫu, phải kể đến 4 phương pháp phổ biến nhất là đo bức xạ alpha, sử dụng khối phổ kế, phân tích sắc ký, và đo bức xạ gamma trong ống khí ly tâm UF 6 . Đo bức xạ alpha: Đây là phương pháp cơ bản nhất trong các phương pháp phân tích mẫu Uran. Phương pháp này đo trực tiếp bức xạ Alpha để tính hoạt độ các đồng vị. Khối phổ kế: Là phương pháp phức tạp nhưng có độ chính xác cao nhất, dựa trên nguyên lý phụ thuộc của lực quán tính ly tâm vào khối lượng để xác định hàm lượng đồng vị Urani có trong mẫu đo. Khối phổ kế thường được kết hợp với những phương pháp khác nhưng cơ bản và phổ biến nhất là phương pháp Khối phổ kế cảm ứng plasma (ICPMS). Phân tích sắc ký phân tử: Sắc ký là một phương pháp truyền thống dùng để xác định thành phần có trong hợp chất. Phương pháp này có độ chính xác cao nhưng thời gian phân tích lại rất lớn và đồng thời mẫu bắt buộc phải phá hủy mới phân tích được. Đo khí UF6: 6 Một phương pháp xác định độ giàu khác được thực hiện ngay trong giai đoạn làm giàu khí từ UF 6 để xác định độ giàu nhiên liệu hạt nhân ngay trong khâu sản xuất. Đây không phải phương pháp thông dụng, phổ biến. 1.3.2. Các phƣơng pháp không phá hủy mẫu (NDA) Phương pháp phân tích urani không phá hủy mẫu chủ yếu sử dụng phổ kế gamma HPGe, đây là phương pháp đo nhanh, trực tiếp trên nguyên mẫu, dựa trên các tính chất đặc trưng của các đồng vị, qua xử lý và hiệu chỉnh để đưa ra kết quả đánh giá độ giàu của mẫu nhiên liệu. Đo đỉnh gamma 186 keV: Đồng vị phóng xạ 235 U trực tiếp phát ra tia gamma có năng lượng 185.72 keV nên về nguyên tắc có thể sử dụng để phân tích urani. Phân tích kích hoạt: Đây là phương pháp truyền thống nhưng có độ tin cậy khá cao, thời gian đo ngắn, phân giải tốt, ứng dụng rất rộng rãi và đa dạng tuy nhiên là phương pháp đòi hỏi công nghệ rất cao và khó thực hiện. Phương pháp phổ kế gamma và kỹ thuật chuẩn trong: Dựa vào đặc điểm bức xạ gamma có khả năng đâm xuyên lớn và dựa vào đặc điểm dãy phóng xạ Uran để xác định các đặc trưng của nhiên liệu Uran nói riêng và của các dạng vật liệu hạt nhân nói chung. Tới năm 2009 TS. Nguyễn Công Tâm, Viện Khoa học Đồng vị phóng xạ Hungary, đề xuất thêm phương pháp ứng dụng tỉ số chuẩn trong để xác định thêm tuổi của thanh nhiên liệu hạt nhân [16] . Lý thuyết này đã được Bộ môn Vật lý Hạt nhân, Đại học Khoa Học Tự nhiên Hà Nội triển khai, ứng dụng vào thực tế và cho ra kết quả đo đạc với độ chính xác cao. CHƢƠNG 2. PHƢƠNG PHÁP THỰC NGHIỆM XÁC ĐỊNH HÀM LƢỢNG URANI 2.1. Hệ phổ kế gamma bán dẫn Luận văn sử dụng hệ phổ kế gamma bán dẫn gecmani siêu tinh khiết giải năng lượng rộng (BEGe) của hãng Canberra, Mỹ, baogồm: đetectơ bán dẫn BEGe, buồng chì phông thấp, các hệ điện tử như tiền khuếch đại, khuếch đại phổ, bộ biến đổi tương tự số (ADC), máy phân tích biên độ nhiều kênh (MCA), nguồn nuôi cao áp… Hình 2.1. Sơ đồ khối điện tử trong hệ thống đo bán dẫn. Đầ u dò Tiề n khuế ch đại Khuế ch đại ADC MCA Máy phát xung Cao thế Chố ng chồ ng chậ p Máy tính 7 2.1.1. Các thông số kỹ thuật đặc trƣng của hệ phổ kế gamma bán dẫn BEGe – Canberra (xem trong bản chính của luận văn). 2.1.2. Phân tích phổ gamma Mục đích chính của việc phân tích phổ gamma là xác định năng lượng và diện tích các đỉnh phổ làm cơ sở cho việc nhận diện nguyên tố và xác định hoạt độ phóng xạ. Phổ gamma ghi nhận bao gồm một số đỉnh hấp thụ toàn phần của vạch bức xạ gamma nằm trên một nền Compton liên tục. Đỉnh này là kết quả tương tác của bức xạ gamma với vật liệu đêtectơ. Diện tích đỉnh phổ gamma thường xác định bằng việc làm khớp các số liệu đo được với một hàm giải tích thích hợp và tích phân hàm đó để tính diện tích. 2.1.3. Đƣờng chuẩn năng lƣợng Đường chuẩn năng lượng là đồ thị mô tả sự phụ thuộc của vị trí cực đại đỉnh hấp thụ toàn phần vào năng lượng của vạch bức xạ gamma tương ứng. 0 4000 8000 12000 16000 0 1000 2000 3000 4000 so lieu do duong khop Nang luong gamma E(keV) So kênh Hình 2.2. Đường chuẩn năng lượng của hệ phổ kế BEGe – Canberra. 2.1.4. Xây dựng đƣờng cong hiệu suất ghi Để xác định hàm lượng của các nguyên tố phóng xạ trong mẫu phân tích, theo phương pháp phổ gamma, cần biết hiệu suất ghi của đetectơ ứng với vạch hấp thụ toàn phần của bức xạ gamma đặc trưng. Đường cong hiệu suất ghi là đường cong mô tả sự phụ thuộc của hiệu suất ghi vào năng lượng bức xạ gamma. Có thể xác định hiệu suất ghi của detectơ bằng tính toán lý thuyết hoặc đo đạc thực nghiệm. Việc tính toán hiệu suất ghi thường được sử dụng phương pháp Monte - Carlo dựa trên việc mô hình hóa lịch sử của các photon. Hình 2.3 là đường cong hiệu suất ghi tuyệt đối của hệ phổ kế gamma bán dẫn dải rộng BEGe - Canberra với nguồn chuẩn đặt tại 2 vị trí cách đêtectơ là 8.35 cm và 19.35 cm. 8 100 1000 0.1 1 10 8.35 cm 19.35 cm khop Hieu suat ghi (%) Nang luong tia gamma, E (keV) Hình 2.3. Đồ thị đường cong hiệu suất ghi của hệ phổ kế gamma bán dẫn Canberra 2 khoảng cách cách nguồn là 8.35 cm và 19.35 cm. Luận văn này còn sử dụng một phương pháp khác để xác định đường cong hiệu suất ghi mà không nhất định phải sử dụng nguồn gamma chuẩn đơn năng thông thường, sẽ được trình bày cụ thể mục 2.2. 2.2. Xác định độ giàu urani bằng phƣơng pháp phổ kế gamma Áp dụng phương pháp phổ gamma trong vùng năng lượng thấp (dưới 300 keV) thì việc mất mát các bức xạ được hạn chế dẫn tới số đếm của các kênh đo là rất lớn, hiệu suất ghi của detector rất cao mà không đòi hỏi các điều kiện cầu kỳ, thời gian đo sẽ được giảm thiểu và quan trọng là ta chỉ cần sử dụng một phổ đo duy nhất cho mỗi mẫu cũng vẫn khả thi. Tuy nhiên với vùng này thì phông nền cũng sẽ rất lớn, hầu hết các bức xạ đều có nền Compton trong vùng năng lượng thấp, phổ các tia X cũng tập chung chủ yếu đây, dẫn tới khả năng can nhiễu cũng như sự chồng chập đỉnh là rất lớn, đòi hỏi quá trình xử lý phổ hay tách các đỉnh phải rất tỉ mỉ, thận trọng, lựa chọn những vạch có hệ số phân nhánh cao để tính toán mới cho ra kết quả đáng tin cậy được. 2.2.1. Cơ sở của phƣơng pháp phổ gamma Với mỗi đồng vị phóng xạ xác định, số tia gamma phát ra từ mẫu tỉ lệ thuận với khối lượng của đồng vị phóng xạ có trong mẫu.      A 2/1 A N.m .I T 693,0N.m II.AN (2.2) trong đó: A: là hoạt độ đồng vị quan tâm. N A = 6,023.10 23 là số Avogadro. : là số khối của đồng vị. 9 2.2.2. Tỉ số hoạt độ các đồng vị và kỹ thuật chuẩn trong Việc tính tỉ lệ hoạt độ được thể hiện qua biểu thức sau: 11112 22221 2 1        In In A A (2.3) trong đó A1, A2 là các hoạt độ của hai đồng vị 1 và 2 tương ứng; n1, n2 là số đếm tại các đỉnh tương ứng với các tia gamma γ1 và γ2 với một năng lượng cụ thể E1 và E2 từ đồng vị 1 và 2 tương ứng; I  1 và I  2 là cường độ của tia γ1 và γ2, các giá trị Ω1, Ω2 là góc khối chiếu tới detector của γ1 và γ2, hai giá trị này thực chất là hoàn toàn giống vì được đo trên cùng 1 mẫu và cùng 1 phép đo, ε1, ε2 là hiệu suất ghi đo ứng với các mức năng lượng E1 và E2 của tia γ1, γ2 từ hai đồng vị tương ứng; τ1 và τ2 là hệ số truyền dẫn gamma đến detector tương ứng với γ1 và γ2. Từ biểu thức 2.2, qua giản ước và biến đổi, ta có được: )( / / / . 11 22 11 12 21 2 1 Ef In In In In In A A       (2.4) trong đó hàm )E(I )E(n )E(f i 2 i 2  là hàm của các giá trị E 2i có được từ các tia γ i của đồng vị thứ 2. Hàm này được gọi là hàm hiệu suất ghi, đường cong mô tả hàm f(E) được gọi là đường cong hiệu suất ghi vì nó thể hiện hiệu suất ghi đo của thiết bị theo các mức năng lượng trong 1 vùng phổ. Phương pháp tính tỉ số hoạt độ dựa trên đường cong hiệu suất ghi này được gọi là kỹ thuật chuẩn trong hay hiệu chỉnh nội. 2.2.3. Mối liên hệ giữa tỉ số khối lƣợng và tỉ số hoạt độ Hoạt độ A của một đồng vị phóng xạ được biểu diễn qua biểu thức sau: A N. m .N.A   (2.5) trong đó: N là số hạt nhân phóng xạ m: khối lượng đồng vị có trong mẫu đo. λ: Hằng số phân rã của đồng vị. : Số khối của đồng vị. N A : Số Avogadro. Kết hợp hai biểu thức 2.4 và 2.5 ta sẽ có được biểu thức tính tỉ số khối lượng giữa hai đồng vị như sau [4] : 10 )( / 2 1 1 1 2 2 1 2 1 2 1 i Ef In m m A A       (2.6) suy ra: )(. )(. 2 1 1 2 2/1 1 2/1 2 1 2 1 1 1 2 2 1 2 1 ii EfI n T T EfI n m m         (2.7) trong đó: n 1 : là tốc độ đếm tại vạch năng lượng đặc trưng của đồng vị 1. I γ1 : cường độ tia gamma đặc trưng của đồng vị 1. )( 2 i Ef : Hàm biểu diễn đường cong hiệu suất ghi, được xây dựng dựa trên các mức năng lượng đặc trưng cho đồng vị 2. Hàm lượng (hay còn gọi là độ giàu) các đồng vị Urani có thể tính thông qua tỉ số khối lượng hay tỉ số hoạt độ bằng các biểu thức sau: 238 234 238 235 238 234 234 1 m m m m m m q   . 100% ; 238 235 238 234 238 235 235 1 m m m m m m q   . 100% 238 234 238 235 238 1 1 m m m m q   . 100% (2.8) Hoặc có thể tính trực tiếp từ tỉ số hoạt độ theo biểu thức như sau: 235 4 234 238 235 235 1 1 3.479.10 . 6.43. UU UU q AA AA    .100% (2.9) Trên thực tế các công thức 2.8 hay 2.9 đều có thể sử dụng tương đương nhau, có thể tùy chọn cách tính nào thuận tiện hơn thì áp dụng. 2.2.4. Các vạch phổ dùng để xác định tỷ số hoạt độ các đồng vị Urani Trong vùng năng lượng thấp, việc tính toán hoạt độ của các đồng vị Urani có thể sử dụng những đỉnh năng lượng thống kê trong bảng 2.1 [15] . Bảng 2.1: Các vạch phổ được sử dụng để tính toán tỉ lệ hoạt độ. Đồng vị mẹ Năng lượng (keV) Dạng Cường độ tia γ (%) Đồng vị phát Chu kỳ bán rã 238 U 49.55 ± 0.06 γ 0.064 ± 0.008 238 U 4.47x10 9 [...]... khối lượng của các đồng vị, và xác định hàm lượng các đồng vị urani có trong các mẫu vật liệu urani - Đã nhận diện được các đồng vị urani (234U, 235U, 238U) và các đồng vị con cháu trong các mẫu nghiên cứu dựa trên năng lượng của các tia gamma ghi nhận được trong vùng năng lượng thấp - Đã xác định được hàm lượng của 03 mẫu urani, trong đó có 01 mẫu đã biết trước hàm lượng và 02 mẫu chưa có thông tin Các. .. Việc hiệu chỉnh các sai số thống kê sinh ra bởi các quy luật ngẫu nhiên, đã trình bày cụ thể mục II.3, bằng cách cấu hình hệ đo hợp lý, tiến 20 hành phép đo nhiều lần theo các điều kiện và thời gian khác nhau, đảm bảo thống kê số đếm, giảm thời gian chết, chuẩn năng lượng chính xác cho hệ đo, v v… Việc xác định sai số của kết quả thực nghiệm bằng phương pháp truyền sai số sử dụng các biểu thức 2.11... năng lượng thấp và tia X kết hợp với kỹ thuật chuẩn trong bằng cách chọn ra một đồng vị trong vật liệu làm chuẩn để xác định thành phần và hàm lượng uran Các kết quả chính của luận văn bao gồm: - Nghiên cứu tổng quan về nhiên liệu hạt nhân nói riêng và vật liệu Urani nói chung - Tìm hiểu các phương pháp và kỹ thuật thực nghiệm xác định hàm lượng urani Tập trung vào phương pháp đo phổ gamma năng lượng. .. quả xác định hàm lượng urani trong mẫu Uran 2 Đồng vị Tỉ số mi/m238 Hàm lượng (%) 234 U 1.61 10-3 0.0023 ± 0.00016 235 U 1.0 0.317 ± 0.025 238 U 3.04  102 99.68 ± 7.87 3.4 Đánh giá sai số và nhận xét về kết quả thực nghiệm Tổng hợp kết quả xác định hàm lượng đồng vị urani trong các mẫu từ các bảng 3.4, 3.6 và 3.8 được thống kê trong bảng 3.9 và hình 3.16 Bảng 3.9 Tổng hợp kết quả xác định hàm lượng. .. tính tỉ số khối lượng của 234U đối với 238U là đỉnh 53.2 keV vì đỉnh này có cường độ bức xạ gamma tương đối cao và ít bị chồng chập với các đỉnh khác Áp dụng biểu thức 2.7, kết quả được đưa ra tại bảng 3.2 Hàm lượng của các đồng vị có trong mẫu có thể lần lượt tính ra bằng cách áp dụng các biểu thức 2.8, kết quả được đưa ra trong bảng 3.2 và hình 3.10 Bảng 3.2 Kết quả xác định hàm lượng urani trong... Điển; Trung tâm số liệu hạt nhân quốc gia, NUDAT2, Brookhaven, Mỹ [11] [15], 3.3 Phân tích số liệu và kết quả 3.3.1 Xử lý kết quả đo mẫu chuẩn urani dạng bột Tỉ số khối lượng giữa các đồng vị có thể tính được trực tiếp bằng cách áp dụng biểu thức 2.7: 13 Hàm lượng các đồng vị được áp dụng các biểu thức 2.8 để tính toán Hình 3.7 Phổ gamma mẫu chuẩn dạng bột Bảng 3.1 Các bức xạ sử dụng để tính toán cho... của đại lượng F ΓF: độ lệch chuẩn của đại lượng F Γai: là sai số của đại lượng ai F là đạo hàm riêng của hàm F theo giá trị ai a i Giá trị của đại lượng F sẽ là: F  F  F (2.13) 2.4 Một số hiệu chỉnh nâng cao độ chính xác kết quả đo Các biện pháp hiệu chỉnh kết quả được trình bày chi tiết trong bản chính của luận văn, đây chỉ nêu ra các phương pháp chung bao gồm: 12 2.4.1 Hiệu ứng thời gian chết... chỉnh và tách đỉnh, sai số 1 ÷ 3 % Các sai số khác, đánh giá vào cỡ nhỏ hơn 2 % Sai số toàn phần được tính theo công thức truyền sai số và được xác định nằm trong phạm vi 3 ÷ 15 % Sai số của hiệu suất ghi đêtectơ và hiệu ứng tự hấp thụ tia gamma trong mẫu đã được loại bỏ do sử dụng kỹ thuật chuẩn trong Hiệu ứng cộng đỉnh là không đáng kể vì các mẫu được đo tại các vị trí cách xa đetectơ 21 KẾT LUẬN Luận... U 2.46x105 năm U 2.46x105 năm Lý do lựa chọn các đỉnh trên để khảo sát phổ gamma: Các đỉnh này đều nằm trong vùng năng lượng thấp đang khảo sát, vùng này nằm trong phạm vi ghi nhận với hiệu suất ghi rất cao của hầu hết các loại detector, đặc biệt là detector bán dẫn bản mỏng thì độ chính xác thống kê trong vùng năng lượng thấp này là rất lớn 11 2.3 Xác định sai số đóng góp trong kết quả xử lý 2.3.1... vị hàm lượng rất nhỏ và các tạp chất, được thống kê thêm trong phần phụ lục Tương tự như vậy, thành phần chính trong mẫu Uran 2 được xác định gồm có các đồng vị: 238 U, 235U, 234Th, 228Th, 234Pa, 226Ra, 215Po, 208Tl và 206Pb Hình 3.12 Phổ gamma của mẫu Uran1 17 Hình 3.13 Phổ gamma của mẫu Uran2 tại vùng năng lượng 100 keV ÷ 300 keV Trong mẫu Uran1, nguyên tố được chọn làm chuẩn nội là 235U, các đỉnh . đo các tia gamm ở vùng năng lượng thấp đã được áp dụng để xác định hàm lượng các thành phần trong mẫu vật liệu urani. Về bố cục, ngoài các phần mở đầu,. năng lượng ở một quốc gia như Việt Nam chính là phát triển năng lượng điện hạt nhân nhằm giải quyết các vấn đề thiếu hụt năng lượng ở thời điểm hiện tại

Ngày đăng: 10/02/2014, 20:55

Hình ảnh liên quan

Bảng 1.2. Các đồng vị phóng xạ trong dãy 238U và đặc trưng phân rã của chúng - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 1.2..

Các đồng vị phóng xạ trong dãy 238U và đặc trưng phân rã của chúng Xem tại trang 3 của tài liệu.
Bảng 1.1. Các đồng vị phóng xạ trong dãy 235U và đặc trưng phân rã của chúng - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 1.1..

Các đồng vị phóng xạ trong dãy 235U và đặc trưng phân rã của chúng Xem tại trang 3 của tài liệu.
Hình 2.1. Sơ đồ khối điện tử trong hệ thống đo bán dẫn. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 2.1..

Sơ đồ khối điện tử trong hệ thống đo bán dẫn Xem tại trang 6 của tài liệu.
Hình 2.2. Đường chuẩn năng lượng của hệ phổ kế BEGe – Canberra. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 2.2..

Đường chuẩn năng lượng của hệ phổ kế BEGe – Canberra Xem tại trang 7 của tài liệu.
Hình 2.3. Đồ thị đường cong hiệu suất ghi của hệ phổ kế gamma bán dẫn Canberra 2 khoảng cách cách nguồn là 8.35 cm và 19.35 cm. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 2.3..

Đồ thị đường cong hiệu suất ghi của hệ phổ kế gamma bán dẫn Canberra 2 khoảng cách cách nguồn là 8.35 cm và 19.35 cm Xem tại trang 8 của tài liệu.
Bảng 2.1: Các vạch phổ được sử dụng để tính toán tỉ lệ hoạt độ. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 2.1.

Các vạch phổ được sử dụng để tính toán tỉ lệ hoạt độ Xem tại trang 10 của tài liệu.
Hình 3.7. Phổ gamma mẫu chuẩn ở dạng bột. Bảng 3.1. Các bức xạ sử dụng để tính toán cho mẫu bột, vùng < 100 keV - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 3.7..

Phổ gamma mẫu chuẩn ở dạng bột. Bảng 3.1. Các bức xạ sử dụng để tính toán cho mẫu bột, vùng < 100 keV Xem tại trang 14 của tài liệu.
Hình 3.9. Đường cong hiệu suất ghi tại vùng năng lương thấp đôi với phổ gamma của mẫu bột - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 3.9..

Đường cong hiệu suất ghi tại vùng năng lương thấp đôi với phổ gamma của mẫu bột Xem tại trang 15 của tài liệu.
Bảng 3.2. Kết quả xác định hàm lượng urani trong mẫu chuẩn dạng bột. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 3.2..

Kết quả xác định hàm lượng urani trong mẫu chuẩn dạng bột Xem tại trang 15 của tài liệu.
Hình 3.10. Các đỉnh gamma trong vùng 100keV – 300keV của phổ mẫu bột. Bảng 3.3. Các đỉnh gamma sử dụng trong phổ mẫu bột, vùng 100 ÷ 300 keV - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 3.10..

Các đỉnh gamma trong vùng 100keV – 300keV của phổ mẫu bột. Bảng 3.3. Các đỉnh gamma sử dụng trong phổ mẫu bột, vùng 100 ÷ 300 keV Xem tại trang 16 của tài liệu.
Đường cong hiệu suất ghi, kết quả được biểu diễn trên hình 3.11. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

ng.

cong hiệu suất ghi, kết quả được biểu diễn trên hình 3.11 Xem tại trang 16 của tài liệu.
Hình 3.11. Đường cong hiệu suất ghi của mẫu bột khi chọn 235U làm chuẩn trong, độ khớp đạt 99.25 % - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 3.11..

Đường cong hiệu suất ghi của mẫu bột khi chọn 235U làm chuẩn trong, độ khớp đạt 99.25 % Xem tại trang 17 của tài liệu.
Kết quả đo được đưa ra trong bảng 3.4. Từ tỉ số khối lượng, hàm lượng các đồng vị cũng được áp dụng các biểu thức 2.8 để tính, kết quả được liệt kê tại bảng 3.4 - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

t.

quả đo được đưa ra trong bảng 3.4. Từ tỉ số khối lượng, hàm lượng các đồng vị cũng được áp dụng các biểu thức 2.8 để tính, kết quả được liệt kê tại bảng 3.4 Xem tại trang 17 của tài liệu.
Hình 3.13. Phổ gamma của mẫu Uran2 tại vùng năng lượng 100keV ÷ 300keV. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Hình 3.13..

Phổ gamma của mẫu Uran2 tại vùng năng lượng 100keV ÷ 300keV Xem tại trang 18 của tài liệu.
Bảng 3.5. Các đỉnh phổ sử dụng trong mẫu Uran1, đo trong 23 giờ. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 3.5..

Các đỉnh phổ sử dụng trong mẫu Uran1, đo trong 23 giờ Xem tại trang 18 của tài liệu.
Áp dụng biểu thức 2.7 kết quả tính được đưa ra trong bảng 3.6. (Sai số trong toàn bộ quá trình xử lý mẫu Uran1 là 13.4%) - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

p.

dụng biểu thức 2.7 kết quả tính được đưa ra trong bảng 3.6. (Sai số trong toàn bộ quá trình xử lý mẫu Uran1 là 13.4%) Xem tại trang 19 của tài liệu.
Bảng 3.8. Kết quả xác định hàm lượng urani trong mẫu Uran 2. - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

Bảng 3.8..

Kết quả xác định hàm lượng urani trong mẫu Uran 2 Xem tại trang 20 của tài liệu.
Tổng hợp kết quả xác định hàm lượng đồng vị urani trong các mẫu từ các bảng 3.4, 3.6 và 3.8 được thống kê trong bảng 3.9 và hình 3.16 - Xác định trữ lượng các bon ở các trạng thái rừng khộp tại tỉnh gia lai

ng.

hợp kết quả xác định hàm lượng đồng vị urani trong các mẫu từ các bảng 3.4, 3.6 và 3.8 được thống kê trong bảng 3.9 và hình 3.16 Xem tại trang 20 của tài liệu.

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan